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Abstract 

 
Generating Reliable and Responsive Observational Evidence: 

Reducing Pre-analysis Bias 

 

Anna Ostropolets 

 

 

A growing body of evidence generated from observational data has demonstrated the potential to 

influence decision-making and improve patient outcomes. For observational evidence to be actionable, 

however, it must be generated reliably and in a timely manner. Large distributed observational data 

networks enable research on diverse patient populations at scale and develop new sound methods to 

improve reproducibility and robustness of real-world evidence. Nevertheless, the problems of 

generalizability, portability and scalability persist and compound. As analytical methods only partially 

address bias, reliable observational research (especially in networks) must address the bias at the design 

stage (i.e., pre-analysis bias) including the strategies for identifying patients of interest and defining 

comparators. 

 

This thesis synthesizes and enumerates a set of challenges to addressing pre-analysis bias in 

observational studies and presents mixed-methods approaches and informatics solutions for overcoming 

a number of those obstacles. We develop frameworks, methods and tools for scalable and reliable 

phenotyping including data source granularity estimation, comprehensive concept set selection, index 

date specification, and structured data-based patient review for phenotype evaluation. We cover the 

research on potential bias in the unexposed comparator definition including systematic background rates 

estimation and interpretation, and definition and evaluation of the unexposed comparator. 

 

We propose that the use of standardized approaches and methods as described in this thesis not only 

improves reliability but also increases responsiveness of observational evidence. To test this hypothesis, 

we designed and piloted a Data Consult Service - a service that generates new on-demand evidence at 

the bedside. We demonstrate that it is feasible to generate reliable evidence to address clinicians’ 

information needs in a robust and timely fashion and provide our analysis of the current limitations and 

future steps needed to scale such a service.
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Glossary 

 

 

Cohort is the set of persons satisfying one or more inclusion and exclusion criteria for a duration of 

time. 

 

Cohort definition is operationalized executable algorithm that translates a set of inclusion and exclusion 

criteria, which, when executed against a data source, produces a cohort of patients. 

In this thesis we use the terms cohort definition and phenotype definition interchangeably. 

 

Cohort start and end date are the points in time the subjects enter and exit the cohort respectively. 

 

Concept (code, ontology term) - a unit of symbolic processing in controlled ontologies, terminologies, 

and vocabularies, which embodies a particular meaning [1]. 

 

Concept set (code set, value set) is the set of medical terms used to represent the data elements in 

phenotype definition [2]. 

 

Interoperability is the ability of different information systems, devices, and applications (systems) to 

access, exchange, integrate, and cooperatively use data in a coordinated manner, within and across 

organizational, regional, and national boundaries, to provide timely and seamless portability of 

information and optimize the health of individuals and populations [3]. 

 

Portability is an ability of phenotype to be implemented faithfully and easily at a different site while 

maintaining a similar performance or, in other terms, performance over time and effort [4,5].  

 

Phenotype is a specification of an observable, potentially changing state of an organism, as distinguished 

from the genotype, which is derived from an organism’s genetic makeup [4]. 

 

Representation is the organization, structuring, or labeling of data, information, or knowledge in a 

formalized manner intended to support subsequent processing (comprehension, decisions, and actions) 

and optimize communication [6] 
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Chapter 1. Introduction 
 

 

1.1. Problem statement: need for reliable and responsive evidence 

 

 

Accumulated scientific evidence informs clinical decisions to promote better care, improve patient 

outcomes, and reduce costs [36–41]. Randomized clinical trials (RCTs) are the backbone of medical 

evidence and the gold standard for inferring intervention benefits and risks. Nevertheless, they are often 

not generalizable to real-world patients [42–46], expensive, slow and require post-marketing studies for 

new drugs [47,48], which, in turn, only delays evidence delivery.  

 

As a result, many clinical questions remain unanswered [13,43,49–52], which produces variability in 

clinical practice [53], especially evident as new diseases emerge. For example, the COVID-19 pandemic 

illustrated that a lack of evidence leads to the use of treatment regimens of unknown effectiveness, off-

label drug use, and suboptimal patient care [54,55].  

 

A growing body of observational data, such as electronic health records (EHRs) and administrative 

claims, could be a solution to the lack of responsive evidence. These data sources have been 

continuously used in observational drug effectiveness and surveillance studies, precision medicine 

initiatives, prediction tools, and other clinical decision support systems (CDSS) and have shown the 

potential to influence decision-making [56,57]. When individual data sources do not meet sample-size 

requirements to support valid inference, large distributed observational data networks enable clinical 

research on diverse patient populations at scale, bringing us closer to a dream of providing accurate and 

reliable treatment recommendations to the patients the moment they seek care. 
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Reliability of observational evidence is commonly criticized, with analytical approaches and methods 

only partially addressing potential bias. Current research addresses the questions of reproducibility, 

replicability, transparency, and robustness of real-world evidence, with problems of generalizability and 

scalability remaining largely unsolved [57–62]. Bias can stem from inaccurate measurement of 

exposure, outcome or covariates or inaccurate comparator definition, leading to faulty evidence [63]. 

While there is a solid body of research on different sources of bias and its implication [4,64–71], there is 

a lack of readily available informatics solutions to systematically and reliably assess bias at the pre-

analysis (design) stage, especially when operating heterogeneous data from multiple institutions.  

 

The lack of standardized and scalable informatics solutions compromises timeliness. Even after a decade 

of observational research in networks, months and years are spent on designing observational studies, 

ensuring data plausibility and quality, and developing and validating phenotyping algorithms [72,73]. 

Despite the efforts to standardize these processes, they remain variable, labor-intense, and time-

consuming, jeopardizing both reliability and timeliness [74–77].
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1.2. Thesis approach and contribution 

 

 

In this thesis, we hypothesize that actionable observational evidence can be generated in near-real time 

to reliably address clinicians’ immediate information needs not covered by the existing evidence.  

To achieve this, we develop mixed-method multidisciplinary approaches and informatics tools to 

systematically assess and mitigate bias at the pre-analytical stage of effectiveness and safety studies. We 

propose and subsequently test the hypothesis that building scalable and robust pipelines to address bias 

in networks enables both more robust and faster evidence generation. 

 

In this thesis, we systematically develop methods to investigate and mitigate bias at each step of a 

typical observational study from (a) creating and evaluating phenotyping algorithms for identifying 

patients of interest through (b) assessing and mitigating pre-analysis bias in comparator definition 

(temporal, selection, and other) to (c) generating and delivering evidence to clinicians at Columbia 

University Irving Medical Center (CUIMC) and NewYork-Presbyterian (NYP) Hospital. 

 

 

1.2.1 Overall contribution 

 

This thesis provides conceptual, methodological, and empirical contributions to biomedical informatics 

(Figure 1, further discussed in Section 1.2.2). 
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Figure 1. Summary of the contributions. NYP – NewYork-Presbyterian Hospital, EMA – European 

Medicines Agency, CDSS – clinical decision support system 
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Conceptual contribution 

 

We developed novel frameworks for phenotype development and evaluation in distributed data 

networks, including frameworks for (a) building comprehensive concept sets and (b) reviewing 

structured patient data for case ascertainment.  

 

These frameworks enable scalable and generalizable phenotyping both in networks and on individual 

data sources. The framework for building comprehensive concept sets informed our recommender 

system (PHOEBE) that helps clinicians create portable and generalizable concept sets without access to 

data. The framework for reviewing structured patient data informed a tool (KEEPER) that facilitates 

fast, transparent and reliable phenotype evaluation on EHR and claims data sources. 

 

Methodological contribution 

 

We developed original methods to identify and mitigate potential bias and measurement error in 

phenotyping and unexposed comparator definition, including methods for (a) data source granularity 

estimation, (b) systematic background incidence rates estimation and interpretation, and (c) definition 

and evaluation of an unexposed comparator.  

 

Methods for granularity estimation enabled first large-scale characterization of 22 US and international 

data sources. Methods for background rate estimation and unexposed comparator definition provide 

informatics solutions for timely and reliable safety surveillance. 
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Empirical contribution 

 

We identified major challenges related to scalable, reliable, and generalizable phenotyping in networks 

and characterized them at scale, which contributed to scientific knowledge.  

 

This thesis had direct clinical impact through evidence delivery to clinicians, researchers and regulatory 

bodies. We (a) developed and disseminated 170 phenotype algorithms for a broad spectrum of clinical 

questions, (b) designed and deployed a service that generated new on-demand evidence to address 24 

clinical questions for 22 clinicians at NewYork-Presbyterian Hospital and (c) generated background 

rates of adverse events of special interest, which impacted European Medicines Agency decisions 

regarding COVID-19 vaccine safety for more than 700 million patients. 
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1.2.2 Outline and detailed contribution 

 

 

The background section (Chapter 2) presents an overview of the challenges in using observational data 

to generate reliable real-world evidence. It discusses bias in observational studies followed by an 

overview of challenges and advances of evidence generation in networks, accompanied by a more 

detailed analysis of gaps and related work in corresponding sections. 

 

Algorithms for identifying patients of interest in observational data (phenotyping algorithms) are the key 

component of any observational study. Accurate phenotyping is critical for study validity, yet the 

challenge of creating scalable and efficient phenotypes remains largely unsolved. Chapter 3 addresses 

phenotyping algorithm development and evaluation as a source of measurement error in distributed 

clinical networks.  As phenotyping in networks is complicated by the fact that the data are collected 

across institutions from different countries capturing different aspects of care, we addressed the 

questions of phenotype portability and generalizability across disparate healthcare systems with the 

researchers not having the access to all data in the network.  

 

In this chapter we systematically addressed challenges of rule-based and mixed-method phenotype 

development and evaluation starting with (a) selecting concepts that represent a clinical idea to (b) 

applying Boolean or temporal logic to create an operational definition to (c) assessing phenotype 

portability and performance.  
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First, in Section 3.1 we investigate real-world concept (e.g., ICD-10 codes) utilization in a large 

international distributed data network and its impact on portability of phenotyping algorithms. We 

collect 272 billion records summarized from 22 international and US data sources across the 

Observational Health Data Sciences and Informatics (OHDSI) network and use them to study data 

source heterogeneity and granularity.  

 

Using this data, we uncovered  high data source heterogeneity and discrepancies in coding practices, 

which plays a crucial role in concept selection and, in turn, patient selection and composition. To 

identify the common patterns of code use we create a novel method for computing overall data source 

granularity. We then show three SNOMED-based approaches consistently classifying data source 

granularity, demonstrate common patterns in granularity based on the provenance of data and country of 

origin and analyze factors that influence granularity. This study is the first study to examine data source 

heterogeneity and characterize code utilization patterns at scale. 

 

Then, in Section 3.2, we use the same dataset to develop and evaluate a mixed-method recommender 

system for creating comprehensive concept sets to improve phenotype portability, scalability and 

efficiency. We evaluate its performance for four conditions (diabetes mellitus type I and II, attention 

deficit hyperactivity disorder and heart failure) on three EHR and claims data sources and show that it 

helps to identify more patients of interest, capture them early in the course of the disease and create 

concept sets that are portable across the network. As our recommender system (PHOEBE) enables large-

scale phenotyping, it became a part of the standardized pipeline for phenotype development, evaluation 

and storage in the OHDSI network and has been used in individual studies as well as 11 major network 

studies. 
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 Section 3.3 focuses on quantifying the variability in the operationalization of a conceptual definition 

into an executable algorithm. We conduct an experiment with 45 OHDSI collaborators set up as a 

standardized implementation of a clinical description from a recent high-impact observational study and 

analyze variation in implementations and its impact on patient population size and composition. We 

demonstrate that the small nuances of how the inclusion and exclusion criteria are implemented 

significantly influence patient composition even when isolated from other factors.  

 

Subsequently, Section 3.4 dives deeper into the complex problem of phenotype portability across 

different institutions. We inspect the factors that impact portability of EHR-derived phenotypes to 

claims data sources using chronic kidney disease as an example. We apply the insights learned in the 

previous sections and demonstrate the importance of data harmonization and concept set standardization 

in phenotype portability, including a more focused study of the influence of incorporating procedure 

codes into diagnosis-based phenotypes.  

 

Finally, Section 3.5 focuses on phenotype evaluation – one of the main bottlenecks of scalable 

phenotyping. The current gold standard – manual chart review – is interpretable and trustworthy but 

time-consuming, variable, and non-scalable. We propose Knowledge-Enhanced Electronic Profile 

Review system (KEEPER), a generalizable and scalable “chart review alternative” that represents 

patient structured data in a standardized way guided by the principles of clinical reasoning to ascertain 

individual patient status. We evaluate its utility and performance on four conditions (diabetes mellitus 

type 1, acute appendicitis, end stage renal disorder and chronic obstructive pulmonary disease) and 

demonstrate that, compared to manual chart review, its use achieves better consistency among reviewers 



Chapter 1. Section 2. Detailed contribution  

 

 

10 

and non-inferior accuracy in classifying patients at a fraction of time. KEEPER can enable reliable and 

scalable phenotyping on EHR and claims data sources. 

 

Chapter 4 describes informatics solutions to temporal, selection, anchoring, and healthcare seeking-

related biases in comparator definition and centers around safety (Section 4.1) and effectiveness 

(Section 4.2) studies. Selecting an appropriate comparator is challenging as the comparator should serve 

as a proxy for a counterfactual of the exposed population — what would have happened to those same 

individuals had they not been exposed — and any deviation between the comparator and that 

counterfactual represents a potential bias. Having an unexposed group as the comparator is especially 

hard as the unexposed group generally represents a more heterogeneous population and does not have a 

clear disease onset date or exposure start date, deviating more from the exposed population. In this 

chapter, we investigate unexposed comparator selection strategies and their influence on baseline patient 

characteristics, background incidence rates (typically computed for observed-to-expected analysis 

common in drug surveillance) and vaccine effectiveness estimates.  We use COVID-19 vaccination as 

an example of the target exposure given its public health importance.  

 

In Section 4.1, we conduct a systematic experiment on 12 US and international data sources, examining 

the influence of population characteristics, temporal trends, time-at-risk and index date choices on 

background rates of 15 adverse events of special interest. We observe that the background rates vary up 

to a factor of 1,000 across age groups, even after adjusting for age and sex and are highly sensitive to the 

choice of the index date (a visit, an arbitrary date or vaccination), data source, clean window choice and 

time-at-risk duration. Given these findings, we provide recommendations for (a) interpreting 

background rates within the context of study parameter choices and (b) improving robustness of 
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observed-to-expected analysis. Along with creating novel methods for contextualizing background rates, 

we calculate the background rates themselves, which are later used by the European Medicines Agency 

to assess COVID-19 vaccine safety for more than 700 million people. 

 

Given that during the COVID-19 pandemic the researchers have relied on methods developed for 

influenza vaccines, we additionally evaluate the impact of index date choice on patient characteristics 

for influenza and COVID-19 vaccines. We study two alternative selection procedures (anchoring) for 

the index date in the unexposed group based on how vaccines are administered - coupled or decoupled 

to another healthcare encounter. Using the data from two EHR data sources we show that anchoring 

influences patient baseline characteristics and provide recommendations for empirical selection of 

anchors. 

 

In Section 4.2, we dive deeper into the bias in vaccine effectiveness studies. Given mixed reports 

regarding the effectiveness of COVID-19 vaccines during the first two weeks after the first dose, we 

investigate both short-term and long-term COVID-19 vaccine effectiveness, we conduct an analysis of 

short-term and long-term COVID-19 vaccine effectiveness accompanied by several secondary analyses 

and chart review to discover and mitigate selection and health-seeking behavior biases as well as 

confounding by severity and indication. We show that in a short time-at-risk interval, robust methods 

like large-scale propensity score matching and negative controls may fail to adjust for biases stemming 

from different health-seeking behavior in vaccinated and unvaccinated groups. The analysis is 

accompanied by the recommendations for vaccine effectiveness result reporting. 
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Chapter 5 showcases the use of methods and practices to mitigate pre-analysis bias when generating 

and delivering new evidence at the bedside and is centered around Data Consult Service – a system that 

uses observational data to generate new evidence at NewYork-Presbyterian Hospital. 

 

In Section 5.1 we conduct interviews with 31 clinician at Columbia University Irving Medical Center 

and use thematic analysis to explore their unmet evidence-related needs, which results in a modern 

taxonomy of needs not covered by the current guidelines and further informs the target groups and use 

cases for our service. We demonstrate that despite the abundance of knowledge, clinicians have multiple 

questions that are not covered by the current evidence and oftentimes have shared areas of unmet needs 

such as optimal treatment for patients with multiple comorbidities, patients with rare disorders, children, 

or those taking new drugs. Along with gathering the potential topics for our service, we identify 

potential target groups (experienced and inpatient physicians). 

 

We then conduct a scoping review (Section 5.2) to investigate existing clinical decision support tools 

that aim at covering this gap to learn from their bias-mitigating strategies and features. We observe that 

the tools oftentimes lack demonstration of their utility and their impact on healthcare processes and 

patient outcomes remains unclear. Moreover, only one system attempts to properly address bias, 

highlighting a need for robust and reliable evidence generation pipelines. 

 

Section 5.3 describes the process of designing and piloting a Data Consult Service at NYP. We 

implement a pipeline (question gathering, data exploration, iterative patient phenotyping, study 

execution, and evidence validity assessment) for generating new evidence in near-real time, which 

results in 24 answered questions collected from 22 clinicians. The answers satisfy clinicians information 
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needs and they are willing to share the new evidence with their colleagues. We identify the key 

components required for successful early-stage implementation such as proactive involvement of the 

study team and participation in clinical rounds and shadowing. We classify and describe in-depth the 

main challenges in timely evidence delivery such as missing and incomplete data, underreported 

conditions, nonspecific coding and accurate identification of drug regimens. 

 

Finally, Chapter 6 summarizes the content of this thesis and outlines directions for future work. 
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Chapter 2. Background and related work 
 

 

 

In this section, we will discuss how observational data can be used in real-world evidence (RWE) 

generation to complement evidence from randomized experiments. We will first talk about the common 

threats to validity that undermine the credibility of RWE. We will then articulate the advances in 

observational networks aimed at improving reliability and scalability of RWE followed by a brief 

introduction to one of the large observational data networks – OHDSI. 

 

 

2.1 Observational data and threats to validity 

 

 

Since the 1990s, when the concept of evidence-based medicine was first introduced, it has become the 

leading paradigm in clinical practice, shaping the way we view medicine today. Accumulated scientific 

evidence informs clinical decisions and policies to promote better care, improve patient outcomes, and 

reduce costs [36–41].  

 

Nevertheless, medical evidence is neither comprehensive nor precise. Randomized clinical trials 

(RCTs), which are considered to be the gold standard for causal inference, have pitfalls [78]. RCTs are 

oftentimes not generalizable to real-world patients [42–44] and consider only a subset of the population, 

excluding patients with advanced cancer, chronic kidney disorder or systemic disorders, the elderly, 

pregnant women, and other vulnerable populations [79,80]. Clinical trials tend to focus narrowly on one 
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condition at a time, which rarely provides clear guidance for patients with multiple conditions [45,80] or 

those undergoing complex interventions [46,81,82]. Trials usually include only a small number of 

patients, and are expensive and slow. After they are completed, post-marketing safety studies are 

required for new drugs [47,48], which, in turn, only delays evidence delivery.  

 

Along with the continuing accumulation of practice-based evidence, observational data has made new 

approaches to evidence generation available [38,56,83]. The large body of data collected for clinical 

care and billing purposes can be repurposed to generate new evidence and studies on such data sources 

(EHRs, administrative claims, registries, hospital charge data sources, patient-generated data and others) 

are on the rise with thousands of studies published in 2021 alone [84]. Observational data are used in 

clinical decision support tools including more traditional evidence aggregative tools and more novel 

applications of natural language processing and machine learning in risk-prediction models and early 

warning systems [85]. Among other uses of observational data, observational effectiveness and safety 

studies have been shown to inform clinical decision-making by clinicians and regulatory bodies 

[38,56,83,86,87].  

 

Despite its common use, observational research is criticized for potential residual confounding [67]. 

Validity can be compromised at each step of observational study (Figure 2) potentially leading to faulty 

evidence.  
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Figure 2. Threats to validity in observational safety and effectiveness studies. 

 

Appropriately addressing these threats is required but substantially lengthens evidence generation. While 

the promise of observational research is that it can be completed at a fraction of RCTs’ cost and time, 

studies take years from conception to publication [72,88]. 

 

We will briefly discuss threats to validity with a more in-depth discussion of the challenges and 

informatics solutions in the next section of the thesis as well as in the individual subsections. 

 

Study design  

 

Selecting an appropriate study design plays an important role in study validity. Generally, formulating 

research question according to the Population, Intervention, Comparator, Outcome, and Timing 
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(PICOT) framework [89] helps to identify the appropriate design and map a clinical question to a set of 

conceptual elements to be later transformed into an executable algorithm. While seemingly 

straightforward, this process requires understanding of the potential biases associated with a given study 

design (be it a cohort study, a case-control study, a self-controlled case series or else) and relevance and 

applicability of the data source at one’s disposal. 

 

The recommendations for selecting the appropriate study design [64,90] and empirical studies of 

different study designs [91] can be found elsewhere. In this work we mostly focus on cohort design as 

the most commonly used and less bias-prone in most of the scenarios [91–93].  

 

Data 

 

As this thesis concerns retrospective secondary analysis of existing data captured for clinical or billing 

purposes, the design of an observational study and its validity should be directly based on the ability of 

the data to support a given question. 

 

As opposed to the tightly controlled data collection in prospective studies, observational data are sparse 

and clinical observations are oftentimes missing not at random [94]. The data are generated only when a 

patient interacts with the healthcare system and patients are observed more frequently when they are 

sick, so that the timing of care and patient evaluation is highly irregular compared to the standardized 

protocols in prospective studies. 
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EHR data (except for national healthcare systems) reflects fragmented care where care for certain 

disorders or emergency conditions is sought outside of the institution and therefore is not captured [88]. 

Completeness and accuracy of data capture is limited and varies greatly across different data sources 

with some common patterns driven by the data provenance [95]. For example, rich EHR data more 

commonly contains information about the results of clinical measurements and tests, patient-reported 

data, and socio-economic variables. On the other hand, administrative claims data can provide a more 

comprehensive data capture since it follows the patient at different institutions. It should be noted that 

despite the common patterns, there is a substantial heterogeneity in the data sources within the same 

country, provenance, or level of care. 

 

Depending on the data source, some of the elements such as outpatient prescriptions, inpatient visits, 

socio-economic variables or diseases with privacy concerns can be missing, which can make the data 

source irrelevant for a given research question. Broadly speaking, relevance of the data (including 

characteristics of the population, average follow-up and available data elements) needs to be assessed in 

every study and oftentimes requires extensive data exploration [57]. Researchers and regulatory bodies 

argue that any study should be accompanied by in-depth analysis of the relevance of the data source, 

including a description of coding practices [57], which makes any feasibility study time-consuming. As 

of this moment, there is no transparent and efficient way to determine if a given data source is suitable 

for a particular question or quantify the impact of local practices on patient selection and study 

estimates. 

 

Aside from low relevancy, validity of observation studies can be undermined by low data quality, which 

can be measured across three axes: conformance, completeness and plausibility [96]. Briefly, as opposed 
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to clinical trial data, high volume of EHR and claims data is oftentimes associated with manual entry 

errors or artifacts of care delivery process such as copy and paste information propagated from old 

records [97]. 

 

Common examples include erroneous entries, especially for poorly standardized fields like laboratory 

test results, erroneous code assignment, implausible values in measurements and drug prescriptions, 

missing dose or quantity for drug administrations. On top of that, other specifics of data collection need 

to be considered when designing a study. For example, as opposed to administrative claims where the 

enrollment period or coverage is explicitly defined, use of EHR data requires inferring observation 

period [63]. The accuracy of an observation period definition is especially relevant for defining incident 

cases, capturing the events during follow-up, or estimating loss to follow-up. 

 

There are numerous research works and tools for improving data quality directly or indirectly, including 

standards and frameworks, interface terminologies, methods for inferring missing data and informatics 

tools for quality checks [96,98–103]. Yet, the challenge of systematic assessment of reliability and 

relevance of the data has not been fully solved [104]. Section 3.4 explores some of the data quality 

issues we encountered. 

 

Measurement error 

 

Limited completeness and accuracy of observational data influences our ability to accurately capture 

exposures, outcomes, and covariates, oftentimes introducing measurement error (also called information 

bias and misclassification).  
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Researchers identify patients and events of interest with computable phenotyping algorithms that aim at 

transforming the raw data into clinically relevant features [84]. Phenotyping algorithms are operational 

executable definitions constructed based on the conceptual definition of a state, condition, or exposure 

reflecting the scientific and medical knowledge [57]. Such algorithms are developed based on the 

available data (structured or unstructured) and depend on the quality of data as well as on local care 

policies, coding and clinical practices [105]. 

 

Measurement error can distort the observed relationship between an exposure and outcome in any 

direction or affect the precision of the estimates [106] and can be introduced at any stage of algorithm 

development.  

 

First, it can be introduced at the stage of selecting concepts that represent the clinical idea of interest. 

Such concepts can come from billing data (such as ICD-10(CM) or CPT-4 codes) or from other sources 

like unstructured notes mapped to concepts in ontologies (such as SNOMED-CT or RxNorm). Given 

variability of coding practices, heterogeneity of data in different institutions and large ontology space, 

ensuring that all relevant concepts are captured is not a trivial task [107]. Concepts and concept sets 

(code sets, code lists, value sets) are commonly borrowed from the literature with an assumption that 

they will capture the patients of interest in one’s data source. Still, this assumption oftentimes does not 

hold even within the institutions in the same country providing similar level and scope of care [108]. If 

concept sets are developed de-novo, extensive exploration and validation is usually required and is 

ideally performed by a team of data and clinical experts [57]. 
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Promising developments in semi-supervised and unsupervised concept selection allow to achieve better 

speed and objectivity on the local data but the developed concept sets may not be readily transferable to 

other institutions [109]. As a result, the process of creating code sets is highly variable and rarely robust. 

As validation is typically performed on the phenotype algorithm level, the influence of code selection on 

patient characteristics is rarely studied and the extent to which it introduces bias in the study remains 

largely unmeasured. We provide more details on the challenges in Section 3.1 and 3.2. 

  

Second, measurement error can be introduced when the conceptual definition is translated into an 

operational definition. In rule-based phenotyping, which remains the most common approach and whose 

interpretability adds trustworthiness, an operational definition represents a set of Boolean or temporal 

rules applied to the concept sets and, similarly to the inclusion and exclusion criteria in RCTs, influences 

patient selection. Observational studies using the same data and analytics may show different results 

depending on how the conceptual definition was operationalized [110]. 

 

While there is an agreement that this process must be transparent and reproducible, the current research 

on generalizability and portability of algorithms is not comprehensive. We can note a growing body of 

standards and recommendations (partially supported by informatics tools) for reproducible phenotype 

algorithms, its storage and reuse [111–114]. On the other hand, studies of portability of both expert-

based and data-driven phenotypes (discussed in more detail in the subsequent sections) remain sparse.  

 

Measurement error is commonly quantified through estimating performance of a phenotype against a 

gold standard (chart review or another external source of truth). Some argue that the most rigorous 

approach is to verify all study variables for each patient, including exposure, outcome and all covariates 
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[57], which is almost impossible even on small data sets. If performed, validation is commonly done 

only for outcomes and positive predictive value (but not sensitivity or specificity) is calculated [115].  

Manual chart review is time- and labor-intensive, variable and subjective. Numerous research works 

attempt to establish probabilistic approaches to phenotype evaluation, compensate for a typical small 

sample size or develop tools for more efficient information retrieval. Still, the status quo remains 

unchanged. 

 

Aside from major limitations of current gold standard validation, the research on incorporation of 

measurement error into study estimates has not been widely adopted in effectiveness and safety studies 

[106,116]. Current recommendations state that the impact of misclassification and error on study 

validity should be scrutinized to assess its degree and implications, but most papers simply acknowledge 

a possibility of measurement error and misclassification, stating that they are not likely to be differential.  

 

Aside from outcome and exposure misclassification, bias can stem from index event misspecification, 

which represents correct classification of patients, but incorrect assessment of condition or exposure 

start date. Index event misspecification (discussed in Sections 3.2 and 4.1) can, in turn, influence study 

estimates, especially in survival analysis. Nevertheless, it is largely underappreciated and is mostly 

discussed in the context of prevalent versus incident cases [117,118] or disease sub-classes [119]. 

 

Bias in comparator definition 
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Aside from the error coming from incorrect classification of exposure or outcome, there are other biases 

that must be recognized and mitigated at the stage of developing the study design and specifying target 

and comparator group or time (Figure 2) as the statistical approaches may fail to address them [120].  

 

They are most often arising from a failure to identify an appropriate comparator (a cohort or time) where 

the comparator should serve as a proxy for a counterfactual of the target (exposed) population. In RCTs, 

the treatment is given at random. In real world, as reflected in observational data, administration of a 

drug depends on multiple factors oftentimes not captured in the data: physician or patient preference, 

compliance, ability to pay, or expected survival, so that patients receiving different treatments can be 

fundamentally different. 

 

As Chapter 4 addresses pre-analysis bias in comparator definitions, we will briefly outline the examples 

of the biases. Outcome detection bias or outcome misclassification bias may occur if the outcome is 

ascertained differently in study groups, for example due to an awareness about potential adverse events 

[66]. As opposed to the measurement error we discussed previously, this bias (as well as those discussed 

below) exists in the context of comparator selection [91].  

Confounding by indication, severity or frailty is common and hard to control for as the information 

about indications, disease severity and patient state is oftentimes not recorded in the structured data. 

Broadly, it is a distortion of the exposure-outcome association stemming from the difference in the 

distribution of the variables that influence the outcome in the study groups [64]. As a result, the 

probability of receiving one of the treatments is not independent from the probability of developing the 

outcome. For example, confounding by indication or severity can be observed if one of the compared 

drugs is prescribed in advanced disease while the other is prescribed to the patients with mild symptoms 
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and relatively uncomplicated course of the disease [121]. Similarly, confounding by contraindication can 

be observed if a particular drug is known to cause a specific complication or side effect that happens to 

be the outcome in the study [122]. Health-seeking behavior-related biases are also common with certain 

medications such as preventative treatments being associated with a different health seeking behavior in 

their users [123]. A classic example is healthy user or vaccinee effect, where patients receiving 

preventative treatment have better outcomes as they are more likely to partake in other healthy behaviors 

that are oftentimes not captured at the data [124].  

On the other hand, confounding by frailty can occur if preventative (or other types of) treatment is not 

given to those patients who are likely to die before they benefit from it [125]. 

A large group of time-related biases include immortal time bias, misclassification of the exposure effect 

window or depletion of the susceptible [65,126] or time-varying confounding, which occurs if there are 

temporal patterns in how confounders are recorded. Depletion of the susceptible is common in vaccine 

effectiveness research (which we will touch on in Section 4.2) if the patients at higher risk of the 

outcome are depleted from the at-risk population at different rates in study groups [127]. 

Immortal time bias is common when the time-at-risk start is not aligned between the target and 

comparator groups, for example when one of the groups requires additional exposure, which, by design, 

forces the inclusion of patients with longer follow-up time available [128]. It can be a particular 

challenge in the studies that compare exposed patients to unexposed (users to non-users). 

 

Having an unexposed (non-active) comparator or unexposed time is especially bias-prone [90]. Among 

the several types of controls (active comparator, inactive comparator, non-user or unexposed 

comparator, historical control) the preference is usually given to the active comparator as comparing the 
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drugs within the same class or with similar indication should minimize confounding [129,130]. A 

comparator group should reflect clinically meaningful choices [131], and it is not always possible to 

choose an active comparator, especially for preventative treatments [130]. If no appropriate comparator 

exists, some drug safety surveillance studies explore the use of the drugs with different indications as a 

proxy for unexposed comparator or placebo [132]. Some authors argue that observational studies with 

unexposed comparators have low validity [88], as with unexposed comparators the selection strategy 

and index date (also referred to as time zero) are not clearly defined and are left up to a researcher’s 

discretion [130]. Careful consideration is recommended when setting the index date and criteria for the 

unexposed comparator, but the details of this process and its exact operationalization remains largely 

unclear [90,130]. 

 

Over the years, there has been a number of analytical approaches aimed at mitigating observed bias, 

from different flavors of adjustment in outcome models to different flavors of matching and 

stratification, including propensity score and disease score models (further discussed in the next section) 

[133–137]. Nevertheless, there is still a concern that unmeasured confounding may be present in any 

study undermining reliability of the evidence [138]. More informatics solutions are needed for 

comparator (especially unexposed comparator) definition to attempt to systematically assess, report and 

mitigate pre-analysis bias. 

 

Other biases and challenges 

 

Besides pre-analysis bias, other challenges undermining reliability of observational research 

(corresponding to the last box in Figure 2) include p-hacking, publication bias and non-reproducibility. 
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P-hacking and publication bias influence the perception of the results of observational studies as only 

statistically significant results tend to be published [139]. There are many solutions proposed including 

standardized protocols for study execution and reporting such as STROBE, RECORD, ENCePP, and 

TRIPOD guidelines [76,140–142], but we still observe a lack of adoption of these solutions [143–145]. 

 

All or some of these challenges may be encountered when running observational studies on individual 

data sources. There are also shared issues that obstruct valid inference: limited scope of care, coverage, 

and rather small number of patients, so that a lot of important outcomes and exposures, including but not 

limited to orphan and new drugs and rare diseases cannot be reliably studied in a single data source. 

Pooling the data from multiple data sources can meet the sample-size requirement with distributed 

observational networks effectively collecting the aggregated study results from individual data sources 

while maintaining patient privacy. Networks enable effective collaboration, which results in the 

development of novel tools and methods that are used both within the networks and in the separate 

institutions. 

 

Nevertheless, such distributed analyses pose new challenges to valid inference. In the next section we 

will discuss the existing distributed observational data networks and their approaches to mitigating bias.
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2.2 Distributed observational data networks: challenges and advances 

 

 

 

Distributed data networks (federated networks, big-data networks), in the US and overseas, partially 

solve the problems of individual data sources. In networks, the data are stored and maintained by each 

individual data partner, which offers benefits in terms of potential number of data sources involved and 

patient privacy compliance [146]. 

 

Current networks begin their history in the early 2000s, when multiple research institutions gathered 

together to address questions of drug surveillance (OHDSI, EU-ADR, Vaccine Safety Datalink and 

Sentinel) [147–150], genomics research (eMERGE) [151], clinical research in children (PEDSnet and 

Capricorn) [152,153], use of biological and clinical data (Informatics to bedside, I2B2) [154], diversity 

and inclusion [155], COVID-19 research [156,157] and pragmatic clinical trials [158]. While these were 

the initial use cases, networks support studies of rare diseases and outcomes, new drugs and diverse 

patient population, incorporate different modalities of data (structured, unstructured, genomics, clinical 

trials data), develop new methods and more. They are currently used for adverse event surveillance and 

post-marketing monitoring, clinical trial enrollment, monitoring of adoption of practices and drug 

utilization studies. Network studies have shown a potential to support and reinforce the results of the 

RCTs as well as complement them [159].  

 

The networks enable performing multiple comparative effectiveness studies at once, potentially making 

the evidence generation process fast and efficient while maintaining reliability and generalizability of 

findings [45,169]. On the other hand, distributed data networks share common challenges, which include 
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data harmonization across the institutions, addressing data heterogeneity, development of scalable and 

reusable phenotyping algorithms and analytical pipelines, along with a broad challenge of creating 

infrastructure for data transformation, access, study execution and reporting. Leveraging diverse and 

large populations in large distributed observational networks reduces random but propagates systematic 

error [160], which motivates the research on scalable, re-usable and portable methods for measured and 

unmeasured confounding. 

 

The remainder of this section as well as the thesis overall specifically focuses on these challenges and 

their influence on timely and reliable evidence generation. 

 

Data standardization and harmonization 

 

The first networks’ contribution to scalable and reliable research is common data models (CDMs). All 

networks establish common data models with a varying degree of fidelity to enable portable research 

across all participating data sources [161,162]. Common data models specify the structure and format of 

the data so that unified approaches to data access, processing and analysis can be used.  

 

Some (Sentinel, Clinical Data Interchange Standards Consortium Study Data Tabulation Model [CDISC 

SDTM], PCORnet) provide syntactic mapping while preserving local data collection and processing 

rules and ontologies, and others (OHDSI) also perform semantic standardization of the content by 

providing a common reference ontology system [163,164].  
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With syntactic mapping, standardization happens at the analytical stage with the source data left 

unchanged. With semantic standardization, data transformation happens at the extract-transform-load 

(ETL) stage with all data sources complying to a common data and ontology standards. The latter is 

especially important in international research, where participating data sources established their own 

coding systems for diagnoses, procedures and medication [165]. 

  

Aside from providing means for unified analytical approaches, CDMs enable scalable data quality 

assurance procedures to ensure internal validity. Within each network, there are programs, working 

groups and initiatives that regulate data quality: Sentinel’s Data Quality Review and Characterization 

Programs [98], OHDSI’s Themis and Data Quality Dashboard [101], HMORN’s VDW QA checks 

[99], etc. CDM allows for standardized and scalable quality assurance procedures that focus on data 

completeness, integrity, conformance and plausibility at scale rather than developing standards for 

individual data sources or unit cases for separate conditions [101]. Some of the examples of procedures 

that are crucial for study validity include checks for missingness, evaluation of summary statistics for 

laboratory test results, evaluating the frequency and trends in diagnosis and procedure occurrences.  

 

The field of the data quality in networks is constantly evolving with new frameworks and methods being 

developed [96,102]. Since the quality checks are usually mandatory for all data partners, they set up a 

high bar for data quality, which oftentimes cannot be achieved in individual data sources and uncover 

data challenges that are easily overlooked by the local data experts. 

 

Identification of patients of interest (phenotyping) 
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In this overview, we do not cover a broader research literature on phenotyping. Instead, we focus on 

specific research in networks that addresses the challenges of developing and validating scalable and 

portable phenotypes across disparate institutions. 

 

Historically phenotyping in networks has been rule-based, where the choice of the elements and logic 

was driven by the experts [166–168]. Extensive collaboration of clinicians and informaticians within 

multiple institutions greatly contributed to assessing measurement error and bias in phenotyping 

algorithms. Researchers highlighted the challenges related to using disparate data sources and a need for 

iterative development [167,169]. This led to new standards for executable phenotypes such as desiderata 

for phenotype algorithms, which focus on the standardization of representations, use of common 

terminologies and data models [2] as well as infrastructures that supports phenotype authoring, 

documentation, execution, validation and re-use (PhenoFlow and PheMA, CALIBER data portal, 

VAPheLib, PheP and Phenotype Library) [111–113,170–173]. 

 

Selection of concept sets in networks is challenging and time-consuming given the disparities in patient 

representations at the different institutions. One common approach has been to leverage local knowledge 

and develop concept sets that are source-specific to reflect local concept use and billing practices. Such 

an approach is especially common for organizing CDMs and provides high level of customization at a 

cost of low consistency and scalability [162,166,167]. 

 

Other advances in rule-based and mixed-method concept selection include empirical exploration of the 

local data to learn and extrapolate the patterns of code usage, which improves robustness of code 

selection by leveraging the data to guide code selection, but still lacks scalability [167,169]. 
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In pure data-driven code selection (or, as commonly called, feature selection) there are several advances 

made in using multi-view banded spectral clustering [174], non-negative tensor-factorization [175], 

latent Dirichlet allocation [176] or leveraging knowledge graph-enhanced embeddings [177] to guide 

code selection. While structured data (such as ICD-10 codes) remains the most common modality of the 

data used, the researchers also leverage notes and external knowledge sources with surrogate-assisted 

features [178], or notes with sparse embeddings [179] to select appropriate concepts to represent a 

clinical idea. 

 

As we discussed before, the concept sets are used as building blocks used in conjunction with Boolean 

or temporal rules to create an operational cohort definition. The body of research focusing on sensitivity 

of patient selection to the choice of such rules and the order of their application is rather limited. As 

highlighted before, the process is highly iterative with patient characteristics or phenotype performance 

(positive predictive value, sensitivity and specificity) being the criteria for selecting the optimal 

phenotyping algorithm [73,169]. Nevertheless, the design choices remain poorly described in most of 

the published literature and the influence of such choices on patient selection and study estimates 

remains largely unexplored. This is especially relevant for the studies that involve international data 

sources, as the research has historically been US-centric. 

 

Structured data can be supplemented by the other types of data such as FAERS for adverse events [180], 

unstructured notes and reports [181–184], or patient-reported data [185]. While promising, the latter 

approaches require appropriate infrastructure and availability of data elements and may not be 

generalizable to the whole network. Since the natural language processing (NLP) or machine learning 
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systems need to be portable across the institutions, several groups focus on developing flexible NLP 

models and frameworks to be executed against the network [184,186,187] as well as more complex 

super-learner frameworks combining the information from the notes and external knowledge sources 

[188] and tools enabling XPRESS framework with dynamic anchor learning [189,190]. 

 

These research works specifically account for the challenges associated with developing portable 

phenotypes that can be executed and show similar performance across disparate disjoint institutions. 

As noted before, learned knowledge is biased to specific institution [109], making phenotype portability 

a key challenge in large-scale observational research. 

 

Based on our assessment, portability may be influenced by three broad groups of factors: (a) population 

(age, employment, race, ethnicity, prevalence of disorders), (b) time period, which impacts vocabularies 

used in the data and prevalence of disorders and (c) data source specifics (billing practices, level of 

missingness, scope of care and others). 

 

While it has been extensively studied for individual conditions such as asthma, chronic kidney disorder 

or diabetes [153,163,191–194], there is a dearth of systematic research on factors influencing portability 

and potential biases associated with a lack of thereof. Previous studies concerned the impact of data 

fragmentation [169,195], data provenance [196–198], ontologies and semantic homogeneity [194,195] 

and studied populations [199,200] on portability of both expert-based and data-driven phenotypes. 

Overall, they concluded that portability may be subject to reporting bias and does not guarantee future 

portability, especially among international data sources.  
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Overall, the studies conducted in the networks merely acknowledge the fact that misclassification, 

selection, or other bias may exist when choosing a comparator and address them by adding sensitivity 

analyses that test the same hypothesis but have different study design parameters [201–203]. Given that 

the bias can propagate when multiple disparate data sources are used, there is a need for systematic 

assessment of different strategies for defining unexposed comparator and the influence of such strategies 

on patient characteristics and study estimates. 

 

Analytical methods and tools 

 

In reliable evidence generation, the next step after taking appropriate measures to mitigate bias at the 

stages of design, patient identification and comparator selection is to apply robust analytical methods to 

address residual bias. 

 

First, given the non-randomized nature of observational studies, observational studies in networks 

commonly use variations of propensity score modelling to adjust for measured confounding.  

The subjects in the treatment and comparator groups are stratified or matched on their propensity score 

(probability of a subject receiving one treatment instead of the other conditional on baseline 

characteristics), which allows to adjust for confounding in a similar fashion as done in randomized 

experiments [204]. 

 

While in the studies conducted on individual data sources researchers oftentimes select several 

covariates for propensity score model based on their knowledge or previous literature, such an approach 

oftentimes fails to adjust for confounding in large-scale studies with thousands of observed covariates. 
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Some networks adopted methods for empirical selection of relevant covariates such as high-dimensional 

propensity score adjustment [205,206]. Others use large-scale propensity score matching (LSPS), which 

also uses empirical selection but selects a large number of covariates (tens of thousands) and is superior 

to selecting a small set of hand-picked covariates [207–209]. 

 

LSPS has been shown to adjust for missing variables if such variables may correlate with the observed 

ones [20]. This can be especially important for addressing the concerns about the validity of 

observational evidence given the data missingness and a common lack of socio-economic variables. 

Other alternatives include probability of treatment weights [210], instrumental variable analysis [211] 

and cardinality matching that showed superior performance to LSPS for rare conditions or orphan drugs 

[212].  

 

The networks use approaches to quantify residual study bias due to unmeasured confounding and 

incorporate it into study estimates. 

For example, negative controls (well-studied controls for which no known relationship to the outcome or 

exposure exists), negative control risk periods (time windows in which the exposure has no biological 

effect) and synthetic positive controls are used to assess residual bias and calibrate p-values and 

confidence intervals of the estimates [160,204,210,213]. 

 

Second, evidence diagnostics play a critical role in making sure that the evidence is reliable and ready to 

be supplied to clinicians. The networks contributed greatly to the development of standardized pipelines 

and tools for assessing the quality of evidence, including assessing covariate balance distribution, 

preference score distribution, assessment of the estimates from negative controls and more. 
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Preference score plots are used to assess the degree to which the treatment and comparator groups have 

similar baseline characteristics [214]. Poor equipoise in a given treatment-comparator pair indicates that 

only a small proportion of patients in the groups have similar baseline characteristics and, therefore, 

only a small portion of patients are eligible to be included in a valid comparison. 

 

Covariate balance plots are used to inspect the covariates that do not meet the threshold for standardized 

mean difference and are said to be unbalanced, reflecting potential confounding [132,215]. Other tools 

include Longitudinal Evaluation of Observational Profiles of Adverse events Related to Drugs 

(LEOPARD), which can be used to detect protopathic bias or misclassification of the dates of the 

adverse events and eliminate false-positive drug-event associations. [216,217] 

 

Finally, as the networks enable generation of multiple estimates for a given hypothesis, a body of 

research focuses on accurate assessment of heterogeneity of estimates, which can point at a data source-

specific bias, as well as on methods for producing a single estimate of effect from multiple institutions. 

Along with traditional meta-analysis approaches, the networks also propose the use of distributed 

models such as distributed multivariate regression [218]. 

 

Gaps addressed in this thesis 

 

Observational studies are prone to measurement error and bias with analytical approaches only partially 

addressing them. Potential bias can lead to unreliability of evidence, lack of credibility and addressing it 

currently is not standardized and time-consuming. Current research addresses the questions of 
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reproducibility, replicability, transparency, and robustness of real-world evidence, but the problems of 

generalizability and scalability remaining largely unsolved. These problems are especially prominent in 

large distributed observational networks that gather data from disparate institutions and populations 

capturing different aspects of care. There is a solid body of research on different sources of bias and its 

implication, but there is the magnitude of bias in networks remains underexplored. Accordingly, readily 

available informatics solutions to systematically assess bias at the pre-analysis (design) stage do not 

exist. 

 

First, efficient and scalable phenotyping remains the bottleneck in the studies conducted in large 

observational networks. Phenotype development remains highly iterative and time-consuming with an 

average phenotype taking months to develop. Given that efficient pipelines for phenotype development 

and evaluation have not been adopted, the current research, both expert-based and data-driven is limited 

to separate conditions and use cases.  

 

In networks, the approaches to concept set creation and cohort definition remain variable and poorly 

described, so the influence of design and operationalization choices on patient selection and study 

validity is not fully explored. Data-driven approaches have a potential to be more scalable, but their 

portability, efficiency, and potential to influence decision-making are yet to be shown.  

 

While portability and generalizability are critical in efficient phenotyping in networks, there is lack of 

studies on factors influencing portability and, moreover, lack of informatics solutions to ensure such. 

The practice of borrowing phenotype definitions and concept sets from published studies remains 

common potentially jeopardizing reliability of evidence. On the other hand, data-driven phenotyping 
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largely remains limited to one data source with no available solutions to ensure generalizability to other 

data sources in a network. 

 

Similarly, there are no readily available solutions to efficient phenotype evaluation in distributed 

networks. If performed, it is done through manual review of a small sample of charts, which is neither 

reliable nor scalable. Data-driven approaches, on the other hand, provide scalability and ability to 

evaluate phenotypes more comprehensively but lack interpretability and broad adoption. 

 

Second, there is a lack of systematic approaches to comparator definition, especially when the 

comparator represents unexposed patients. Comparator definition choices may compromise validity of 

evidence as any deviation from the population of interest (such as in demographic characteristics) can 

introduce bias. Nevertheless, impact of comparator definition on patient selection and study estimates is 

rarely studied and remains mostly unknown in the settings of heterogeneous data sources in networks. 

Choice of comparator(s), especially unexposed, is mostly guided by the expert knowledge rather than 

data and it is unknown to what extent the bias introduced by such a choice can be controlled for by 

analytical methods. 

 

Establishing standardized and systematic pipelines for phenotype development, evaluation and 

comparator definition would enable scalable, reliable, and more efficient research in observational 

networks and, potentially, would reduce time and cost of evidence generation.
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2.3 Introduction to OHDSI and data sources used 

 

 

 

Throughout this work we take advantage of, build upon, and contribute to the methods and practices in 

Observational Health Data Sciences and Informatics (OHDSI) – international multi-stakeholder, 

interdisciplinary data network of electronic health records, administrative claims, hospital discharge 

data, registries, and other observational data sources. Given its importance in understanding the content 

of this thesis, we will briefly describe its principles and summarize the data sources within the OHDSI 

network that were used in this thesis. 

 

OHDSI encompasses more than 900 million unique patient records across 40 countries and is a 

semantically harmonized network [147]. OHDSI’s Observational Medical Outcomes Partnership 

Common Data Model (OMOP CDM) stores the data from different sources (electronic health records, 

claims data, registries, surveys, trial data, etc.) and geographies (such as US, Asia, Europe, Australia) in 

a unified format guided by the ETL (extract-transform-load) procedures and policies. It provides both 

syntactic and semantic standardization through the CDM that organizes the data into a common 

relational database structure and the OHDSI Standardized Vocabularies that provide a common 

reference ontology system to harmonize the data content. 

 

As we discussed, the common data model supports distributed research at scale. While it comes at a cost 

of spending resources on converting the data, the conversion itself has been shown to have little impact 

on study results [163,164]. Currently, there are multiple published papers on peculiarities of 
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transforming raw data to the OMOP CDM [219–232], but the principles behind the CDM are not unique 

to OHDSI. 

 

On the other hand, OHDSI Standardized Vocabularies, which is a backbone of OMOP CDM, are unique 

to OHDSI. They specify a priori representation for patient data and serve as a reference the OMOP 

CDM so all data are represented in a structured format avoiding free text fields. As opposed to the other 

terminology systems designed around information retrieval [233,234], the goal of the Standardized 

Vocabularies is to provide (a) a standard for representing the data content and (b) support for the 

mapping of various vocabularies and coding schemes adopted in the data sources within the network. 

 

OHDSI Standardized Vocabularies are created de-novo or imported from existing US and non-US 

taxonomies, terminologies, ontologies, and vocabularies and cover each main medical domain: diagnosis 

(“Condition”); laboratory and instrumental tests (“Measurement”); medical procedures (“Procedure”), 

medications (“Drug”), medical devices and supplies (“Device”); and clinical signs, symptoms and 

observations (“Observation”). Patient-level data in OMOP CDM is coded using the concepts from a 

subset of standard vocabularies inside the OHDSI Standardized Vocabularies with other concepts being 

linked (“mapped” to the standard ones) [101]. Having standard reference terminologies across all data 

sources enables standardized approaches to phenotyping, feature extraction and large-scale analytics. 

 

Specifically, semantic standardization in the OHDSI Standardized Vocabularies is achieved by defining 

all concepts through their relationships and selecting one referent concept per semantic meaning. For 

example, the majority of codes from ICD-10(CM), ICD-9(CM), their international flavors, Read and 

ICD-O-3 fall under Condition domain and are mapped to referent concepts in SNOMED-CT (Figure 3). 
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Figure 3. Selected elements of the OHDSI Standardized Vocabularies in the Condition domain. 

 

Throughout this thesis, we leverage existing OHDSI Standardized Vocabularies structures, such as joint 

drug hierarchy of imported RxNorm, created de-novo RxNorm Extension, Anatomical Therapeutic 

Chemical (ATC) classification and CVX; partially aligned procedure hierarchy of SNOMED-CT, CPT-4 

and HCPCS and other elements. While not covered in detail, we contributed to these endeavors [32,235–

237], which both enabled us to fully appreciate their utility in observational research and highlighted 

complexity of medical ontologies, which limits their full use by a broader community. While it has been 

shown that mapping to standard terminologies in OMOP does not introduce significant error [164], 

proper use of OMOP Standard Vocabularies still requires extensive knowledge.  

 

Throughout this thesis, we use data sources converted to OMOP CDM version 5. Table 1 outlines the 

data sources used in each section. For almost each section, the data sources were engaged separately by 
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designing a study, writing a study protocol, creating study packages and advertising projects on the 

OHDSI forum or person-to-person. 
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Table 1. Description of the data sources used in this thesis. EHR – electronic health record data, claims – administrative claims data. 

Name Type 
Count

ry 
Size Description 

Where 

used 

Ajou University 

Database 
EHR Korea 

3 

million 

Korean tertiary teaching hospital electronic health record data including visits 

data, medication administration and prescription information, procedures and 

diagnosis. 

Section 

3.1, 3.2 

Australian 

Electronic 

Practice-based 

Research Network 

(AU-ePBRN) 

EHR 
Austral

ia 

0.2 

million 
Electronic health records data from primary care practices in Australia 

Section 

3.1, 3.2 

Clinical Practice 

Research Datalink 

(CPRD) 

EHR UK 
12 

million 

CPRD is a governmental, not-for-profit research service, jointly funded by the 

NHS National Institute for Health Research and the Medicines and Healthcare 

products Regulatory Agency. CPRD consists of data collected from UK 

primary care for all ages. This includes conditions, observations, measurements, 

and procedures that the general practitioner is made aware of in additional to 

any prescriptions as prescribed by the general practitioner. In addition to 

primary care, there are also linked secondary care records for a small number of 

people. The major data elements contained within this database are outpatient 

prescriptions given by the general practitioner and outpatient clinical, referral, 

immunization or test events that the general practitioner knows about. 

Section 

4.1 

Columbia 

University Irving 

Medical Center 

(CUIMC) 

EHR USA 
6 

million 

The Columbia University Irving Medical Center (CUIMC) database comprises 

electronic health records on more than 6 million patients, with data collection 

starting in 1985. CUIMC is a Northeast US quaternary care center with primary 

care practices in northern Manhattan and surrounding areas, and the database 

includes inpatient and outpatient care. The database currently holds information 
about the person (demographics), visits (inpatient and outpatient), conditions 

(billing diagnoses and problem lists), drugs (outpatient prescriptions and 

inpatient orders and administrations), devices, measurements (laboratory tests 

and vital signs), and other observations (symptoms). The data sources include 

current and previous electronic health record systems (homegrown Clinical 

Information System, homegrown WebCIS, Allscripts Sunrise Clinical Manager, 

Allscripts TouchWorks, Epic Systems), administrative systems (IBM PCS-

ADS, Eagle Registration, IDX Systems, Epic Systems), and ancillary systems 

(homegrown LIS, Sunquest, Cerner Laboratory). 

Chapters 

3-5 
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IBM MarketScan 

Commercial 

Claims  

and Encounters  

Database (CCAE) 

Claims USA 
144 

million 

IBM MarketScan Commercial Claims and Encounters Database (CCAE) is a 

US employer-based private-payer administrative claims database. The data 

include adjudicated health insurance claims (e.g., inpatient, outpatient, and 

outpatient pharmacy) as well as enrollment data from large employers and 

health plans who provide private healthcare coverage to employees, their 

spouses, and dependents. Additionally, it captures laboratory tests for a subset 

of the covered lives. This administrative claims database includes a variety of 

fee-for-service, preferred provider organizations, and capitated health plans. 

Section 

4.1, 5.2 

IBM MarketScan 

Medicare 

Supplemental and 

Coordination of 

Benefits Database 

(MDCR) 

Claims USA 
10 

million 

IBM MarketScan Medicare Supplemental and Coordination of Benefits 

Database (MDCR) represents health services of retirees in the United States 

with primary or Medicare supplemental coverage through privately insured fee-

for-service, point-of-service, or capitated health plans. These data include 

adjudicated health insurance claims (e.g., inpatient, outpatient, and outpatient 

pharmacy).Additionally, it captures laboratory tests for a subset of the covered 

lives. 

Section 

4.1, 5.2 

IBM MarketScan  

Multi-State  

Medicaid 

Database (MDCD) 

Claims USA 
28 

million 

IBM MarketScan Multi-State Medicaid Database (MDCD) contains adjudicated 

US health insurance claims for Medicaid enrollees from multiple states and 

includes hospital discharge diagnoses, outpatient diagnoses and procedures, and 

outpatient pharmacy claims as well as ethnicity and Medicare eligibility. 

Members maintain their same identifier even if they leave the system for a brief 

period; however, the dataset lacks laboratory data. 

Section 

4.1, 5.2 

Information 

System for 

Research in 

Primary  

Care – 

Hospitalization 

Linked Data  

(SIDIAP-H) 

EHR Spain 
2 

million  

Primary care records database from Catalonia, North-East Spain. The SIDIAP-

H subset of the database includes around 2 million people out of the total 7 

million in SIDIAP that are registered in primary care practices with linked 

hospital inpatient data available as obtained from the Catalan Institute of Health 

hospitals. Healthcare is universal and tax-payer funded in the region, and 

primary care physicians are gatekeepers for all care and responsible for repeat 

prescriptions. 

Section 

4.1 

IQVIA 

Ambulatory 

Electronic 

Medical Record 

(AmbEMR) 

EHR USA 
42 

million 

US ambulatory records that capture outpatient visits with approximately 50% 

primary care, 50% specialists. The database contains deidentified medical 

records and encounters from 100,000 physicians and 800 networks in the 

United States covering the period from January 2006 through May 2019. These 

data include provider medical specialty; patient variables such as examination 

date, year of birth, sex, and race and ethnicity; and clinical variables such as 

diagnoses, procedures, medication prescription records, and patient and family 

history captured during a patient visit. Contributing practices consist of medium 

to large physician offices, outpatient clinics, and physician groups. 

Section 

3.1, 3.2, 

3.4 



Chapter 2. Background. Data sources used 

 

 

44 

IQVIA Australia 

Electronic 

Medical Records  

(Australia EMR) 

EHR 
Austral

ia 

6 

million 

Anonymized patient records of more than 6 million patients in Australia 

collected from Patient Management software used by GPs during an office visit 

to document patients’ clinical records. 

Section 

3.1, 3.2, 

4.1 

IQVIA Disease 

Analyser Germany 

 (DA Germany, 

IMSG) 

EHR 
Germa

ny 

34 

million 

IQVIA DA Germany is collected from extracts of patient management software 

used by GPs and specialists practicing in ambulatory care settings. Data 

coverage includes more than 34M distinct person records out of at total 

population of 80M (42.5%) in the country and collected from 2,734 providers. 

Dates of service include from 1992 through March 2020. 

Section 

3.1, 3.2, 

3.4, 4.1 

IQVIA Disease 

Analyzer France 

(DA France, 

IMSF) 

EHR France 
4 

million 

Electronic health records data from French practices (mostly primary care 

practices). The data are collected from physician practices and medical centers 

for all ages. 

Section 

3.1, 3.2 

IQVIA 

Longitudinal 

Patient Data 

France (LPD 

France) 

EHR France 
7.8 

million 

Anonymized patient records of 7.8 million patients in France collected from 

Patient Management software used by GPs and select specialists during an 

office visit to document patients’ clinical records 

Section 

4.1 

IQVIA LRxDx 

US  

Open Claims 

(Open Claims) 

Claims USA 
160 

million 

Anonymized, pre-adjudicated claims collected from US office-based physicians 

and specialists 

Section 

3.1, 3.2 

IQVIA Oncology 

Electronic 

Medical Record 

(OncoEMR) 

EHR USA 
2.1 

million 

The US database capturing oncology ambulatory outpatient visits including 

laboratory data, procedures, diagnosis, and medication prescription data. 

Section 

3.1, 3.2, 

3.4 

IQVIA US 

Hospital Charge 

Detail Master 

(CDM) 

Hospital 

charge  
USA 

88 

million 

Anonymized hospital charge detail masters (CDM) collected from short-term, 

acute-care and non-federal hospitals 

Section 

3.1, 3.2 

Japan Medical 

Data Center 

(JMDC) 

Claims Japan 
5.7 

million 

Japan Medical Data Center (JMDC) database consists of data from 60 society-

managed health insurance plans covering workers aged 18 to 65 and their 

dependents (children younger than 18years old and elderly people older than 65 

years old). JMDC data includes membership status of the insured people and 

claims data provided by insurers under contract (e.g. patient-level demographic 

information, inpatient and outpatient data inclusive of diagnosis and 

procedures, and prescriptions as dispensed claims information).  

Section 

3.1, 3.2, 

4.1 



Chapter 2. Background. Data sources used 

 

 

45 

Korea National 

Health Insurance 

Service / National 

Sample Cohort 

(NHIS/NSC)  

Claims Korea 
1 

million 

National administrative claims database covering the South Korea population 

spanning 2002 – 2013 integrating the data from more than 366 institutions. It 

includes the data about prevention, diagnosis, disease, and injury treatment, as 

well as rehabilitation, births, deaths and health promotion. Currently the NHIS 

maintains and stores national records for healthcare utilization and 

prescriptions. 

Section 

3.1, 3.2 

MIMIC III EHR USA 
0.04 

million 

Electronic health records data associated with ~60,000 intensive care unit 

admission at a large tertiary care hospital. Data includes vital signs, 

medications, laboratory test, observations and notes charted by care providers, 

fluid balance, procedure codes, diagnostic codes, imaging reports, hospital 

length of stay, survival data, and more.  

Section 

3.1, 3.2 

Optum de-

identified 

Electronic Health 

Record Dataset 

(PANTHER) 

EHR USA 
94.8 

million 

The Optum PanTher EHRs are derived from 53 integrated delivery networks 

from diverse geographies in the US, including more than 700 hospitals and 

7000 clinics across the US. Clinical and administrative data are obtained from 

both inpatient and ambulatory EHRs, practice management systems and 

numerous other internal systems; and are processed, normalized, and 

standardized across acute inpatient stays and outpatient visits. Data elements 

include, but are not limited to, patient demographic information, medications 

prescribed and administered, laboratory results, and coded diagnoses and 

procedures. 

Section 

3.1, 3.2 

Optum© de-

identified 

Electronic Health 

Record Dataset 

(Optum EHR) 

EHR USA 
87 

million 

Optum de-identified Electronic Health Record Dataset is derived from dozens 

of healthcare provider organizations in the United States (that include more 

than 700 hospitals and 7,000 clinics). The medical record data includes clinical 

information, inclusive of prescriptions as prescribed and administered, lab 

results, vital signs, body measurements, diagnoses, procedures, and information 

derived from clinical notes using Natural Language Processing. 

Section 

3.1, 3.2, 

4.1 

Optum® De-

Identified Clinfor

matics® Data 

Mart Database – 

Socio-Economic 

Status (Optum 

SES) and Date of 

Death (Optum 

DOD) 

Claims USA 
85.8 

million 

Optum De-Identified Clinformatics Data Mart Database (Optum Insight, Eden 

Prairie, MN) is an adjudicated administrative health claims database for 

members with private health insurance, who are fully insured in commercial 

plans or in administrative services only (ASOs), Legacy Medicare Choice Lives 

(prior to January 2006), and Medicare Advantage (Medicare Advantage 

Prescription Drug coverage starting January 2006). The population is primarily 

representative of US commercial claims patients (0-65 years old) with some 

Medicare (65+ years old) however ages are capped at 90 years. It includes data 

captured from administrative claims processed from inpatient and outpatient 

medical services and prescriptions as dispensed, as well as results for outpatient 

lab tests processed by large national lab vendors who participate in data 

exchange with Optum. Optum SES provides socio-economic status for 

Section 

3.1, 3.2, 

4.1 



Chapter 2. Background. Data sources used 

 

 

46 

members with both medical and pharmacy coverage and location information 

for patients at the US Census Division level. Optum DOD is primarily 

representative of US commercial claims patients with full death record. 

Premier 

Healthcare 

Database (PHD) 

Hospital 

charge  
USA 

215 

million 
Hospital charge data from the hospitals across the US  

Section 

3.1, 3.2 

Stanford Medicine 

Research Data 

Repository 

(STaRR) 

EHR USA 
5 

million 

EHR data derived from outpatient and inpatient visits Stanford Hospital and 

Clinics 

Section 

3.1, 3.2 

The Healthcare 

Cost and 

Utilization Project 

(HCUP), 

Nationwide 

Inpatient Sample  

Hospital 

charge  
USA 

115.9 

million 

US hospital care data, including inpatient stays, ambulatory surgery and 

services visits, and emergency department encounters. 

Section 

3.1, 3.2 

The Integrated 

Primary Care 

Information (IPCI) 

database 

EHR 
Netherl

ands 

2.36 

million 

Longitudinal observational database containing electronics medical records 

from a representative sample (n=750) of general practitioners (GPs) in 9 

different GP systems in the Netherlands covering up to 10 years of 

observational data. 

Section 

4.1 

Tufts Medical 

Center Database  
EHR USA 

1 

million 

EMR data from a large tertiary care hospital, including inpatient, outpatient, 

state death records, and tumor registry records 

Section 

4.1, 3.2 
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Chapter 3. Addressing phenotyping as a source of measurement error 
 

 

 

In this chapter we will discuss improving scalability, reliability, and portability of phenotyping 

algorithms for identifying patients of interest in distributed observational data networks. The figure 

below contextualizes this step in a retrospective observational study. 

 

 

 

While phenotyping on EHR data has been carried out for more than 40 years, the problem of robust, 

accurate and efficient phenotypes remains largely unsolved. This chapter focuses on assessing and 

reducing bias in phenotyping in data networks and places a specific emphasis on using data to inform 

expert-based phenotype development at every step. 
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First, I investigate code utilization patterns and data source heterogeneity across 22 US and international 

data sources and describe how it influences phenotype development in networks. I proceed with 

developing original methods for computing data source granularity and evaluate them on the network of 

data sources. I dissect factors affecting granularity and its impact on phenotypes as well as identify the 

patterns of granularity depending on the provenance of data and country of origin. 

 

Using the dataset generated in the previous step I design and deploy a recommender system for 

comprehensive code selection across the network. I evaluate its performance for four conditions 

(diabetes mellitus type I and II, attention deficit hyperactivity disorder and heart failure) on three EHR 

and claims data sources. I then demonstrate how the recommender system fits into the OHDSI pipeline 

for phenotype development, evaluation and storage and describe its usage in individual studies as well as 

11 major network studies. 

 

Second, I investigate sensitivity of patient composition to the choice of specific algorithmic 

implementation of inclusion and exclusion criteria (cohort definition). We conduct an experiment with 

45 OHDSI collaborators, which was set up as a standardized implementation of the clinical description 

from a recent high-impact observational study, execute collaborators’ implementations and quantify the 

variability in translation of conceptual definition into an executable algorithm and its impact of on 

patient selection and characteristics. 

 

Third, we apply the lessons learned in the abovementioned sections to create EHR-derived chronic 

kidney disorder phenotypes that are portable to administrative claims. We develop four phenotypes with 
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varying complexity and evaluate the algorithms on four US and international data sources and provide 

recommendations on how to facilitate phenotype portability and validity. 

 

Finally, I identify the gaps in the current approaches for phenotype evaluation. Given the shortcomings 

of the current gold standard for phenotype evaluation (manual chart review), I present a framework for 

systematic examination of patient data and apply this framework to patients’ structured data to propose a 

chart review alternative that enables efficient ascertainment of patient status. I illustrate the utility of the 

framework for acute and chronic, outpatient and inpatient conditions and demonstrate that, compared to 

manual chart review, its use achieves better consistency and non-inferior accuracy in classifying patients 

at a fraction of time. 
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3.1 Data source heterogeneity, granularity, and code utilization1 

 

 

In data networks, phenotype algorithms are intended to be used across multiple data sources, which 

requires recognition and reconciliation of differences in patient representations arising from underlying 

populations, disparate coding practices and specifics of data capture. Nevertheless, there is little research 

on code utilization across the networks and its influence on patient selection and study validity. 

 

In this section, I collect the data from US and international 22 data sources containing 272 billion 

records and use this dataset to (a) investigate code utilization patterns, (b) develop original methods for 

assessing data source granularity and (c) investigate patterns of data source granularity across the data 

sources with different provenance and country of origin. 

 

I observe high heterogeneity of data sources and discrepancies in coding practices, which plays a crucial 

role in code selection. I show three SNOMED-based approaches consistently classifying data source 

granularity and reveal granularity patterns specific to the provenance of data and country of origin. 

 

 

 

 

 

1 A large portion of this section is published in the AMIA Annual Proceedings 2020. The full citation for this publication is 

Ostropolets A, Reich C, Ryan P, Weng C et al. Characterizing database granularity using SNOMED-CT hierarchy. AMIA 

Annual Proceedings (2020). 
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3.1.1 Background 

 

In observational data networks, studies are executed across data sources with different provenance, 

country of origin, population, and coding practices. Even when formal semantic interoperability is 

achieved by standardizing data format (a common data model) and content (standardized vocabularies), 

there still can be substantial data heterogeneity across sites.  

 

In single-center studies, clinical codes or concepts for phenotype algorithms can be selected based on 

expert knowledge of local coding practices and data exploration [166,238]. This approach is not suitable 

for distributed networks as the data from all sites is not readily available. Moreover, the practices in a 

local institution may not be generalizable to other data sources, especially given that variability in code 

utilization is not quantified for most of the networks. Current research on impact of coding practices on 

phenotypes is mostly limited to separate conditions and is limited in scope [105,107]. It is not clear 

whether these observations can be generalizable to other conditions, nor it is possible to examine code 

utilization for all conditions separately at scale. 

 

In this section we investigate code utilization and attempt to draw generalizable conclusions about data 

source granularity, where the latter reflects granularity of the concepts used in a data source. 

For example, previously published phenotypes for chronic kidney disease relied on chronic kidney 

disorder codes (ICD9-CM 585 or ICD10-CM N18 “Chronic kidney disease”) [239] or codes with less 

explicit content, or, in other terms, less granular (ICD9-CM 586, ICD10-CM N18.9 ‘Renal failure, 

unspecified’ or N19 ‘Kidney failure’) depending on the granularity of the data sources used [240,241].  
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We hypothesize that the patterns of code use, specifics of population captured, and other factors 

influence granularity of multiple concepts used in a data source so we can empirically derive the overall 

level of data source granularity.  

 

 

 

 

3.1.2 Methods  

 

Methods we used for investigating data source heterogeneity and granularity comprised of three 

elements: (1) data collection across the network, (2) code utilization assessment and (3) data source 

granularity calculation. 

 

Data collection 

 

To generate the dataset (used here and in the subsequent chapters) we created a call on the OHDSI 

forum to ask the data partners within the OHDSI network to contribute their data converted to OMOP 

CDM [147]. Within each site we collected standard and source concepts along with their frequency of 

use in the data from the main OMOP CDM version 5 tables (Condition Occurrence, Procedure 

Occurrence, Drug Exposure, Device Exposure, Measurement, Observation) and aggregated them so that 

the resulting dataset contained the code, aggregated frequency and number of data sources for each 

concept code. 
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Hereon, we use the term ‘concept’, ‘code’ or ‘concept code’ to refer to terms in an ontology and 

‘frequency’ to refer to the number of records in a data source.  

 

Data Analysis 

 

Code heterogeneity and utilization 

 

To study code utilization we analyzed the distribution of unique and overlapping concepts in the main 

OHDSI Standardized Vocabularies domains (Condition, Measurement, Observation, Procedure, Drug), 

which guide population of OMOP CDM tables and correspond to broad clinical domains: Condition 

represents all diseases, symptoms and states, Measurement – laboratory tests, vitals and other 

measurements, Procedure – diagnostic and treatment procedure, Drug – all medication formulations. 

 

We analyzed the distribution of concept and patterns of use separately for each domain. For conditions, 

measurements, procedures and observations we used the codes as they appeared in the data sources; for 

drugs we aggregated the codes to ingredient level using RxNorm hierarchy to account for different 

international drug formulations. 

 

Data source granularity  

 

For the purpose of quantifying granularity, we focused on Condition domain, which is the domain with 

the most comprehensive crosswalks between the source vocabularies (such as Read or ICD-9 codes) and 
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standard SNOMED-CT ontology and is present in all of the data sets regardless of the provenance and 

country of origin [164].  

 

To assess data source granularity, we introduced the term ‘granularity score’, which refers to the overall 

level of granularity of conditions in a data source and can be used as a relative metric to compare 

different data instances. We calculated the granularity score for each data source using three approaches 

described below. In each approach, we calculated the minimal number of steps (‘Is a’ relationships) 

within the SNOMED-CT hierarchy needed to get from a concept A to a concept B. These steps or levels 

of separation were used as a proxy for granularity, assuming that concepts within one level of separation 

have similar semantic distance to a parent (ancestor) term. 

 

Three approaches (Figure 4, Step 1) differed in the ancestor from which to measure the granularity 

score. The reasoning behind using anchors (ancestor codes) was to have a consistent metrics for 

concepts and, therefore, for different concepts to be comparable. 
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Figure 4. Overall study design for estimating condition-based data source.  

 

 

We tested the following anchor concepts: 

 

Approach 1. SNOMED-CT concepts mapped from three-character ICD10CM codes, excluding chapters 

18-21 (signs and symptoms, injuries, external causes of morbidity and factors influencing health status). 
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The purpose of this approach was to adjust for the fact that SNOMED-CT may have different levels of 

granularity in different parts of the hierarchy, whereas the ICD10CM three-character codes may be less 

variable.  

 

Approach 2. Broadest SNOMED-CT code ‘Clinical Finding’. This assumes that in different parts of the 

hierarchy, the same degree of detail is encoded at about the same level down from ‘Clinical Finding’ for 

different diseases. 

 

Approach 3. A set of 22 hand-selected SNOMED-CT codes that represent groups of conditions central 

to medicine (Table 2). In this way, we could manually ensure that the concepts were at a similar level of 

granularity. 

 

Table 2. Twenty-two hand-selected SNOMED-CT terms that represent groups of conditions central to 

medicine, used as ancestor terms for calculating data source granularity scores. 

SNOMED 

code 
SNOMED category name 

ICD10-CM 

group 
ICD10-CM group name 

55342001 Neoplastic disease C00-D49   Neoplasms 

362971004 Disorder of lymphatic system 

 

D50-D89 

Diseases of the blood and blood-

forming organs and certain disorders 

involving the immune mechanism 

111590001 Disorder of lymphoid system 

362970003 Disorder of hemostatic system 

299691001 

Finding of blood, lymphatics 

and immune system 

362969004 Disorder of endocrine system 

74732009 Mental disorder E00-E89   

Endocrine, nutritional and metabolic 

diseases 

118940003 Disorder of nervous system F01-F99   

Mental, Behavioral and 

Neurodevelopmental disorders 

128127008 Visual system disorder G00-G99   Diseases of the nervous system 

362966006 Disorder of auditory system H00-H59   Diseases of the eye and adnexa 
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271983002 

Disorder of cardiac pacemaker 

system H60-H95   

Diseases of the ear and mastoid 

process 

49601007 

Disorder of cardiovascular 

system I00-I99 Diseases of the circulatory system 

50043002 Disorder of respiratory system 

53619000 Disorder of digestive system J00-J99   Diseases of the respiratory system 

80659006 

Disorder of skin and/or 

subcutaneous tissue K00-K95   Diseases of the digestive system 

928000 

Disorder of musculoskeletal 

system L00-L99   

Diseases of the skin and 

subcutaneous tissue 

42030000 

Disorder of the genitourinary 

system M00-M99   

Diseases of the musculoskeletal 

system and connective tissue 

362972006 Disorder of labor / delivery N00-N99   Diseases of the genitourinary system 

173300003 Disorder of pregnancy 

O00-O9A 
Pregnancy, childbirth and the 

puerperium 
362973001 Disorder of puerperium 

414025005 Disorder of fetus or newborn 

66091009 Congenital disease P00-P96   

 Certain conditions originating in the 

perinatal period 

 

For each of these anchor concepts, we obtained the frequencies of all the descendant concepts in the 

SNOMED-CT hierarchy at each level (Figure 4, Step 2) and calculated the distribution of concepts 

across different levels (Figure 4, Step 3). We then calculated the average distribution across all anchors 

(Figure 4, Step 4) and multiplied it with the corresponding levels of separation to arrive at a weighted 

distribution. Finally, granularity score was defined as the sum of weighted distribution obtained at Step 

4 (Figure 4, Step 5). 

 

Full process is described as: 

∑ (

∑ (
∑ 𝐶𝑙𝑙∶ 𝐶𝑙 𝑖𝑛 𝐿 𝑙𝑒𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝐶𝑎 

∑ 𝐶𝑙𝑙∶ 𝐶𝑙 𝑖𝑠 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡 𝑜𝑓 𝐶𝑎
 
)𝑎 ∈ 𝐴

𝑁𝐴
 ×  𝐿)𝐿 ∈ 0,…,𝑚𝑎𝑥 𝑙𝑒𝑣𝑒𝑙𝑠        (1) 

 

where C is the frequency of a concept, level is the level of separation, A is the set of ancestors (anchor 

codes) and NA – number of ancestors. 
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Vocabulary granularity 

 

Separately, we examined the granularity of vocabularies used in participating data sources (rather than 

the data sources themselves) to distinguish influence of different source coding schemas driving the 

granularity score as opposed to coding practices. To achieve that, we calculated the weighted 

distribution of target SNOMED-CT concepts across different levels of separation, where the levels were 

computed from three separate anchor codes described above.  

 

Granularity applied to the real-world phenotyping tasks 

 

Finally, to illustrate how granularity can be used to analyze applicability of data sources for phenotyping 

of specific disorders, we examined the granularity of databases for chronic kidney disorder. The most 

common code set for chronic kidney disorder (all concept in groups ICD-9(CM) 585 or ICD-10(CM) 

N18 ‘Chronic kidney disease’) [239] is mapped to descendants of SNOMED-CT 709044004 ‘Chronic 

kidney disease’ in the OHDSI Standardized Vocabularies. We took this code with all descendants and 

calculated total frequency of concepts at each level of the hierarchical tree. 

 

3.1.3 Results 

 

Code heterogeneity and utilization 
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The final dataset contained 272 billion records from twenty-two data sources: 14 US and 8 international 

(non-US).  

 

The data originated mainly from administrative claims (n=8), hospital charge data (3) and electronic 

health records collected in large teaching hospitals (5) or primary and secondary practices (6). The size 

of the datasets varied greatly, with the average number of 2.4 billion records (interquartile range, IQR 

384 million – 17.8 billion) and 70.7 thousand (IQR 15.4– 102.4 thousand) unique standard concepts per 

data source. 

Full protocol with the data source description, total number of condition records and unique condition 

concept codes can be found on GitHub [242]. 

 

We observed high variability of the concepts used across participating data sources with a significant 

number of concepts (20%) to be found in only one dataset out of 22 (Figure 5).  
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Figure 5. Number of concept codes per number of data sources they can be found in across the OHDSI 

network stratified by domain. Codes found in more than 15 data sources are omitted for visualization 

purposes. 

 

Only 93 condition codes and none of the codes from other domains were found in all data sources. 

They were typically broad terms describing symptoms and states such as low back pain, ataxia and 

shock or common conditions such as anaphylaxis, angina pectoris or epilepsy.  

 

Condition was the least heterogeneous domain with the highest rate of overlap across all domains, 

followed by Procedure, Measurement and Drug. Even then, 28.4% of measurement codes (such as lab 

tests and vitals) and 31.7% on drug codes on the ingredient level were unique to a data source.  

 

While conditions and procedures are usually coded using a limited number of vocabularies, 

measurements and observations do not have established coding practices and are oftentimes coded as 
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either free text or using local terminologies, which may explain high heterogeneity across these 

domains. For example, myelin associated glycoprotein antibodies can be coded using 15 different codes 

depending on granularity of information available. Additionally, there are specific tests that are rarely 

performed, such as JAK2 gene exon 12 targeted mutation analysis in bone marrow.  

Drugs only found in one dataset included herbal preparations, rarely used drugs such as ajmalicine, 

moxaverine or barbexaclone and specialized medications such as oxypertine. 

Figure 6 shows that there was no apparent correlation between the frequency of the concepts in the datasets 

and the number of the databases they can be found in. For example, SNOMED-CT concept “Temperature” 

or LOINC measurement “Oxygen [Partial pressure] in Blood” can only be found in two datasets despite 

their high prevalence in those datasets. Nevertheless, most of the highly prevalent codes were found in six 

and more datasets, which shows that the datasets share widespread conditions, procedures and drugs. 
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Figure 6. Frequency of the concept codes per number of data sources they can be found in across the 

OHDSI network. Each blue dot represents a concept code.  

 

Data source granularity 

 

We analyzed data source granularity using the three approaches and established 5 empirical granularity 

levels based on the distribution of granularities of the data sources: high, high/moderate, moderate, 

moderate/low and low. In most cases, all three approaches agreed (Table 3). For high/moderate and 

moderate/low data sources two approaches showed moderate granularity and one – high or low 

respectively. 

 

Table 3. Granularity scores for selected data sources in the OHDSI network. 
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Database 

Country Type Granularity score  

by approach 
Empirical level of 

granularity 
1 2 3 

AU-ePBRN Australia EHR 157 512 344 High granularity 

Ajou University Korea EHR 117 516 347 High granularity 

CUIMC USA EHR 114 519 355 High granularity 

MDCR USA Claims 114 519 357 High granularity 

NHIS/NSC Korea Korea Claims 111 510 336 Moderate/high granularity 

StaRR USA EHR 113 509 345 Moderate/high granularity 

HCUP USA Hospital charge 125 498 346 Moderate granularity 

PanTher USA EHR 107 503 324 Moderate granularity 

PREMIER USA Hospital charge 110 496 332 Moderate granularity 

MDCD USA Claims 111 490 333 Moderate granularity 

Hospital CDM USA Hospital charge 111 503 335 Moderate granularity 

CCAE USA Claims 110 500 340 Moderate granularity 

Open Claims USA Claims 110 505 342 Moderate granularity 

Optum DOD USA Claims 110 506 342 Moderate granularity 

Optum SES USA Claims 110 506 342 Moderate granularity 

AmbEMR USA EHR 114 490 314 Moderate/low granularity 

Tufts University USA EHR 118 477 331 Moderate/low granularity 

DA France France EHR 100 490 304 Low granularity 

DA Germany Germany EHR 100 472 309 Low granularity 

JMDC Japan Claims 102 497 314 Low granularity 

LPD Australia Australia  112 475 311 Low granularity 

MIMIC3 USA EHR 178 474 343 Inconsistent granularity 

 

Regardless of the approach, most of the data sources had moderate granularity (Figure 7). This group 

included mainly administrative claims (MDCD, CCAE, OpenClaims, OptumDOD, and OptumSES) and 

hospital charge data (Hospital, HCUP, and Premier) along with only one EHR source (PanTher). 
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High granularity data sources (AU-ePBRN, MDCR, CUIMC and Ajou University database) remained 

relatively granular regardless of the method used. StaRR and NHIS/NSC Korea appeared to be highly 

granular or moderately granular depending on the approach. 

 

The low granularity group was the most homogeneous group, consisting of international data sources, 

which were primarily EHR-derived (LPD Australia, DA France and DA Germany), accompanied by one 

claims-derived source (JMDC). Another EHR source, AmbEMR, appeared as a low/moderate 

granularity data source. 

 

Only one data source had noticeable inconsistency across approaches (MIMIC3) and was the smallest 

data source with only 749 condition codes. 
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Figure 7. Normalized granularity score for the data sources across the OHDSI network stratified by 

granularity level. 

 

We also found some patterns in data granularity related to data provenance. Overall, EHR data sources 

originating from primary and secondary care practices were less granular, while administrative claims 

data, hospital charge data and EHR data originating from large tertiary care hospitals were more 

granular. International data sources were on average less granular with only three out of eight non-US 

sources being moderately or highly granular (Figure 8). 

 

 

Figure 8. Normalized granularity score for the data sources across the OHDSI network stratified by the 

country of origin: US (blue) and international (orange). 
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Administrative claims data and hospital charge data showed similar patterns of granularity, but relative 

granularity within this group differed depending on the approach. MDCR had the highest granularity 

among other claims data, Optum DOD, Optum SES and OpenClaims had similarly moderate 

granularity, and MDCD with Premier had consistently low granularity in the group. 

 

Granularity for specific disorders 

 

Table 4 shows that on average 59% percent of records for chronic kidney disorder had relatively low 

granularity (condition with one attribute, such as ‘Chronic kidney failure stage 3’). Some of sources 

comprised broader terms. For example, less precise concept ‘Renal impairment’ accounted for 23% of 

all concepts related to chronic kidney disorder in LPD Australia. Given its prevalence, we may choose to 

examine the patients who have this code in their record to determine if they should be included in the 

cohort.  

 

Table 4. Selected datasets for assessing granularity of chronic kidney disorder codes used across the 

OHDSI network. 

Level of separation (example) 

DA 

France JMDC 

LPD 

Australia AmbEMR CUIMC MDCD Average* 

0 (Renal impairment 
  

23.0% 4.0% <0.1% 
 

2.2% 

1 (Chronic kidney disease) 94.5% 90.0% 32.0% 17.0% 25.4% 13.1% 24.7% 

2 (Chronic kidney disease stage 

3) 5.4% 8.9% 45.0% 68.8% 64.4% 67.4% 59.4% 

3 (Chronic kidney disease stage 

3 due to hypertension) 
 

<0.1% 1% 
 

10.0% 9.3% 18.5% 13.1% 
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4 (Malignant hypertensive 

chronic kidney disease stage 3) <0.1% 0.1% 
 

0.2% 1.0% 1.0% 0.5% 

5 (Malignant hypertensive end 

stage renal disease on dialysis) 
   

<0.1% 
  

<0.1% 

 

*Average frequency of concepts at a level across all data sources 

 

3.1.4 Discussion 

 

In this study, we explored code utilization and data source granularity across disparate data sources with 

different provenance of data, country of origin and various coding methods.  

 

Variability and heterogeneity showed here as well as for the other distributed networks have to be 

accounted for in any observational study as failure to do so can significantly bias the results in any 

direction [105,107,149].  

 

First, code sets developed on one data source are not likely to be generalizable to other data sources. 

Variability in code utilization remains even after data structure and content harmonization and reflects 

different coding practices, specifics of data capture, data cardinality and more. As we demonstrated, the 

data sources with similar provenance or country of origin may share some of the code utilization 

patterns but remain different enough to limit portability. 

 

Second, as similar patients can be coded with various granularity in different data sources, it is important 

to be aware of the overall data source granularity to make informed decisions about phenotyping 

algorithms.  
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When using data sources with low granularity (as LPD Australia in this study), using less precise broad 

concepts is needed in order not to lose patients of interest. For example, when identifying patients with 

chronic kidney failure, researchers may opt for looking at broader concepts such as renal impairment. 

The latter accounts for nearly a quarter of all kidney disorder-related records in LPD Australia. Given 

that such a broad concept is not likely to initially be included in the phenotyping algorithm, it is 

important to recognize the fact that a large fraction of patients has this code.  

 

We will now discuss three factors that contribute to data source granularity: (a) vocabulary, (b) 

population and (c) data capture process. 

 

Vocabulary  

 

SNOMED-CT is among the most comprehensive reference terminology available and is a mandatory 

standard vocabulary for conditions in the OHDSI network. SNOMED-CT supports polyhierarchy, where 

a concept may have multiple ancestors and inherits their meaning. Such polyhierarchies coexist in 

SNOMED-CT equally, so a single main hierarchical path cannot be identified. A concept can appear in 

multiple hierarchical trees at different levels, which obstructs assessing its complexity level when 

multiple anchoring codes are used. For example, 51292008 ‘Hepatorenal syndrome’ appears in two 

hierarchical trees: 42030000 ‘Disorder of the genitourinary system’ (5 levels of separation) and 

53619000 ‘Disorder of digestive system’ (2 levels of separation). While it poses challenges to 

establishing hierarchy-based granularity of an individual concept or an individual data source, such 

ambiguity is leveled out when aggregating across multiple codes and seeking relative comparison. 

Moreover, other ontologies such as ICD-10(CM) only support broad grouping of terms and not true 
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polierarchies, which makes them unusable for estimating granularity of disparate data sources with 

different local ontologies. 

 

We used different approaches that vary in anchor. Using top code ‘Clinical Finding’ as a single ancestor 

prevented duplication of codes across hierarchical trees and allowed us to capture all condition codes in 

the data sources. A disadvantage of such approach is participation of the concepts that carry insignificant 

clinical meaning. For example, ICD- 9(CM) concept 780.99 ‘Other general symptoms’ frequently 

occurred in some of the data sources and, being mapped to SNOMED-CT 365860008 ‘General clinical 

state finding’, conveyed little clinical meaning. Even if such a concept is present in a data source, it 

cannot be acted upon: it communicates too little clinical meaning to define any disorder of interest. 

 

The ICD-10(CM) code-based approach was motivated by selecting patients in observational research, 

which is typically performed by selecting appropriate ICD-10(CM) codes to define disease or state. 

Such an approach can be inefficient when international data sources or data sources with unstructured 

data are involved. Indeed, source vocabularies in non-US data sources were less granular since ICD-

10(CM), used in the US, is more granular than ICD-10 used internationally. If a feasibility part of 

network studies is performed on a highly granular data source, too specific concepts may be selected for 

phenotyping, which will lead to the patient loss.  

 

On the other hand, this approach neglects concepts broader than the selected ICD-10(CM) counterparts, 

which can be of a particular interest in low granular data sources. The SNOMED-CT concept set 

approach (approach 3) overcomes this shortcoming by querying broad disorder groups.  
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In approach 2 and 3 duplication of concepts across different trees was offset by averaging those trees. 

Nevertheless, this approach will be sensitive to concept selection if concept space in the data source is 

limited. Although we tried to minimize this effect by excluding groups of disorders that have high 

overlap, duplicates can still be found and can potentially bias the granularity score for small data 

sources. 

 

Population  

 

Granularity can reflect the features of the population that had given rise to a data source. Unbalanced 

data sources with a focus on a specific population may be biased towards higher granularity for this 

population but remain otherwise non-granular. For example, 85% of MDCR patients are elderly, who 

tend to have more co-morbidities compared to young healthy patients [243]. Co-morbidities, in turn, are 

coded as granular complex concepts that reflect associations between disorders, e.g. 422166005 

‘Peripheral circulatory disorder associated with type 2 diabetes mellitus’ or 19034001 

‘Hyperparathyroidism due to renal insufficiency’. Such high granularity is attributable rather to 

characteristics of the population (patients) than to characteristics of processes (data collection, coding or 

transformation). If a certain level of granularity belongs only to a specific portion of the data source, we 

need to disentangle this effect to be able to assess the baseline level of granularity. The latter will then 

reflect the granularity for the other groups of patients in a source, which can also be used for research.  

We proposed to offset the influence of a particular patient group on data source granularity by stratifying 

concepts by disorder group (approach 1 and 3). In particular, it resulted in a reduced difference in the 

granularity of MDCD and MDCR, which was more extreme in approach 2. 

 



Chapter 3. Section 1. Data source heterogeneity and granularity 

 

 

71 

Data capture process 

 

The data can be generated to address different needs: electronic health records facilitate clinical records 

storage and retrieval, and administrative claims data are used in the reimbursement process. Clinical 

documents within electronic health records and administrative claims may capture similar patients 

differently. EHRs may tend to be less granular due to the nature of clinical workflow, while claims data 

can be more granular to maximize reimbursement. 

It is supported by our observations that administrative claims data and hospital charge data were on 

average more granular than EHR data, especially if a data source originated from primary or specialty 

practices. Large hospitals’ EHR data appeared to be highly granular, which may suggest shared coding 

patterns. 

 

We previously discussed granularity should be adjusted if a subset of patients influences granularity. 

Patient characteristics can also be viewed as a feature of data source granularity if the patient population 

is homogeneous. In this way, granularity has the potential to remain stable regardless of a selected 

fraction of patients.  

 

Coding methods applied to unstructured data can also contribute to concept heterogeneity. Extracting 

data from clinical notes is a tedious and complicated process, which may decrease concept granularity as 

free text, especially if in large volume, may be converted to broad and imprecise structured data [244]. 

 

3.1.5 Limitations 
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We did not perform targeted SNOMED auditing to identify hierarchy inconsistencies, incomplete 

modelling or other issues described elsewhere [245,246]. As SNOMED is the most comprehensive and 

continuously growing reference terminology, we assumed that such issues will not be detrimental to 

assessing granularity or will influence all data sources equally. 

 

In this study, we only analyzed conditions as a comprehensive hierarchy for procedures or 

measurements is lacking; including other domains in granularity score may be included in future work. 

 

SNOMED-CT defines its concepts not only with hierarchical links, which we used in this study, but also 

with ‘has-a’ relationships, which can potentially be used to assess granularity. While attribute-based 

granularity inference is complicated by inconsistencies in assigning attributes and high volume of 

relationship types [245], future work may include comparing hierarchy-based approaches to attribute-

based approaches. 
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3.2. Recommender system for comprehensive concept set creation2 

 

 

 

In the previous section we observed that data sources are highly heterogeneous and have various levels 

of granularity, which makes code sets developed in one institution not likely to be generalizable to the 

other sites unless the researchers account for heterogeneity. The issue of creating comprehensive 

concept sets that contain all appropriate codes remains largely unsolved in the setting of moving learned 

phenotypes among disparate institutions without retraining. 

In this section, we discuss how we can use the dataset we collected across the network in a 

recommender system for creating comprehensive concept sets. I use mixed-method approaches to pre-

compute recommendations for all codes in the OHDSI Standardized Vocabularies, and then develop, 

deploy, and evaluate an open-source recommendation system. I find that creating cohorts with the 

system allows to identify substantially more patients while preserving positive predictive value and 

capture patients early in the course of the disease to reduce index event misspecification. I follow up by 

showing how it integrates into the OHDSI pipeline for phenotype development, evaluation and storage 

and demonstrate its utility as used in 11 major OHDSI network studies.  

 

 

 

 

2 This section is published in the AMIA Annual Proceedings 2022. The full citation for this publication is Ostropolets A, 

Ryan P, Hripcsak G. Phenotyping in distributed data networks: selecting the right codes for the right patients. AMIA Annual 

Proceedings (2022). 
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3.1.1 Background 

 

As we discussed previously, concept selection, either expert-based or data-driven, plays an essential role 

in phenotype algorithm development and subsequent patient selection. While inaccurate concept sets 

(incomplete or those that contain irrelevant concepts) concept sets may introduce bias and shift the study 

estimates in any direction, there is a lack of research on systematic approaches to building 

comprehensive yet accurate concept sets. 

 

Common expert-based approaches for concept selection include deriving codes from published 

phenotypes or using local expert knowledge [166,238]. When we looked at a random subset of 40 papers 

published in top clinical journals [247], we observed that a substantial number of papers rely on the 

previously developed concept sets, even if the referenced papers did not specify performance metrics. 

We can hypothesize that (a) peer-reviewed publication is enough to establish trust in concept sets and 

(b) the process of concept selection is oftentimes time-consuming, ambiguous, and unclear. Indeed, it is 

rarely formalized, and the researchers often turn to clinicians to learn about meaningful concepts. 

While useful from the clinical stand point, local expert knowledge may fail to produce a complete set of 

codes due to high variation in billing and coding practices among providers [107].  

As the process of concept selection is rarely described, the reasoning behind code inclusion or exclusion 

is mostly non-reproducible and hard to assess [248]. This challenge is especially complex in networks, 

where the analysis is performed across the institutions in different countries, coding practices and 

ontologies. In that case, the high volume of concepts makes the process of searching for relevant 

concepts almost non-feasible. For example, ICD-10(CM) and ICD-9(CM) alone contain more than 113 

thousand codes and the number grows rapidly with concepts from international ontologies.  
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Another common approach is to use machine learning approaches like multi-view banded spectral 

clustering [174], non-negative tensor-factorization [175], latent Dirichlet allocation [249], embeddings 

with knowledge graphs and EHR [177] to derive concepts from the structured data or supplement the 

latter with unstructured data [178,179]. While it potentially eliminates human subjectivity, learned 

knowledge is still limited to the institution the model was developed in and therefore may not be 

applicable to other institutions [109]. 

 

The process of code selection in networks with multiple institutions is not standardized, which leads to 

variable and non-reproducible approaches within individual institutions and potentially biases the results 

of the studies. Moreover, it greatly delays evidence generation. Current recommendations suggest 

extensive data exploration, inspection of the documents on coding practices and discussions with data 

owners to create accurate concept sets [250]. We propose that the data set of concept use across the 

network can be used to guide concept selection to achieve (a) systematic and (b) fast and feasible 

approach to code selection even when the researcher does not have the access to all participating data 

sources.  

 

3.1.2 Methods 

 

This section describes three parts of the study: (1) methods to identify similar concepts, (2) a 

recommender system for building comprehensive concept sets and (3) system evaluation. 

Methods to identify relevant concepts 
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We operated with the data set described in the previous section, which consisted of eleven million 

unique concepts appearing in at least one source within the network, with 272 billion records 

summarized.  

For each concept we calculated an aggregated estimate of the frequency of its use across all the data 

sources as well as an aggregated estimate of the frequency of use of all its descendants. The latter was 

derived using the OHDSI Standardized Vocabularies and represented the aggregated frequency of all 

child concepts in a corresponding hierarchy (RxNorm, SNOMED, LOINC etc). For the concepts that do 

not participate in the OHDSI Standardized Vocabularies hierarchy (such as ICD-10(CM), Read or 

NDC), the estimate of descendants’ frequency was equal to the aggregated frequency of the code itself.  

Aggregated frequencies were used to pre-compute a set of recommended terms for each standard code in 

the OHDSI Standardized Vocabularies. 

 

We applied mixed-methods techniques to derive recommendations (Figure 9). 
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Figure 9. Overview of the methods used to derive recommendations for building comprehensive 

concept sets. 

 

First, we found semantically similar concepts. They were added by selecting the most proximal concepts 

within a hierarchy and through the crosswalks between the adjacent ontologies such as HCPCS, CPT-4, 

SNOMED and ICD10PCS. These included both the concepts proximal and distal to the common 

ancestor as well as those belonging to a different hierarchy sub-tree (no common ancestor).  

 

Then, we found lexically similar concepts. We leveraged both concept names and concept synonyms 

obtained from terminologies and ontologies (such as SNOMED-CT or CPT-4).  

 

For each concept, we three lexical similarity metrics (Levenshtein distance, Levenshtein ration and Jaro-

Winkler), which, along with substring matching were used to select a set of recommendation candidates 

in the corpus [251]. 

 

1. Levenshtein distance, which is a recursive definition for the absolute Levenshtein distance 

between two strings: 

 

 

𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑠𝑖𝑠𝑗(𝑚, 𝑛) =

{
 
 

 
 

max(𝑚, 𝑛)                              

𝑚𝑖𝑛 {

𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑠𝑖𝑠𝑗(𝑚 − 1, 𝑛) + 1       𝑖𝑓min(𝑚, 𝑛) = 0,

𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑠𝑖𝑠𝑗(𝑚, 𝑛 − 1) + 1          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑠𝑖𝑠𝑗(𝑚 − 1, 𝑛 − 1) + 1(𝑠𝑖𝑚≠𝑠𝑗𝑛)          
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where m and n index character positions in two compared strings. 

 

2. Levenshtein ratio, which is normalized Levenshtein distance using the maximum length of each 

string: 

 

𝐿𝑒𝑣𝑅𝑎𝑡𝑖𝑜(𝑠𝑖 , 𝑠𝑗) =
𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑠𝑖𝑠𝑗(|𝑠𝑖|, |𝑠𝑗|)

max (|𝑠𝑖|, |𝑠𝑗|)
 

 

3. Jaro-Winkler, which is a modification of Jaro metric giving higher weight to strings that match 

beginning at a set prefix proportional length: 

 

𝐽𝑎𝑟𝑜𝑊𝑖𝑛𝑘𝑙𝑒𝑟(𝑠𝑖 , 𝑠𝑗) = 𝐽𝑎𝑟𝑜(𝑠𝑖 , 𝑠𝑗) +
𝑙

10
(1 − 𝐽𝑎𝑟𝑜(𝑠𝑖 , 𝑠𝑗)) 

where 

𝐽𝑎𝑟𝑜(𝑠𝑖 , 𝑠𝑗) = {

0             𝑖𝑓 𝑚 = 0,

1

3
(
𝑚

|𝑠𝑖|
+
𝑚

|𝑠𝑗|
+
𝑚 − 𝑡

𝑚
)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

The concepts were subsequently filtered to those that provide an adequate data source capture. That was 

achieved by eliminating the concepts from those ontologies that cover less than half of the data sources 

(either directly or through mapping from the source ontologies) in a given domain. We also removed the 

concepts not used in any data source. Finally, we removed the broad terms that are not likely to 

contribute to a phenotype definition (such as ‘Disorder’ or ‘Family History of Disease’). 

The final set has all code-similar code pairs identified across all techniques. 
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Recommender system  

  

These pairs were used by our recommender system – Phenotype Observed Entity Baseline 

Endorsements (PHOEBE). We created an R Shiny-based application available publicly 

(https://data.ohdsi.org/PHOEBE), which has two parts: initial concept recommender and concept set 

recommender (Figure 10). 

 

 

 

Figure 10. PHOEBE R Shiny application: initial concept and concept set recommender. 

https://data.ohdsi.org/PHOEBE


Chapter 3. Section 2. Code selection and recommender system (PHOEBE) 

 

 

80 

 

In the initial concept tab, a user inputs a string that specifies her clinical idea (such as diabetes mellitus 

type 2) and PHOEBE outputs the best match for a code that represents this clinical idea prioritized based 

on the number of data sources covered and an aggregated frequency of both the code itself and its 

descendants. The user can then use this code with all its descendants as a starting place for developing 

the concept set. 

 

Concept set recommender takes a string of codes (obtained in the previous step) and outputs a set of 

codes divided into the following groups: 

 

- included codes  

- not included codes (ancestor and descendant codes of the codes included in the concept set) 

- recommended codes (recommended through matching in source vocabularies or standard 

vocabularies). 

 

The output is prioritized based on the aggregated frequency to focus decision-making on the concepts 

that provide the largest gain in record count.  

 

Evaluation 

 

For validation, we used an electronic health record data source (CUIMC EHR) and three administrative 

claims data sources (CCMR, MDCD, MDCR) translated to OMOP CDM (Table 1). We selected 

diabetes mellitus type II, diabetes mellitus type I, heart failure and attention deficit hyperactivity 
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disorder (ADHD) – common conditions that were extensively studied in the observational literature and 

for which drug treatment exists. For each of the conditions, PHOEBE was used to create concept sets 

following the steps outlined above.  

 

As a reference, we selected two eMERGE network phenotypes representing the same clinical ideas 

[151]. eMERGE is a national network for high-throughput genetic research that developed and deployed 

numerous electronic phenotype algorithms. Phenotypes have been created by highly qualified 

multidisciplinary teams and often been taking up to 6–8 months to develop and validate. For each 

eMERGE phenotype, we extracted ICD-9(CM) concept sets used in the original implementation and 

translated them to SNOMED-CT concepts [6]. We then created patient cohorts by selecting patients 

with at least one occurrence of a diagnosis code from corresponding concept sets and with at least 365 

days of prior observation to ensure data coverage. For each cohort, we followed patients to look for a 

specific treatment, which included any occurrence of insulin products for type I diabetes mellitus; oral 

antidiabetic drugs (metformin, sulfonylureas, thiazolidinediones, dipeptidyl peptidase IV inhibitors and 

glucagon-like peptide-1 agonists) for type II diabetes mellitus; beta blockers, angiotensin-converting 

enzyme inhibitors and diuretics for heart failure and viloxazine, atomoxetine, amphetamine 

methylphenidate and guanfacine for ADHD [252–255]. 

 

We computed the positive predictive value (PPV) of each phenotype, which was defined as a proportion 

of people with a diagnostic code who also had subsequent treatment with corresponding drugs. 

Additionally, for patients with subsequent treatment identified by both PHOEBE and eMERGE concept 

set-based algorithms, condition index dates (the date a disease was first observed in a patient) were 

extracted and compared. 
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3.1.3 Results 

 

Recommendations  

 

Overall, we generated more than 1.2 million recommendations with on average 3 recommendations per 

a code (interquartile range [IQR] 1-12). Most of the recommendations were generated for conditions, 

drugs (different formulations) and procedures. 

 

Most of the recommendations were within the same domain. For example, for diabetes mellitus type 

PHOEBE recommended SNOMED-CT codes that are relevant to diabetes but are in different places in 

SNOMED-CT hierarchy: “Hyperosmolar coma due to type 1 diabetes mellitus”, “Type 1 diabetes 

mellitus uncontrolled “, “Peripheral circulatory disorder due to type 1 diabetes mellitus”, “Disorder of 

nervous system due to type 1 diabetes mellitus” and other complications. This allows to capture not only 

all ICD-10(CM) and ICD-9(CM) codes mapped to SNOMED-CT but also Read codes and other 

international terminologies. 

 

For diabetes mellitus type II, PHOEBE also recommended complications of diabetes along with broad 

terms such as “Diabetic – poor control”. While the latter concept is broad, it accounts for 833,654 

records in the OHDSI network. Given higher prevalence of type II diabetes compared to type I and high 

utilization of this code, researchers may want to use this code in their phenotype with additional 

restrictions like older age, absence of codes for type I diabetes or others. 
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Cross-domain recommendations were also generated. For example, codes relevant to abscess of 

appendix include various procedures performed on abscess such as LOINC “Guidance for drainage of 

abscess and placement of drainage catheter of Appendix”, ICD-9Proc “Drainage of appendiceal 

abscess” or CPT-4 “Incision and drainage of appendiceal abscess, open”. 

 

Phenotyping pipeline 

 

 

The main utility of PHOEBE lies within recommending lexically and ontologically similar concepts and 

allowing to inspect code sets based on real-world code utilization in the network.  

 

As a result, over the past two years, we participated in the numerous clinical studies where we built 

more than 170 phenotypes for conditions like diabetes type 2, acute kidney failure, chronic obstructive 

pulmonary disease, rheumatoid arthritis, chronic heart failure, venous thrombosis, epilepsy, Guillain-

Barre syndrome and many more [17,19,34].  

 

Since 2020, PHOEBE has been used in eleven major network studies conducted in the OHDSI network, 

both led by us and by other researchers. They include clinical studies such as characterizing patients 

with COVID-19 [18,22,26,27,29,31,35,256,257] or studies of adverse events [23,33] and 

methodological studies such as investigating the sensitivity of background rates (further described in 

Section 3.1) or validation of prediction models [28,258]. PHOEBE is continuously used as a part of 

phenotyping pipeline for developing, evaluating and storing phenotypes (Figure 11) in the new studies 

like Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) for 
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type 2 diabetes mellitus [21]. The studies were published in high-impact journals like BMJ, Nature 

Communications, Lancet Rheumatology, Journal of Asthma, Drug Safety, Rheumatology, BMJ Open 

and others. 

 

Figure 11. OHDSI pipeline for developing, evaluating, and storing phenotypes, including the OHDSI 

informatics tools (PHOEBE, ATLAS, Cohort Diagnostics and Phenotype Library). 

 

Within this pipeline, PHOEBE is used to (a) consistently select a starting code for a code set that 

represent a clinical idea and (b) iterate over until a comprehensive code set is generated. After the logic 

is applied to code sets to create a cohort definition (typically in the OHDSI tool Atlas), the latter can be 

executed against a data source to create a cohort of patients. The aggregated characteristics of the cohort 

are them inspected (Cohort Diagnostics) to assess their plausibility, which can lead to further iterations 

over cohort definitions or code sets to achieve the patient composition that matches a hypothetical 

cohort of patients of interest. 

 

Evaluation 
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While the main benefit of PHOEBE is providing the data to support researchers’ decision making, we 

also formally evaluated its impact on patient selection. 

 

When looking at the cohorts created using the concept sets provided by PHOEBE and used in the 

eMERGE phenotypes, we found that on average PHOEBE identified more patients while preserving 

similar positive predictive value (Table 5). We observed high heterogeneity in the magnitude of patient 

gain among data sources and conditions. For example, for type I diabetes, the algorithm created with 

PHOEBE identified approximately the same set of patients as the algorithm that used well-curated 

concept set from eMERGE. Notably, the cohort of type II diabetes patients created using PHOEBE had 

more than 5 times more patients and had a higher positive predictive value. 

 

Table 5. Comparison of eMERGE and PHOEBE concept set-based algorithms’ performance. 

PPV – positive predictive value. 

 

 

 
 

eMERGE cohort PHOEBE cohort Cohort 

overlap 

Patients 

with 

subsequen

t treatment 

Total PPV Patients 

with 

subsequent 

treatment 

Total PPV  

Diabetes 

mellitus 

type I 

CUIMC 7,599 
 

25,701 
 

0.34 7,659 
 

25,884 
 

0.34 25,635 

MDCD 25,954 
 

191,710 0.13 26,240 194,100 0.13 189,810 

MDCR 19,274 185,874 0.10 18,684 181,712 0.11 179,236 

Diabetes 

mellitus 

type II 

CUIMC 42,200 211,904 0.20 44,828 218,127 0.21 211,903 

MDCD 342,975 
 

1,807,688 0.19 383,435 1,849,177 0.21 1,807,019 

MDCR 105,449 386,265 0.27 804,415 2,172,925 0.37 386,237 

ADHD CUIMC 5,922 29,890 0.20 7,002 35,291 0.20 29,890 
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MDCD 722,485 1,471,559 0.49 809,093 1,657,347 0.49 1,471,542 

MDCR 7,158 17,065 0.42 7,875 18,535 0.43 17,065 

Heart 

Failure 

CUIMC 71,281 162,297 0.44 74,121 168,111 0.44 162,281 

MDCD 332,929 870,080 0.38 342,112 893,807 0.38 869,500 

MDCR 892,689 1,166,980 0.76 919,077 1,204,488 0.76 1,165,900 

 

In general, patient gain was less notable in CUIMC, which can be explained by the fact that eMERGE 

phenotypes were partially developed on CUIMC data. Even when there was no significant difference in 

PPV, PHOEBE’s algorithm identified more patients with subsequent treatment. 

 We obtained similar performance upon repeating the procedure for other randomly selected versions of 

these phenotypes found in the literature. 

 

Aside from evaluating the ability of PHOEBE to identify patients of interest, we also examined 

differences in the index dates (date of first observation of a disease in a data source) for the patients 

identified by both PHOEBE and eMERGE concept set-based algorithms. We observed that PHOEBE 

can identify patients earlier on in the course of the disease (Table 6). 

 

Table 6. Comparison of condition onset date (index date) in patients with different index dates identified 

by both eMERGE and PHOEBE concept set-based algorithms.  

 MDCD MCDR CUIMC 

 Patients, 

n 

Difference in 

days, median 

(IQR) 

Patients, 

n 

Difference in 

days, median 

(IQR) 

Patients, 

n 

Difference in 

days, median 

(IQR) 

Diabetes 

mellitus type I 

2,243 371 (139-

795) 

2,807 407 (176 – 

894) 

206 1,001 (206-

1,915) 
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Diabetes 

mellitus type 

II 

253,728 77 (22-226) 957 122 (13-417) 11,536 189 (28-873) 

ADHD 165,590 201 (59-525) 203 175 (61-318) 1,801 146 (35-532) 

Heart Failure 16,941 49 (3-298) 25,294 107 (6-472) 2,242 78 (6-724) 

 

For example, patients with different disease onset dates, on average, presented with diabetes mellitus 

type I more than two years earlier when using the PHOEBE algorithm in CUIMC and more than one 

year earlier in MDCD and MDCR. This can be explained by multiple patients having unspecified 

diabetes mellitus codes prior to being treated by endocrinologists. This pattern was consistently 

observed in all conditions and data sources, which may reflect that the use of broad non-specific codes 

by clinicians is common in early stages of disease. This finding suggests that the use of concept sets 

consisting of only narrow specific codes may introduce index even misspecification as such codes may 

capture patients not at the first observation of the disease but later on in the course. 

3.1.4 Discussion 

Selecting relevant codes for a phenotype is not a trivial task, especially when conducting a study on 

multiple data sources. Inclusion or exclusion of codes can introduce a significant bias in the study and 

influence study estimates in both directions. 

 

One of the most common approaches is borrowing concept sets from the previously published studies. 

Yet, as widely acknowledged, the performance on one data source does not guarantee similar 

performance on another. For single-center studies, the researchers can get away with leveraging local 

data or expert knowledge to produce concept sets. The former approach was also advertised for 
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organizing data models that do not involve semantic standardization, such as Sentinel or PCORNet 

[162,166]. While expert knowledge is critical in both phenotype development and evaluation, clinicians 

are oftentimes not familiar with the data or code use patterns [248]. While they may tend to extrapolate 

their practices to the other clinicians, real-world patterns of treatment are highly heterogeneous and 

variable [259].  

 

Moreover, for published observational research the choices made for concept sets are rarely described. 

The readers can assess neither how the concept sets were arrived at, nor the implications of the choices 

made. We have no reason to believe that different institutions or individuals have the same approach to 

concept set selection, which means that a concept set, phenotype and, in turn, study results can be 

different when another researcher performs a selection for a given study. Using purely data-driven 

approaches with sufficient performance eliminates variability induced by an individual but provides 

little help when a study needs to be executed in a network. Moreover, the current large-scale initiatives 

that have a potential to impact decision-making are limited to specific domains or conditions and take 

years to develop and implement locally [148,260].  

 

An intermediate between expert-based and data-driven approaches is a data-augmented expert-based 

approach, which uses the data to guide decision-making. There are several studies on describing how the 

data was used to learn the patterns for code use and guide clinicians and informaticians in concept set 

selection [167,169]. While providing important insights, they are limited to a single center or condition 

of interest and do not provide general guidance on how to create a concept set. Moreover, they do not 

describe the process for international networks that use disjoint ontologies to code their data.  
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In this work, we showed how a recommender system can leverage the code usage patterns to provide 

clinicians and informaticians with the data to ground their code selection decisions. While the final 

choice of including or excluding a code in the concept set is left to the researchers’ discretion, having 

the data allows them to inspect included and excluded codes prioritized based on their frequency of use. 

Such an approach, as shown by us here, can reduce measurement error and index event misspecification 

and can be used by the researchers outside of the OHDSI collaborative. 

Having the data from the network also improves speed and scalability. The current recommendations for 

code selection emphasize the need for extensive review of the local coding practices and heavy 

engagement of the data owners [57], which substantially lengthens the initial steps of observational 

studies. PHOEBE partially alleviates this problem by providing the code utilization across different 

institutions and allows to partially standardize and formalize the process. Overall, based on our 

experience, the process of code selection becomes more efficient as all the contributors can assess code 

lists, recommendations and approximate the influence of each code on patient selection instead of 

browsing thousands of codes in the ontologies.  

At the same time, a high demand for efficient code selection and phenotyping, which we observed in the 

network, highlights a need for further automation of the process of code selection. Potentially, patient 

characteristics of the resulting cohort can inform code selection. 

 

3.2.5 Limitations 
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One of the limitations of this work is using only the US data sources for evaluation. As PHOEBE 

leverages data from a large network, it may show better performance on non-US data sources, which is 

yet to be shown. We used specific treatment as a proxy for patients being a true positive case. While 

imperfect, it allows comparing algorithm performance in absence of reliable methods to validate 

phenotypes in administrative claims data. 
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3.3. Impact of phenotype logic design choices on patient characteristics 

 

 

As we observed in the previous sections, concept selection influences on patient selection. Once concept 

sets are defined, the next step that can introduce bias in the study is defining Boolean or temporal logic 

that is applied to the concept set to create an executable algorithm (cohort definition) that, when 

executed against a data source, translates into a cohort of study subjects. Design choices such as the 

order of inclusion and exclusion criteria and the specifics of how the criteria are constructed may 

influence patient selection, study estimates and validity.  

This section focuses on quantifying the variability in translation of one conceptual definition into an 

executable algorithm and examining its impact on patient characteristics. 

We conduct an experiment with 45 OHDSI collaborators, which was set up as a standardized 

implementation of the clinical description from a recent high-impact observational study. We execute all 

implementations and compare them to the master algorithm created together with the original 

investigator and observe high variation (up to 10-fold difference) in cohort size as well as in patient 

baseline characteristics. 

 

3.1.1 Background 

 

 

While it may seem obvious that variations in algorithmic implementations of a clinical idea influence 

patient selection and, potentially, study estimates, there is limited research on the magnitude of this 
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effect. As previously acknowledged, phenotype development is a highly iterative process that, among 

other things, involves modifying inclusion and exclusion criteria to capture patients of interest and, if 

performance is evaluated, optimize sensitivity and specificity [151]. 

Yet, approaches for modifying and testing different combinations of criteria in a systematic and 

reproducible fashion do not exist. Most of the existing clinical literature does not report the details of the 

process and whether more than one combination of inclusion and exclusion criteria was considered. 

Some studies reverse-engineer the rules based on diagnosis and treatment trajectories of already 

established cases [261]. Other create variations of phenotypes that are intended to be sensitive or 

specific and characterize the patients who are identified by either or both phenotypes [169]. 

 

Some (not all) studies report implementing and evaluating more than one version of clinical idea to 

create the best performing phenotype [19,108,262]. As we demonstrated in our brief review of 

observational studies published in top clinical journals, a large number of clinical studies re-use the 

phenotypes from previous literature or chose one phenotype without explicitly specifying why such 

logic and design choices were made [247]. In this way, variability coming from the deviations in 

implementation of clinical idea into an executable algorithm remains unmeasured and underappreciated.  

Moreover, it is unclear if changes in implementation would lead to different point or interval estimates 

and, as the result, would modify the conclusions of the study. 

 

In this study, we aimed to (a) assess how the study design described in a high-quality observational 

research study could be interpreted by multiple teams of independent researchers and (b) quantify the 

impact of the variability of operational logic choices made by those teams on patient characteristics. 
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3.1.2 Methods  

 

 

 

To focus on variability stemming from different logic implementation we chose a paper that thoroughly 

describes a clinical idea and set up an experiment to implement the latter as an executable algorithm. We 

selected the article by Albogami et al. based on its robust methods, clinical relevance, and availability of 

the data source used, as well as the completeness of the study design description in the main body of the 

text and supplemental materials [263]. The study was published in 2021 and investigated an association 

of glucagon-like peptide 1 receptor agonists (GLP-1RA) and chronic lower respiratory disease (CLRD) 

exacerbation in a population with type 2 diabetes mellitus (T2D) and CLRD.  

 

Conceptual definition 

 

The manuscripts’ cohort definition was new adult users of GLP1-RA with diabetes mellitus and chronic 

obstructive lung disorder. This seemingly simple clinical idea had, in fact, multiple sub-criteria. Patients 

have to be at least 17 years old to be adults; GLP1-RA by default is an add-on therapy, so a patient has 

to be on a first-line antidiabetic drug as well; to ensure that a patient has type 2 diabetes they are 

required to have no prior insulin exposure or prior type 1 diabetes mellitus (to exclude type 1), not being 

pregnant (gestational diabetes) and not having conditions requiring corticosteroid treatment (secondary 

diabetes); to ensure that a patient has COPD they should not have cystic fibrosis, lung cancer, 

pulmonary embolism or pulmonary hypertension. 
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Master implementation 

 

Based on the conceptual definition, together with the original author, we constructed a cohort definition 

using the OHDSI tool ATLAS (Figure 12). ATLAS is a web-based application that allows defining 

phenotypes, constructing and executing cohorts against local data source(s), characterizing subjects in a 

cohort and designing and implementing various observational studies [264]. The definition specified the 

entry event upon which a patient enters the cohort (first GLP1-RA exposure in 2007-2017), ten inclusion 

and exclusion criteria and the exit event upon which the patient leaves the cohort (is right-censored). 

Each inclusion and exclusion criterion comprised a start and end date, a duration (for drug exposures), 

one or multiple associated concept sets, a set of Boolean or temporal logic applied to the concept set(s) 

and an order in which the criteria were applied. The master implementation used a list of pre-defined 

concept sets created in collaboration with the original author [265]. 
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Figure 12. Master new GLP1-RA user cohort implementation: entry and exit event and 10 inclusion and 

exclusion criteria. 

 

When creating the master implementation, we also assessed the influence of each individual criterion on 

patient selection when executed against the same data source used in the original study (CCAE, Table 

1). Several criteria, such as not being pregnant on the index date or being older than 17, had negligible 

impact on patient selection as subjects with T2D are likely to be older and, therefore, not pregnant. The 

requirement of the first GLP1-RA exposure within 365 days did not have large influence on patient 

attrition because we initially chose the earliest event in the cohort.   
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Table 7. Criteria used to define master implementation and the number of subjects satisfying each 

individual criterion in the cohort executed against CCAE. 

 Criteria Subjects who satisfied 

the criteria, n (%) 

Cohort 

entry 

First glucagon-like peptide 1 receptor agonists (GLP1-RA) 

exposure in 2005-2017 
570,664 (100%) 

1 Had no GLP1-RA exposure within 365 days prior to the 

index date 
563,245 (98.7%) 

2 Had at least 365 days of prior observation 315,616 (55.3%) 

3 Age > 17 569,757 (99.9%) 

4 Had type 2 diabetes mellitus (T2D) within 365 days prior 

to the index date 
430,080 (75.4%) 

5 Had chronic lower respiratory disorder (CLRD) within 365 

days prior to or on the index date  
44,668 (7.8%) 

6 Had no type 1 diabetes, cystic fibrosis, lung cancer, 

pulmonary embolism, pulmonary hypertension, thyroid 

carcinoma, conditions requiring corticosteroid therapy 

within 365 days prior to the index date 

488,606 (85.7%) 

7 Was not pregnant on the index date 565,877 (99.2%) 

8 Had no insulin exposure within 365 days prior to or on the 

index date 
402,407 (70.5%) 

9 Had no dipeptidyl peptidase-4 (DPP4) inhibitor exposure 

within 365 days prior to or on the index date 
474,365 (83.2%) 

10 Had another T2D drug that started before the index date 

and ended on or after the index date 
320,658 (56.2%) 

 All criteria 6,196 (1.1%) 

 

On the other hand, requiring a prior CLRD diagnosis, at least a year of prior observation and add-on 

antidiabetic therapy had a large impact on patient selection with only 7.8%, 55.3%, and 56.2% of 
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subjects satisfying these criteria, respectively. Requiring no prior insulin exposure eliminated some 

subjects, but the influence of this criteria was limited by the fact that we excluded GLP1-RA and insulin 

combinations from the list of drugs.  

 

Study settings 

 

The experiment was organized as a one-day workshop, which was held as a part of OHDSI 2021 Global 

Symposium on September 13th, 2021. Prior to the Symposium, we invited all OHDSI collaborators to 

participate in the challenge. Fifty-four collaborators met all prerequisites (familiarity with the paper, 

OMOP CDM, Standardized Vocabularies, and OHDSI tools) and were divided into nine groups. 

 

To ensure that the settings represent real-world phenotype development, each group had at least one 

informatician with extensive CDM and ATLAS knowledge and one epidemiologist or clinical expert. 

They were provided with access to an ATLAS instance with an empty cohort definition template. The 

ATLAS instance was pre-populated with the same pre-defined concept sets used in the master 

implementation such that the exercise was focused on the logic of the cohort definitions and not on 

selection of the correct drug and diagnosis codes which in itself is challenging and would introduce 

significant variation. Over the day, each team separately implemented the cohort definition based on 

their interpretation of the paper and the supplementary materials. Groups could define any number of 

criteria in their implementation and apply them in any order. 

 

Data analysis 
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All cohort definitions were subsequently executed against CCAE and compared to the master 

implementation created together with the original author. For each cohort, the number of subjects and 

demographic characteristics (age and sex) at index date were extracted, along with diseases and drugs 

used as recorded in the 365 days prior to the index date. To assess the influence of the design choices on 

patient selection, we calculated the agreement between each cohort created by the participants and the 

master cohort using the Jaccard index [266] defined as the number of subjects included in both cohorts 

divided by the total number of subjects in either cohort. Additionally, we extracted the variables used to 

describe the population in the original study and calculated the standardized difference of means 

between each cohort and the master implementation for each variable [267].  

3.1.3 Results 

 

Comparison of the master implementation and each team’s implementations 

 

On average, each team’s interpretation fully aligned with the master implementation in four out of ten 

inclusion criteria; all teams had at least four criteria deviating from the master implementation. As 

shown in Figure 13, all nine teams fully reproduced two criteria: 1) having 365 days of prior 

observation; and 2) age greater than 17 years at the index date. Two additional criteria were 

implemented correctly by the majority of the 9 teams: 3) no conditions of exclusion within 365 days 

prior (1 of 9 teams implemented this differently), and 4) no insulin exposure (4 of 9 teams implemented 

this differently). 
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Figure 13. Number of deviations per criteria (top) and team (bottom). 

 

Implementations of the criteria requiring complex logic were highly variable. As per the paper, the 

subjects had to have “… at least one inpatient or two outpatient encounters with T2D and CLRD, 
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defined based on the presence of diagnoses or medication dispensing…during the year before index 

date”. There were four different implementations of this criteria, which stemmed from different 

combinations of timing of events, their co-occurrence and combination of individual sub-criteria. 

 

Similarly, the criterion of add-on therapy was implemented in three different ways: (a) having another 

antidiabetic drug on the index date, (b) having an overlapping drug exposure that starts before the index 

date and ends after the index date and (c) having drug exposure with a typical number of days of supply. 

A detailed description of the deviations per each criterion is provided in Appendix 3.1.  

 

Influence of different choices on patient characteristics 

 

We observed high variation in cohort size from having one third of the master implementation patient 

count to having ten times the cohort size (2,159 to 63,619 subjects compared to 6,196 subjects in the 

master implementation). Not surprisingly, the agreement between the master cohort and the teams’ 

implementations also varied greatly (Figure 14).  
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Figure 14. Cohort overlap for each team’s cohort and the master implementation, number of subjects 

and agreement (Jaccard index, %).  

 

Median agreement was 9.4% (interquartile range 15.3-16.2%) and ranged between 0% and 35.4%. 

Similarly, the teams’ implementations differed from each other greatly (median agreement was 10.0% 

and interquartile range 0.0-17.5%). 

 

Patient characteristics 
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The age distribution was similar across all cohorts with 45-64 years old being the major age group 

(Appendix 3.2). The gender distribution was also similar to the master implementation except for 

cohorts of teams 4 and 5 that had a lower proportion of females (58.3% and 57.4% compared to 66.2% 

in master). 

 

 

Figure 15. Difference in patient characteristics between the master implementation and teams’ 

implementations colored based on the absolute standardized difference of means (SDM). White 

indicates SDM<0.1.  
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As shown in Figure 15, the cohort generated from each team’s implementation differed from the master 

implementation by at least two baseline characteristics with a standardized difference of means (SDM) 

>0.1, and the majority of the teams differed by at least five baseline characteristics. The difference was 

especially prominent for chronic lung disease disorder, asthma and prior metformin exposure, which 

corresponded to the largest number of deviations in implementing those criteria. Cohorts were generally 

similar in prevalence of conditions related to T2D such as glaucoma or hypoglycemia. 

 

3.1.4 Discussion 

 

Here, we demonstrated that small nuances in implementation of one clinical idea produce high 

variability even when keeping the other elements constant. We showed that nine inter-disciplinary teams 

(similarly to real-world settings), given the exact same task of implementing a cohort definition based on 

the extensively described clinical idea using consistent development tools and pre-defined concept sets, 

obtained nine different cohort definitions with 52 deviations in total across a set of 10 inclusion and 

exclusion criteria, which resulted in vastly different patient cohorts.  

 

Complex criteria such as type 2 diabetes mellitus and chronic obstructive lung disorder, add-on therapy 

and pregnancy can be defined in multiple ways and, therefore, produce especially high variation.  

In fact, pregnancy can be viewed as a separate phenotype as it has a clear start and end date and can be 

identified based on diagnostic codes, procedure codes and laboratory measurements. Previously 

developed phenotypes vary from a simple diagnostic code-based [268] to a highly complex definitions 

[269] yet are all labeled a pregnancy.  
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As the extent of such variation is underappreciated in the current literature and remained ignored in 

phenotype development and re-use, there is limited research on methods for phenotype reporting that 

would reflect all of the nuances of logic implementation. An example of phenotype libraries that have 

the most extensive yet not standardized reporting is PheKB [166], which contains descriptive documents 

and figures for each phenotype as well as executable KNIME modules for some of the phenotypes. 

The latter require having unified data representation for modules to be executed. More generally, 

understanding, reproducing and re-using phenotyping logic requires knowing the underlying data 

schema so the logic can be applied to the proper tables, columns, and data elements. Otherwise, the step 

of inferring logic must be accompanied by inferring how logic is imposed on the data elements. Having 

a common data model removes this inference step and directly reproduces the logic on data that have 

been standardized to a common format.  

 

In this work, we were able to eliminate this source of variability by using one data instance across all 

implementations as well as by providing the teams with the standardized code sets and analytical tools. 

Nevertheless, the observed variability raises a question of validity of any clinical study that only uses 

one phenotype definition without exploring, examining and comparing other inclusion and exclusion 

criteria combinations. Similarly to reporting sensitivity analyses that examine alternative designs such as  

as-treated or intent-to-treat in effectiveness studies, observational studies should report the process of 

creating phenotype definitions including both code and logic selection. While, ideally, it should be a 

systematic process, more research is needed to establish it. 

 

3.3.5 Limitations 
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There were limitations to the experiment. While the teams were introduced to the study before the 

workshop and found a full day to be sufficient to discuss and implement the definition, the activity was 

limited to eight hours. We ensured that all teams had at least one clinician, bioinformatician and a team 

member who was familiar with the data and tools, but individual level of expertise may have varied. We 

selected one study as it was not feasible to have multiple teams perform multiple studies, but it is 

possible that the experience with this study may not be generalizable to other studies.  
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3.4. Portability of EHR-derived phenotypes to claims data sources3 

 

 

As we observed in the previous aims, algorithms for identifying patients of interest need to account for 

data source heterogeneity stemming from disparate coding practices and populations. If such algorithms 

are intended to be used across a network, they are desired to achieve comparable performance on the 

data sources with different provenance. 

 

Yet, the data sources differ in data cardinality and completeness. For example, administrative claims 

data do not generally contain the necessary information to develop accurate algorithms for disorders that 

require laboratory results. Phenotypes developed for claims are generally based on diagnostic and 

procedural codes, which may lead to decreased sensitivity or specificity.  

 

It is unclear whether it is necessary to develop separate phenotypes for each individual data source (or a 

group of such) as embraced by the networks like i2b2 and Sentinel or if portable “one-size-fits-all” 

phenotypes can be developed to be used across the network. 

 

 

 

 

 

 

3 This section is published in Journal of Biomedical Informatics. The full citation for this publication is Ostropolets A, Reich 

C, Ryan P, Shang N, Hripcsak G, Weng C. Adapting electronic health records-derived phenotypes to claims data: Lessons 

learned in using limited clinical data for phenotyping. Journal of Biomedical Informatics (2020) 
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In this section, I develop EHR-derived phenotyping algorithms that can be portable to claims data 

sources and evaluate them on four US and international data sources. I apply the insights learned in 

previous sections and highlight the influence of data harmonization and concept set standardization on 

phenotype performance and portability.  

 

 

3.4.1 Background 
 

 

Phenotype portability is often limited as the algorithms reflect local patterns and practices [108]. Factors 

that influence portability include data fragmentation across institutions [169], difference in age [199], 

genetic, ethnicity and race [200] distribution across the data sources, and difference in average time of 

observation [270], temporal slicing of data [271] or data provenance [198]. 

 

Previous research looked at the portability of phenotypes for prostatic hyperplasia, asthma, heart failure, 

attention deficit hyperactivity disorder and diabetes, mainly in the eMERGE network [153,163,191,192]. 

Along with the factors mentioned above, these works highlight a common data model as a prerequisite 

for efficient phenotype development as it enables using unified tools and approaches at a cost of 

standardizing the data. Better portability can be achieved by harmonizing the data, using standardized 

terminologies and developing reproducible and standardized pipelines for phenotype development [2]. 

 

Despite some advances, the problem of phenotype portability remains largely unsolved with more in-

depth research needed. Here, we examine the requirements for EHR-derived phenotypes to be portable 

to administrative claims data sources using chronic kidney disorder (CKD) as an example. 
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As CKD is a highly complex disorder that often remains undiagnosed, generating and evaluating 

algorithms for CKD is often a time- and labor-intensive process prone to bias. CKD phenotyping 

depends heavily on the origin of the data as estimation of kidney function is based on laboratory or 

instrumental tests. EHRs can accurately capture the decline in kidney function because is reflected in 

glomerular filtration rate (eGFR) and microalbuminuria level recorded in the EHR [272]. However, such 

detailed information is not gathered in administrative claims data, which limits their ability to support 

clinically accurate algorithms. Because of that limitation, an alternative approach of using diagnostic 

codes to identify patients with CKD has gained popularity. Studies that focused on identifying CKD in 

administrative claims data have been in agreement for the low sensitivity of algorithms that use ICD-9 

codes, ranging from 11% to 32.7% [273–276].  

 

We hypothesize that codes that likely indicate the presence of the disease, i.e., codes for dialysis and 

kidney transplantation, procedures that are exclusively used to treat CKD, can consistently improve 

algorithm performance. In this study, we generate and validate a billing code-based algorithm for CKD 

to test our assertion that the positive predictive value of a CKD phenotype can be improved by adding 

other codes indirectly related to the diagnosis of chronic kidney disorder. Given limited portability of 

existing CKD phenotypes [277], we externally validate our algorithms on different data sources and 

identify the possible data discrepancies and inaccuracies that influence portability.  

 

 

3.4.2 Methods  
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We first replicated a validated eMERGE gold standard EHR-based algorithm for CKD. Its backbone is 

eGFR measurement as an indicator of kidney function. We then adapted the algorithm to generate test 

algorithms intended for administrative claims and compared their performance to that of the gold 

standard.  

Gold standard 

 

The gold standard algorithm was developed and tested on the CUIMC EHR data, and further validated 

by chart review [278]. This algorithm follows the National Kidney Foundation’s (NKF) Kidney Disease 

Outcomes Quality Initiative (KDOQI) CKD staging recommendations and is based on eGFR (G-stage) 

and proteinuria (A-stage) measurements. To calculate eGFR, we extracted the data about age, gender, 

race, serum creatinine measurements and used them in Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation [279].  

 

Although the units of measure are pre-specified in the formulas, the typical units of included measures 

vary in some countries. For each laboratory test, we defined the possible spectrum of units of measure 

(e.g., gram, milligram, international unit, millimole) and created conversion tables to translate them to 

standard units used in the equation (Appendix 3.3). We then calculated A and G stages and excluded the 

patients that experienced a decline in kidney function co-occurring with acute states (acute kidney 

injury). 

 

To define acute kidney injury as well as the other states used in the algorithm (kidney transplantation, 

dialysis, other kidney disorder), we leveraged OHDSI Standardized Vocabularies to extend the original 

expert-reviewed concept sets. For these concept sets to be used across disparate data sets, we leveraged 
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‘Is-a’, ‘Part-of’ (additional SNOMED followed by’, ‘has due to’, ‘has associated procedure’ 

relationships) and ‘Maps to’ relationships stored in the OHDSI Standardized Vocabularies. Instead of 

limiting concepts to a vocabulary, we took the hierarchies of the vocabularies above and followed the 

descendant relationships to cover more granular concepts derived from the ancestors of interest. 

Additionally, we used the crosswalks to the non-standard vocabularies (e.g., ICD-9(CM) and ICD-10).  

 

The algorithm produced several categories of patients: CKD Case (includes end-stage renal disease 

associated with transplant, end-stage renal disease associated on dialysis, CKD stage I-V, CKD Control 

(eGFR indicates no renal failure) and CKD Unknow/Indeterminate (patients with no eGFR or decline in 

kidney function associated with acute disorders). The flowchart for the gold standard can be found in 

Appendix 3.4 and the executable script can be found on GitHub [280].  

Test algorithms  

 

We created four billing code-based test algorithms, from simple to complex: 

 

1.  Patients with at least two occurrences of CKD diagnosis within two years. 

This algorithm represents a typical approach to CKD identification in administrative claims data. This 

algorithm requires patients to have at least two codes from the CKD code set within two years, which is 

the simplest approach as it uses only CKD diagnosis codes and does not leverage any additional 

diagnosis, procedure or device codes. 
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2. Patients with at least one occurrence of CKD, dialysis or kidney transplant, and at least one 

additional occurrence of CKD prior to or after the index date (the date the inclusion criteria are met), 

excluding acute states.  

This algorithm includes patients with the kidney transplantation and a diagnosis of CKD within six 

months before or after transplantation. The algorithm also includes occurrence of kidney dialysis and a 

diagnosis of CKD within six months before or after dialysis, or two occurrences of CKD within a year, 

and excludes patients who experienced an acute state (sepsis, shock) or acute kidney failure within 30 

days prior to the index date.  

 

3. Patients with at least one occurrence of CKD, other kidney disorders, renal impairment, dialysis 

or kidney transplant, with at least one occurrence of CKD prior to or after the index date, excluding 

acute states.  

Additionally, we included renal insufficiency and other renal disorders that might indicate CKD (renal 

disorders in systemic disease, hypertensive renal disease, and diabetic renal disease). This algorithm 

may be viewed as a more complex one, but it is also may be characterized as a more sensitive one as we 

include additional diagnosis codes, which represent conditions that lead to CKD (renal disorders 

associated with hypertension, diabetes mellitus type II and systemic disorders). 

 

4. Patients with end-stage renal disorder (ESRD).  

We also created a narrower cohort that focuses on patients with CKD Stage V. We included patients 

with the kidney transplantation and a diagnosis of ESRD within three months before or after 

transplantation; occurrence of kidney dialysis and a diagnosis of ESRD within three months before or 



Chapter 3. Section 4. EHR-derived phenotype portability 

 

 

112 

after dialysis, or two occurrences of ESRD within a year, excluding patients who experienced an acute 

state (sepsis, shock) or acute kidney failure within 30 days prior to the index date. 

 

Data standardization and harmonization 

 

To make robust phenotypes that will be portable to other data sources we performed measurement and 

unit harmonization. 

First, we identified the possible list of units that were associated with measurements used to calculate 

eGFR. We created a conversion table to standardize the units that may be used with a measurement. For 

example, depending on the provenance of the data and local standards, creatinine can be measured in 

mg/dL or µmol/L. For such cases, we picked one standard unit and converted to others to it to ensure 

that all values have the same scale.  

 

Second, we set an approximate threshold for each measurement to identify extremely low or high 

values; an example of such extreme values can be the height of 100 meters. We then eliminated those 

extreme values since they might have biased kidney function assessment. 

 

Finally, we leveraged OHDSI Standardized Vocabularies to obtain a comprehensive list of concept 

codes for patient identification. As opposed to manual selection of codes, we used SNOMED hierarchy, 

which allowed us to get all relevant codes. As our network study was run on multiple datasets, it was 

crucial to capture clinical codes from disparate source vocabularies (such as CPT4, HCPCS, ICD-

10(CM), ICD-9(CM), etc.). Instead of creating lists of possible codes for each vocabulary, we used 

mappings provided by the OHDSI Standardized Vocabularies to obtain a comprehensive list of codes. 



Chapter 3. Section 4. EHR-derived phenotype portability 

 

 

113 

 

Test algorithm evaluation  

 

For each of the algorithms we used the gold standard identified the number of true positive and false 

positive subjects and calculated PPV defined as true positives/(true positives + false positives) against 

the gold standard. 

 

We executed gold-standard, test algorithms and performed evaluation on four EHR datasets: CUIMC 

EHR, AmbEMR, OncoEMR and DA Germany (Table 1). These datasets were chosen because they 

contained a sufficient number of patients with these diseases and represented diverse settings of clinical 

care (outpatient and inpatient visits as well as primary care visits and specialists’ visits) and countries 

(US and Germany).  

 

 

3.4.3 Results 

 

 

The number of patients identified by the gold standard algorithm varied greatly from 171,948 patients in 

CUIMC EHR to 3,438,251 in AmbEMR. We approximated the prevalence of CKD using the patients 

generated by the gold standard and compared this number to the size of the adult population. The 

prevalence ranged from 1.8% in German ambulatory population to 18.9% in the US oncological 

population (Figure 16). 
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Figure 16. Prevalence of chronic kidney disorder and end-stage renal disorder, % in four datasets. 

 

Comparisons of our test algorithms to the gold standard are provided in Table 8. Compared to the 

algorithm that utilizes diagnosis codes only (algorithm one), test algorithm 2 and 3 identified a 

significantly more patients than a typical diagnosis-based approach while preserving comparable PPV.  

 

Algorithm two was the broadest one and included not only occurrences of CKD as an inclusion 

criterion, but also the generic concept of kidney impairment and other kidney disorders (kidney 

disorders in diabetes mellitus, systemic disorders and hypertension). This allowed the consistent 

performance of the algorithm across disparate datasets with different coding practices. 
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Table 8. Number of patients and positive predictive value (PPV) of the algorithms for CKD compared 

to the gold standard. T – kidney transplant, D – dialysis, SKD – suspicious kidney disorders 

Dataset Two CKD diagnosis 

codes 

CKD or T + CKD 

or D + CKD 

CKD or T +CKD or 

D +CKD or SKD + CKD 

 Patients, n PPV, % Patients, n PPV, % Patients, n PPV, % 

CUIMC EHR 45,444 45.1 64,007 43.7 70,445 41.7 

AmbEMR 687,898 61.3 1,000,555 61.6 1,133,844 61.0 

OncEMR 18,843 52.9 78,868 62.8 79,973 62.8 

DA Germany 52,073 30.3 403,628 26.0 405,511 26.0 

Average  47.4  48.5  47.9 

 

Nevertheless, we still observed database-dependent variability in algorithm performance. For example, 

the performance of all algorithms on the non-US dataset had the lowest sensitivity and PPV supporting 

previously observed low granularity of codes in international data sources. 

 

We also computed PPV for end stage renal disorder across all databases with the average PPV of 33.7% 

(51.8% in CUIMC EHR, 42.6% in OncEMR and 7.2% in AmbEMR). DA Germany dataset did not have 

specific ESRD codes, so our algorithm did not yield any patients on this dataset. Potentially, this 

algorithm can be used to detect the patients with end stage renal disorders, although it requires 

examination of the data to ensure that the dataset contains highly granular codes for ERSD.  

 

 

3.4.4 Discussion 
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As phenotype development and evaluation is labor-intensive and time-consuming process, portable 

phenotypes can be re-used on other data sources and, in this way, facilitate rapid scientific discoveries.  

 

While EHRs are oftentimes viewed as a common development platform for phenotyping, administrative 

claims data sources have been increasingly used due to large sample size and more comprehensive 

capture of all patient’s encounters. 

 

Here, we show that phenotypes developed and validated on EHR data can be portable to claims. We 

have achieved consistent performance on data sources with different country of origin and capturing 

different aspects of care. 

 

It was possible with several critical components being already in place: (a) the data from all data 

partners was standardized to a common data model allowing us to use unified queries, (b) content 

harmonization through the OHDSI Standardized Vocabularies was performed, which enabled use of 

common code sets, (c) gold standard was already created and validated using chart review. 

Even then, we had to standardize the code sets and units to account for data source heterogeneity and 

variable granularity, which reinforces the lessons learned in the previous sections. 

 

Data source standardization and harmonization  

 

Here, similarly to other studies presented in this thesis, we take advantage of a common data model. 
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As OHDSI OMOP CDM was created with an idea of one study fits all, it has been focusing on 

standardizing both the format and the content of the data. Data standardization has to be accompanied by 

appropriate quality assurance procedures, which would enable truly portable phenotypes.  

For example, to be able to create a generalizable phenotype, one should account for the different units of 

measure and adjust the CKD-EPI equation appropriately. Laboratory test data might also be entered 

incorrectly, creating nonsense records. We observed (despite the procedures that were at place at that 

moment) source electronic health record data containing height that was measured in kilograms, ratios, 

percent, or had negative values. Other cases are harder to identify. For example, measurement of 

creatinine in blood or serum has two non-overlapping normal ranges depending on the unit of measure: 

mg/mL or mmol/L. If the source data contain confusing or unspecified measurement units, 

misinterpretation of results and incorrect identification of patients with CKD happens.  

 

To illustrate the importance of addressing these issues, we compared in Figure 17 the performance of the 

algorithms on the source electronic health record data and data that have been processed taking into 

account the issues mentioned below.  
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Figure 17. Overall positive predictive value of the algorithms among four databases, %. 

 

As we can see, the positive predictive value of all algorithms improves after data standardization. 

Other measurement-based phenotypes regardless of the clinical area are also likely to benefit from data 

quality assurance rules that check the values according to a certain threshold and eliminate suspiciously 

high or low values. A set of rules should be established to manipulate the data and change the units to 

the correct ones and drop data that cannot be interpreted.  

An example the project that aims to solve these issues, which we contributed to in the early stages, is an 

ongoing project in the scope of the OMOP THEMIS initiative, which aims to alert the data owners when 

units of measure or values of measurements do not meet expected values [281]. Examples of the errors 

include negative values except for where appropriate or values outside of the normal range, which 

requires creation of manually curated reference sets.  
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Despite the achievements, these issues of data quality in networks are far from being ultimately solved. 

Not only a comprehensive process must be established, but also procedures need to be in place to ensure 

that all sites in the network comply to the standards. 

 

Data source heterogeneity and granularity 

 

Semantic standardization is required to effectively build comprehensive concept sets. An effective 

algorithm should either cover all possible terminologies or, as in the case of OMOP, utilize the single 

standard vocabulary that has relationships to the other vocabularies in a domain. Another approach to 

concept-set creation is pattern-driven: use string search or natural language processing techniques to 

obtain syntactic equivalents for concepts. This approach can only work correctly if concept names have 

the same syntactic patterns across different vocabularies, which is rarely true.  

 

Here, we reinforce a need for comprehensive concept sets for portable phenotypes. 

To illustrate it, we extracted the codes used for CKD from the PheKB phenotype: 126 codes from 

SNOMED, ICD-10, and ICD-9(CM). These codes were hand-picked based on the local CUIMC coding 

practices, so the list does not represent the full spectrum of codes that can be used to code CKD. We also 

used a simple string search with words ‘chronic kidney failure’, ‘chronic kidney disorder’, or ‘CKD’. 

Two hundred fifty-six concepts were retrieved. The list needed manual review or additional NLP 

processing, as it included negations and other modifying attributes (‘At the risk of chronic kidney 

disease’, ‘Chronic kidney disease resolved’). Vocabulary-driven approach using the OHDSI 

Standardized Vocabularies covered 278 concepts for CKD and was reviewed for accuracy by domain 
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specialists. As we added new concepts, we were able to identify more patient records of CKD diagnosis 

codes with the average gain 12  2.3% across test datasets.  

 

Data source granularity has to be accounted for in a similar fashion. 

In our study, we found that some of the instances of chronic or acute kidney failure was partially coded 

as the ICD10 concept N19 “Unspecified kidney failure” of coarse granularity with no further 

clarification in the subsequent patient records. As chronic and acute kidney failure are mutually 

exclusive diagnoses, a more granular code must be inferred based on the patterns of occurrence of 

diagnosis, treatment pathways or other clues. Absence of more granular codes may also lead to inability 

to identify separate stages of CKD, where ESRD is of a particular interest. In this case, records of 

dialysis and kidney transplant can serve as a substitution for ESRD diagnostic codes and can be used to 

partially identify the patients with ESRD. 

 

In this section we can see yet again (as in the previous section) that the specifics of implementation of a 

clinical idea have impact on phenotype performance and patient selection. 

When implementing a clinical idea of chronic kidney failure we added kidney transplant and dialysis 

procedure codes to diagnostic codes as the former are used as the main treatment for CKD [282]. We 

also included codes for kidney transplant because this procedure is known to be associated with CKD. 

These algorithms identified more patients while preserving PPV, which highlights a need for exploration 

of different combinations of inclusion and exclusion criteria when developing a phenotype. 
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3.4.5 Limitations 

 

 

Our work has a number of limitations. First, we performed random record review to ensure that the 

trajectories of the patients identified by our algorithm fit clinically relevant patterns of CKD.  

Second, in the first three algorithms, we treated CKD as a single disorder without specifying a particular 

stage. As end stage renal disorder may be of particular interest in the clinic, we singled it out in the 

fourth algorithm to be able to evaluate its performance separately.  

We did not compute sensitivity and specificity for our algorithms since it is difficult to distinguish 

between false negatives and true negatives accurately in inherently incomplete EHR data. 

 

 

 

 

 

 

 

 

 

 

3.5. Knowledge-enhanced electronic profile review system 
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In the previous chapter, we constructed our CKD phenotypes based on the billing code portion of the 

EHRs and tested them against the measurement-based gold standard that was validated using a 

traditional chart review method. An alternative to this approach, which is using linked EHR-claims 

[198] or linked registry-claims datasets [283], is limited to the rare institutions that have linked data 

sources. Another alternative method of validation applicable to administrative claims is probabilistic 

evaluation [115], which is gaining increased attention but may lack broader traction due to low 

interpretability.  

 

In this section we discuss the pitfalls of manual chart review for phenotype evaluation and propose a 

system for examining structured data elements to determine patient status (Knowledge-Enhanced 

Electronic Profile Review system or KEEPER). We describe its principles, utility and evaluate it on four 

conditions. 

 

3.5.1 Background 

 

 

Phenotyping algorithms or executable algorithms for identifying patients of interest in observational data 

are the backbone of observational research, including comparative effectiveness and safety surveillance, 

drug utilization and patient characterization studies [248]. The validity of inference highly depends on 

accuracy of phenotyping algorithms, which are commonly evaluated using manual chart review. This 
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process is time- and labor-consuming, requires heavy clinician involvement, and remains the bottleneck 

in both data-driven and expert-based phenotyping. 

 

Due to these limitations, it is a common practice not to evaluate newly created phenotypes but to borrow 

phenotypes from the literature relying on their performance metrics [284]. Nevertheless, good 

performance on one data source does not guarantee portability to another, so phenotypes should be re-

evaluated if used in another institution [105,153].  

 

If evaluation is performed, the researchers typically review the charts for a small subset of patients 

identified by the algorithm, classify each patient as true positive or false positive and estimate positive 

predictive value omitting sensitivity and specificity [285,286]. Pre-clinical studies that focus on 

identifying the best-performing algorithms for future studies operate a larger sample size but take 

months [34,287–289], which is not scalable for more than one condition at a time.  

 

As only a small sample is typically reviewed, validation results can suffer from selection bias. Previous 

research showed that the records of those patients who consented to supply their information differed 

from those who did not [290]. Phenotype-guided chart sampling strategies were proposed to mitigate 

this bias. They were shown to reduce variance and improve efficiency [291,292], but were developed for 

a specific condition (outcome-specific) and are not generalizable to other conditions.  

 

Another challenge that undermines the validity of manual chart review is variability in execution.  

Previous studies reported high variability in chart abstraction and review with differences in training, 

high volume of information in health records and chart sparsity being the major contributors [293–295]. 
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If patients are observed in the system regularly, the information volume grows quickly with conflicting 

information found in different places in the chart [296]. For example, preliminary diagnoses can 

propagate forward in the records with no track of the final diagnoses, discordant information can be 

recorded by different providers or notes can refer to earlier observations missing from the chart. On the 

other hand, most of the content in charts is highly redundant and useful information can be buried under 

duplicated notes [97]. 

 

With the advances in data extraction and mining [184,297,298], a growing body of literature uses 

various natural language techniques to overcome the issue of high volume by extracting the diagnosis 

and its severity and comparing the accuracy of extracts to manual chart review [299–304]. While these 

models show high flexibility and adaptability, they have to be developed separately for each condition, 

which limits their scalability. 

 

Finally, chart review is simply not possible on the data sources with no charts such as administrative 

claims or for researchers who do not have access to identified unstructured data. While claims data offer 

more comprehensive patient capture as it tracks patients across all institutions, the inference from them 

can be perceived as inferior to EHR because traditional validation is not performed. One potential 

solution is using linked EHR-claims or registry-claims data sources where the former can act as a gold 

standard [198]. This type of validation is only available in a rather small number of institutions that have 

linked data sources. Alternatively, predictive models have been proposed to generate a probabilistic gold 

standard, use it to assign the probability of being a case to each patient identified by the algorithm and 

compute sensitivity, specificity, positive and negative predictive value [115]. While very promising, it 
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lacks interpretability and subjective transparency, while reviewing charts provide an important ability to 

construct narratives about patients [305]. 

 

We propose that the true patient state is latent in structured data (such as ICD-10 codes) and the latter 

can be used to effectively ascertain patient status for phenotype evaluation. We hypothesize that three 

principles are crucial in this process: (a) organization of the data in the way that mimics a typical clinical 

diagnostic process, 

(b) presentation of only relevant information as opposed to the whole volume of patient structured data 

and (c) standardization of information extraction and representation. We use these principles to design 

and evaluate a scalable chart review alternative: Knowledge-Enhanced Electronic Profile Review system 

(KEEPER). 

 

3.5.2 Methods  

 

 

We will describe Knowledge-Enhanced Electronic Profile Review system (KEEPER), its principles, 

application to four conditions of interest and evaluation. 

 

Principles 

 

1. Adherence to clinical reasoning  
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KEEPER follows general principles and steps of diagnostic clinical reasoning to patient structured data 

within the context of the phenotype being evaluated. For simplicity, the health outcome for which the 

algorithm was developed serves as a diagnosis we are clinically evaluating in a given patient.  

We use elements of diagnostic reasoning to extract and present the data in several categories: clinical 

presentation (complaints, signs, symptoms and physical examination), history (disease history, co-

morbidities, risk factors and exposures), preliminary diagnosis, subsequent diagnostic procedures, 

diagnoses, treatment, follow-up care and complications from structured data and present them in 

accordance with these conceptual elements. 

 

2. Standardization  

 

Both data extraction and representation are standardized across data sources and conditions. 

Standardized extraction is supported by a common data model (in our case, OMOP CDM) and 

standardized representation is tailored to the conceptual elements described above. As the steps of 

clinical reasoning are universal for any condition [306], the structure of data representation is unified 

and, as a result, disease-agnostic.  

 

3. Dimensionality reduction  

 

As the patient data is reviewed for the purpose of phenotype evaluation, we only extract the information 

that is clinically relevant to a given phenotype. We hypothesize that the structured data provides 

sufficient information to ascertain patient status even despite the data loss observed when going from 

unstructured data to structured [307]. 
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Conceptual elements and data elements 

 

KEEPER is built around the conceptual elements representing the typical steps clinicians follow when 

diagnosing a patient, which are contextualized around a disorder of interest for which the phenotyping 

algorithm was developed (Table 9). 

 

The first element is clinical presentation, which consists of patient symptoms, signs, and complaints on 

the day they seek care (day 0 or index date). In clinical practice, physician (or healthcare team) collects 

current complaints, past personal and family history, assesses vital signs, performs physical examination 

and, based on the totality of information, makes a preliminary diagnosis. 

 

For example, in the context of acute appendicitis phenotype, Patient X with suspected acute appendicitis 

(in textbook scenario) presents to the emergency room complaining of epigastric pain migrating to right 

lower quadrant, nausea and vomiting. Physical exam reveals fever, localized tenderness in the right 

lower quadrant and positive Rovsing's sign [308].  

 

On the data level, it translates into condition codes for corresponding signs and symptoms (such as ICD-

10(CM) R11.0 ‘Nausea’) and measurement codes for vital signs (such as high body temperature). As the 

data is already collected and the diagnostic decisions are made, we can observe condition codes for 

acute appendicitis or competing diagnoses such as diverticulitis or renal colic. Observing these data 

elements increases one’s confidence in the diagnosis and observing symptoms typical for other 
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conditions (such as intermittent severe pain that waxes and wanes in renal colic) or competing diagnoses 

decreases one’s confidence. 

 

Table 9. Conceptual elements and data representation in KEEPER. 

Conceptual 

element  

Conceptual element in the context 

of the disease of interest 

Data element 

Clinical 

presentation  

Presence of relevant [known to be 

associated with the outcome] 

symptoms on the encounter (index 

date, day 0) and absence of 

competing symptoms 

Condition codes  

[day 0] 

Clinical plausibility Appropriate demographics Age, gender, race and ethnicity 

[day 0] 

Presence of relevant symptoms, 

diagnoses or treatment prior to the 

index date, especially recurring 

Condition, drug and 

observation codes 

[before day 0] 

Presence of relevant co-morbidities 

and (or) pre-disposing risk factors 

Condition and observation 

codes 

[before day 0] 

Absence of competing diagnoses 

after the index date, especially if 

followed by treatment 

Condition, procedure, 

measurement and drug codes 

[after day 0] 

Diagnostic 

procedures 

Presence of diagnostic procedures, 

laboratory tests, clinical consults 

with other specialties, transfer to 

specific care sites around the index 

date 

Procedure codes 

[before and after day 0] 

Measurement codes and values 

[before and after day 0] 

Provider and location 

[before and after day 0] 

Treatment 

procedures and 

medications 

Presence of relevant instrumental 

and surgical procedures performed 

on or after the index date 

Procedure codes 

[after day 0] 

Presence of relevant medications 

prescribed or administered on or 

after the index date 

Drug codes 

[after day 0] 

Follow-up care and 

complications 

Presence of relevant follow-up visits Provider and location 

[after day 0] 

Presence of relevant complications 

after the index date 

Condition codes 

[after day 0] 
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Another conceptual element is clinical plausibility, which includes specific demographics if a condition 

is known to be prevalent in a given group, history of disease and pre-disposing factors and conditions. 

Within the context of acute appendicitis phenotype, Patient X is more likely to be young [309], does not 

have prior recurrent abdominal symptoms, has never been diagnosed with Crohn’s disease or 

endometriosis. If a condition of interest was chronic or had known risk factors, we would expect to 

observe prior episodes of care or relevant comorbidities. On contrary, observing a differential diagnosis 

recorded after the encounter (such as Crohn’s disease), especially followed by the subsequent treatment 

would decrease our confidence in the diagnosis.  

 

The next conceptual element encompasses diagnostic procedures and laboratory tests. In our clinical 

scenario, Patient X is sent for blood work and diagnostic imaging of the abdomen (ultrasound or 

computer tomography). Diagnostic findings show leukocytosis with a left shift and radiographic signs of 

appendicitis (enlarged appendix with wall thickening or perforated appendicitis). From the data 

perspective, observing these diagnostic procedures along with corresponding laboratory values would 

increase our confidence in the diagnosis. 

 

Treatment procedures and medications are approached in the same way. Subsequent treatment can 

include a short course of antibiotics (e.g., piperacillin-tazobactam or cephalosporins in combination with 

metronidazole), appendectomy within a day or interval appendectomy depending on the stage and local 

care protocols. In our scenario, Patient X undergoes laparoscopic appendectomy and pathologic 

examination of the appendix reveals gangrenous appendicitis. Since the final pathologic diagnosis is 

consistent with acute appendicitis, the clinical case can be concluded.  



Chapter 3. Section 5. Chart review alternative (KEEPER) 

 

 

 

130 

With regard to structured data, pathology and operative reports are oftentimes not available unless 

natural language processing or manual abstraction was used to map unstructured text to structured 

codes. Nevertheless, observing relevant treatment (operative or drug therapy), subsequent care and 

complications in structured data increases one’s confidence in the diagnosis, while observing competing 

treatment (such as colectomy or gastrotomy) decreases it. 

 

Presenting structured data in such a manner helps to construct narratives that facilitate patient 

ascertainment. For example, the first patient in Table 10 (green) is 46 year old male, admitted with 

abdominal pain, enlarged liver and leukocytosis. Clinical presentation is consistent with acute 

appendicitis or umbilical hernia, so the patient is referred to computer tomography of abdomen and is 

treated with a short course of antibiotic. Subsequently, the patient is diagnosed with acute gangrenous 

appendicitis and undergoes appendectomy. In this case, presence of relevant symptoms, diagnostic and 

treatment procedures as well as absence of competing diagnoses after the index date is highly suggestive 

of acute appendicitis. 

 

Another example is the last patient in Table 10 (in red). 70-year-old man presented to the emergency 

department with symptoms suggestive of an acute abdominal problem (acute appendicitis, Barrett's 

esophagus and esophagitis). Given presence of hematemesis (a serious potentially life-threatening acute 

event with clear unambiguous presentation), we can already suspect that this was the main complaint 

and acute appendicitis was likely a rule-out diagnosis. Subsequent diagnostic procedures (presence of 

esophagogastroduodenoscopy for hematemesis and absence of computer tomography for appendicitis) 

and treatment (acid-reducing drugs) likely confirm that this patient did not have acute appendicitis. 



Chapter 3. Section 5. Chart review alternative (KEEPER) 

 

 

 

131 

Finally, the female patient in blue has the elements suggestive of appendicitis (laboratory findings and 

appropriate treatments) but also has the elements indicative of another condition (history of diverticulitis 

and subsequent diagnosis of diverticulitis), so the choice regarding the status of such patient is left to the 

reviewer’s discretion. 
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Table 10. Examples of KEEPER for three patients with suspected acute appendicitis: likely a case (green), likely a control (red) and 

ambiguous (blue). 

Demographics 

and details 

about the visit Presentation  

Prior 

conditions, 

symptoms 

and 

treatment 

Diagnostic 

procedures  Laboratory tests  

Competing 

diagnoses  

Treatment 

procedures and 

medications  Complications  

Male, 46 yo; 

 

Visit: 

emergency 

room followed 

by 

hospitalization 

(3 days) 

 

Abdominal 

pain; Acute 

appendicitis; 

Large liver; 

Umbilical 

hernia without 

obstruction 

AND without 

gangrene 

Abdominal 

pain (day -

71); 

Abdominal 

pain (day -1);  

Computed 

tomography, 

abdomen and 

pelvis; with contrast 

material(s (day 0); 

Leukocytes (abnormal, 

high, day 0); Neutrophils 

(normal, day 0); 

Neutrophils/100 

leukocytes (abnormal, 

high, day 0)  

Appendectomy 

(day 23); 

metronidazole (3 

days) 

Acute 

gangrenous 

appendicitis 

(day 23);  

Acquired 

absence of 

organ (day 23) 

Female, 17 yo;  

 

Visit: 

Hospitalization 

(7 days) 

Abdominal 

pain; 

Appendicitis; 

Diverticulitis 

of colon; 

Fever;  

Diverticulitis 

of colon (day 

-182);  

Computed 

tomography, 

abdomen; with 

contrast material(s); 

Computed 

tomography, pelvis; 

with contrast 

material(s) (day 5); 

Leukocytes (abnormal, 

high, day 0/1/2/5); 

Leukocytes (normal, day 

3/4/6/7); Neutrophils/100 

leukocytes (normal, day 

0/6); Neutrophils/100 

leukocytes (abnormal, 

high, day 1-5) 

Diverticulitis of 

colon (day 20);  

piperacillin and 

tazobactam (5 

days);  

Male, 70 yo; 

 

Visit: 

emergency 

room followed 

by 

hospitalization 

(2 days) 

Acute 

appendicitis; 

Barrett's 

esophagus; 

Esophagitis; 

Gastrointestinal 

hemorrhage; 

Hematemesis; 

Abdominal 

pain (day -

816); 

Esophagitis 

(day -180); 

Esophagogastro- 

duodenoscopy, 

flexible, transoral; 

diagnostic, 

including collection 

of specimen(s) by 

brushing or 

washing, when 

performed (day 0); 

Leukocytes (abnormal, 

high, day -1 and 0); 

Leukocytes (normal, day 

1); Neutrophils (normal, 

day -1); Neutrophils/100 

leukocytes (normal, day -

1) 

Diaphragmatic 

hernia; Barrett's 

esophagus; 

Hematemesis; 

Eosinophilic 

esophagitis; 

Gastrointestinal 

hemorrhage 

pantoprazole (62 

days); famotidine 

(2 days); 

ondansetron (1 

days)  
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Experiment 

 

As a proof of concept, we implemented KEEPER for four conditions and conducted an experiment 

comparing the performance of knowledge-enhanced patient profiles and manual chart review. 

 

We selected four conditions that represent a mix of chronic and acute conditions, rare and prevalent, 

those that are usually managed in inpatient and outpatient settings: acute appendicitis, diabetes mellitus 

type I (DMI), chronic obstructive pulmonary disorder (COPD), and end stage renal disease (ESRD). 

 

Data extraction and gold standard 

 

For each disease, we used eMERGE PheKB phenotypes that were developed and validated on CUIMC 

data [166,310–313]. All phenotypes were specified so the index date (day 0) was set to the date when 

the subjects satisfied all inclusion and exclusion criteria and had a diagnosis code of a corresponding 

condition. Once we executed phenotyping algorithms against CUIMC EHR, we selected a random 

subset of 20 patients for each condition and extracted relevant data elements (similar to the content of 

Table 10) in a semi-automated fashion. 

 

Demographic characteristics and recorded symptoms, signs, and diagnoses on day 0 were extracted from 

OMOP CDM person and condition_occurrence tables respectively without any modification. Relevant 

co-morbidities, disease history (recorded any time before the index date), differential diagnoses and 

complications (any time after the index date) were extracted from condition_occurrence table, where 

selection was guided by the SNOMED-CT hierarchy and refined iteratively based on the distribution of 
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the concepts in CUIMC EHR data. For example, for acute appendicitis we extracted all descendants of 

SNOMED-CT ‘Disorder of abdomen’, ‘Disorder of pelvis’ and ‘Disorder of the genitourinary system’. 

Risk factors such as smoking for COPD were extracted from observation table.  

 

Relevant drugs (recorded any time on or after the index date) were extracted using the joint ATC-

RxNorm hierarchy using grouping terms in ATC (for example, all descendants of ATC ‘Antiinfectives 

for systemic use’ and ‘Alimentary tract and metabolism’ for acute appendicitis) and presented on the 

ingredient level with days supply. 

 

As procedures are a heterogeneous domain in the OHDSI Standardized Vocabularies, we inspected the 

distribution of procedure codes and manually identified relevant codes for each condition based on our 

clinical expertise. Measurements (laboratory tests and vitals recorded before, on and after the index date) 

were extracted in a similar fashion. 

 

The datasets for four conditions were then assembled similarly to Table 10 and saved as flat files. 

Data extraction was performed uniformly for all patients prior to their ascertainment. 

Chart review was performed on full patient medical records by two clinicians separately, labels for each 

patient were compared and iterative chart review continued until all disagreements were resolved.  

 

Review 
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The experiment was conducted by four independent clinicians in two rounds (Figure 18), where two 

clinicians reviewed the patients with suspected acute appendicitis and patients with suspected DM1 and 

the other two – patients with suspected COPD and ESRD.  

 

Figure 18. Overview of the proof of concept experiment design for comparing KEEPER and chart 

review. 

 

We followed two-period, two-sequence crossover design, where two-period refers to two rounds and 

two-sequence refers to the order of studied methods [314]. For each condition, we randomly split the 

patients into two groups of ten, so that during the first round a clinician reviewed the profiles of patients 

1-10 and charts of patients 11-20 and during the second round – profiles of patients 11-20 and charts of 

patients 1-10. There was a minimum of a 7-day wash-out period between rounds. Patients were assigned 

different identifiers to prevent carryover effect.  

Each patient was classified based on the presence of the disease of interest anytime in the patient’s 

history. Additionally, we recorded if the index date identified by the phenotyping algorithm 



Chapter 3. Section 5. Chart review alternative (KEEPER) 

 

 

136 

corresponded to the date the disorder was first observed in clinical settings to assess index event 

misspecification. 

 

Metrics 

 

First, we calculated the proportion of patients classified concordantly by chart review and patient profile 

review (inter-method agreement) separately for each condition and overall. We used Cohen’s kappa 

(chance-corrected agreement) to measure the agreement between patient profiles and charts for each 

condition as well as the overall agreement. 

 

Second, we measured inter-rater agreement between two clinicians to assess if consistency of patient 

ascertainment among reviewers is improved by using standardized patient profiles. As we used fully 

crossed design with the goal of estimating reliability of the ratings from multiple clinicians, Fleiss’s 

kappa was chosen as the metric for the overall agreement and Cohen’s kappa for pairwise comparison 

[315]. The Cochran-Mantel-Haenszel test was used to compare methods across different conditions 

followed by Fisher exact test for pairwise comparisons [316].  

 

Third, we compared accuracy of ascertainment against the gold standard when using full charts and 

patient profiles, where the accuracy was calculated as the proportion of the labels that agree with the 

gold standard. Proportions were compared using the Cochran-Mantel-Haenszel test. 

 

Additionally, we compared the time spent on reviewing patient profiles and charts using the Student’s t-

test and performed qualitative analysis of the discrepancies in case ascertainment. 
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3.5.3 Results 

 

 

Agreement and accuracy  

 

We observed substantial agreement between the results of chart review and patient profile review (Table 

11). Overall, 88.1% of the patients were classified similarly using full chart and KEEPER, which 

corresponded to Cohen’s kappa of 0.71 (95% confidence interval [CI] 0.59 – 0.83). 

 

Table 11. Comparison of chart review and KEEPER: inter-method agreement, inter-rater agreement, 

and accuracy.  

 Inter-method  Inter-rater agreement Accuracy 

 N (%) Kappa 

(95% 

CI) 

Chart, 

n (%) 

Kappa 

(95% 

CI) 

Profile, n 

(%) 

Kappa 

(95% 

CI) 

Chart, 

n (%) 

Profile, 

n (%) 

DM1 32 

(80.0) 

0.58 

(0.34-

0.82) 

14 

(70.0) 

0.40 

(<0.1-

0.78) 

18 (90.0) 0.77 

(0.47-

1.00) 

34 

(85.0) 

35 

(87.5) 

Acute 

appendicitis 

38 

(95.0) 

0.87 

(0.69 -

1.00) 

19 

(95.0) 

0.86 

(0.56 – 

1.00) 

19 (95.0) 0.88 

(0.64-

1.00) 

39 

(97.5) 

39 

(97.5) 

COPD 34 

(85.0) 

0.67 

(0.44-

0.90) 

16 

(80.0) 

0.60 

(0.28-

0.92) 

20 

(100.0) 

 

1.00 

(1.00-

1.00) 

34 

(85.0) 

32 

(80.0) 

ESRD 37 

(92.5) 

0.78 

(0.54-

1.00) 

12 

(60.0) 

-0.1 (-

0.3-0.1) 

15 (75.0) 0.34 (-

0.01-

0.72 

32 

(80.0) 

35 

(87.5) 

Overall 141 

(88.1) 

0.71 

(0.59-

0.83) 

61 

(76.3) 

0.45 

(0.23-

0.67)* 

73 

(91.2) 
 

0.74 

(0.52-

0.96)* 

139 

(86.9) 

141 

(88.1) 

 



Chapter 3. Section 5. Chart review alternative (KEEPER) 

 

 

138 

* indicates Fleiss’s kappa to account for two pairs of reviewers; Cohen’s kappa otherwise 

indicates significant difference between two methods based on Cochran-Mantel-Haenszel test and 

Fisher exact test (alpha = 0.05) 

Kappa ≤ 0 indicates no agreement; 0.01–0.20 - none to slight; 0.21–0.40 – fair; 0.41– 0.60 – 

moderate; 0.61–0.80 – substantial; and 0.81–1.00 – almost perfect agreement

 

 

 

Agreement varied substantially with lowest agreement between two methods for diabetes mellitus type I 

(moderate agreement) and highest agreement for acute appendicitis (almost perfect agreement). Even for 

DMI, KEEPER provided sufficient information to arrive at the same conclusions regarding patient status 

as with using full charts in 80% of the cases. 

 

When comparing inter-rater agreement (agreement in patient ascertainment between two reviewers), we 

observed that KEEPER enabled more consistent review. Clinicians arrived at the same conclusions 

regarding the patients’ status in 91.2% of the cases when using KEEPER compared to 76.3% when 

using full charts. This trend was observed for most of the conditions (diabetes mellitus type I, end stage 

renal disorder and chronic obstructive pulmonary disorder). In acute appendicitis, the reviewers 

achieved similar inter-rater agreement when using charts and using KEEPER. 

 

We observed slightly higher accuracy of patient classification when using KEEPER compared to charts. 

Overall, in 88.1% and 86.9% of cases, respectively, patient classification aligned with the gold standard.  
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In all conditions, accuracy of KEEPER was at least 80% and in three out of four conditions the accuracy 

was higher (albeit non-significant) or similar to the accuracy of full chart review. 

 

Efficiency 

 

The use of KEEPER reduced the time needed for review by more than half in both rounds. On average, 

chart review for 20 patients took 67 minutes (SD = 43) and patient profile review took 30 minutes (SD = 

14, p-value 0.04).  

 

There was a small, albeit non-significant difference in review time in the first round compared to the 

second round for both charts and profiles (charts: mean [SD] = 72.8 [45.6] first round and 61.0 [47.6] 

second round; profiles: 32.3 [14.0] and 28.3 minutes [16.3], respectively). 

 

 

3.5.4 Discussion 

 

 

In this study, we examined application of the clinical reasoning process to structured patient data for 

phenotype evaluation. It has long been posited that crucial information about the patient state, diagnoses 

and symptoms is most fully and accurately recorded in unstructured free-text notes and that only the 

notes can serve as the gold standard in phenotype evaluation.  

Unstructured data offers great opportunity for expression, allowing clinicians to both interpret other 

providers’ narratives and create their own [305]. As a result, multiple endeavors in natural language 
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processing aiming at improving phenotype development and evaluation by capturing this aspect of free 

text were designed and implemented. These approaches remain largely disease-specific, which limits 

their scalability [303,317–319]. 

 

KEEPER mimics this aspect of the chart review process and can complement probabilistic methods for 

phenotype evaluation [115], improving transparency and trustworthiness.  

Representing the data in a standardized format according to the elements of clinical reasoning enables 

sense-making and efficient interpretation. For example, we can construct a narrative about the last 

patient in Table 10 (in red). 70-year-old man presented to the emergency department with symptoms 

suggestive of an acute abdominal problem (acute appendicitis, Barrett's esophagus and esophagitis). 

Given presence of hematemesis (a serious potentially life-threatening acute event with clear 

unambiguous presentation), we can already suspect that this was the main complaint and acute 

appendicitis was likely a rule-out diagnosis. Subsequent diagnostic procedures (presence of 

esophagogastroduodenoscopy for hematemesis and absence of computer tomography for appendicitis) 

and treatment (acid-reducing drugs) likely confirm that this patient did not have acute appendicitis. As 

we see in this experiment, such narratives provide similar level of accuracy compared to the narratives 

constructed based on the full charts. 

 

As the goal is not a comprehensive patient evaluation but rather case adjudication in respect to one 

specific disorder, presenting only relevant information strengthens the narratives. Free-text notes similar 

to structured patient data can contain an overwhelming volume of redundant and oftentimes conflicting 

and inconsistent information, obstructing inference about the patient state [294]. Indeed, we observed 

that contradicting information in different places in the charts was a source of disagreement in patient 
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ascertainment among reviewers. For example, some patients with bronchial obstruction (evaluated for 

COPD) did not have history of asthma in the recent notes, while their earlier records (sometimes going 

back 10 years and more) indicated a diagnosis of asthma, montelukast (a drug almost exclusively used 

for mild and intermittent asthma) and bronchodilator use, which undermined the reliability of the later 

diagnosis of COPD. Finding this information required scrutinizing tens of clinical notes, oftentimes 

duplicated, which lengthened reviews and decreased accuracy [320]. 

 

On contrary, KEEPER represents only relevant data in a structured way, which improves agreement 

between the reviewers. Similarly to our finding, standardized protocols and practices were shown to 

improve inter-rater reliability in the chart abstraction process [321,322].  

Reviewing profiles was substantially faster and the time spent on profile review was relatively consistent 

across the cases and rounds. Therefore, researchers can review more patients with KEEPER, thus 

enabling more reliable estimation in clinical studies. It can be especially useful in patient adjudication 

for safety research where rare outcomes require larger sample sizes [323].  

 

As we observed heterogeneity in performance across different conditions, more research is needed to 

disentangle factors influencing inference from structured data.  

In COPD, the factors that contributed to lower accuracy compared to other conditions included inability 

to (a) easily interpret the results of pulmonary function tests to distinguish COPD from asthma or 

chronic bronchitis and (b) ascertain the cases when no results of pulmonary function tests were 

available. Similar challenges were encountered in full chart review, especially if the results of 

pulmonary functions tests were contradictory or inconclusive. 
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Disagreement in patient ascertainment among reviewers can partially be explained by differences in 

clinical training and expertise and different approaches to chart review. One scenario involved starting 

with the day 0 provided to clinicians and reviewing patient data around the day 0 first, moving 

sequentially along the longitudinal patient record. Another scenario involved starting at the data 

elements that carried the most accurate perceived information (such as pathology reports for acute 

appendicitis or specialty notes associated with laboratory values for the other conditions) and then 

retrospectively reconstructing the case. 

Standardization of data representation in KEEPER partially mitigated this issue leading to higher inter-

rater reliability. 

 

 

KEEPER is efficient if the structured data contain the necessary elements for valid inference. While it is 

likely to be true for prevalent conditions and conditions requiring intensive therapy [324–326], it is 

commonly acknowledged that asymptomatic conditions and some co-morbidities are underrepresented 

in structured data [327]. Similarly, structured data and billing codes are not likely to capture conditions 

associated with privacy concerns [328].  

It is therefore not clear to what extent the performance observed in this study can be replicated on claims 

data sources, especially for those conditions whose diagnosis is heavily measurement-based. In our 

example, sensitivity of KEEPER may be low when attempting to classify patients with COPD or ESRD 

on claims data sources as there are patients who do not receive specific treatment and, therefore, can be 

misclassified as controls.  

 

Future work  
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As we hypothesize that the information presented in a structured way may facilitate decision-making, 

future work includes repeating the experiment with informaticians and epidemiologists with no medical 

training to assess the ability of patient profiles to convey compelling stories about patient state. 

 

Another area of future work includes designing and building an executable package and a user interface 

to disseminate KEEPER and connect it to a larger stack of OHDSI tools. It will allow seamless 

integration of phenotype development, cohort execution, cohort diagnostic and phenotype evaluation. 

For this solution to be scalable, relevant information has to be extracted in an automated disease-

agnostic fashion. There are many works on identifying similar concepts or information, including 

lexical, ontological and data-driven approaches [329–333] to can be leveraged to accomplish this task.  

We will likely adapt or develop a mixed-methods approach that can identify relevant but not necessarily 

semantically similar concept, concepts from different domains (such as laboratory tests relevant to a 

given disease) and clinically meaningful concept pairs (such as diagnosis-differential diagnosis pairs 

[334]). 

 

 

3.5.5 Limitations 

 

 

In this experiment, we showed the performance of KEEPER in CUIMC EHR data. As there may be high 

variability in the available structured data elements in other data sources, the findings may not be 

generalizable to the institutions with higher expected information loss from charts to structured records. 
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We conducted the experiment for four conditions and while these conditions represent a spectrum of 

disorders requiring different levels and settings of care, the results may not be generalizable to other 

conditions. 
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3.6 Chapter summary and lessons learned 

 

  

 

In this chapter we discussed the measurement error in phenotyping in distributed data networks, which is 

one of the bottlenecks in timely and reliable evidence generation. 

We went through each step of expert-based phenotyping starting from concept sets to cohort definitions 

to phenotype evaluation, highlighting a need to make data-driven decisions at each step. 

 

As showed across all sections, the prerequisites for robust and accurate phenotyping in networks are data 

source standardization and content harmonization that enable standardized and scalable processes. 

While there are some advances in building pipelines for seamless data processing that minimizes 

information loss, data harmonization and data quality assessment, more informatics solutions are needed 

for researchers to be able to efficiently determine data source relevance and quality. More solutions are 

needed comprehensive assessment of data plausibility and missingness and scalable incorporation of 

other data types like imaging or genetic data. 

 

Robust and portable phenotypes also require comprehensive concept sets, which must account for data 

source heterogeneity and variability in granularity. Phenotypes with code sets created based on the 

literature or local data instance are more prone to measurement error and index event misspecification. 

Similarly, the choice of inclusion and exclusion criteria and the order of their application influences 

patient selection, and, in turn, may increase measurement error or introduce bias. While we do not have 

a readily available solution for accounting for this variability, we can recommend explicit 

documentation and reporting (ideally in a structured and reproducible form) as well as examination of 
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different combinations of criteria and design choices. Future work can potentially focus on formalizing 

the set of sensitivity experiments that should be conducted to explore these combinations. 

 

Robust phenotypes require efficient and scalable evaluation. Manual chart review is not always possible, 

is variable and time-consuming and probabilistic approaches are very promising yet hard to interpret. As 

we demonstrate, structured data can be used instead to achieve similar accuracy of evaluation, better 

inter-rater reliability, and substantially faster review. Potentially, the patterns we learned in our study 

can inform future work on meaningful examination of aggregated patient data in the cohorts to derive 

overall phenotype performance or estimate measurement error in an automated fashion.
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Chapter 4. Addressing unexposed comparator definition as a source of bias 

 

 

 

In the previous chapter we explored mitigating bias and reducing measurement error in one of the first 

steps in any retrospective observational safety or effectiveness study – identifying the cohort of patients 

of interest. This chapter focuses on mitigating bias in the next step – selection of an unexposed or 

exposed comparator cohort in cohort studies or comparison time in self-controlled case series.  

 

 

 

Selecting an appropriate comparator is challenging. The comparator serves as a proxy for a 

counterfactual of the exposed population — what would have happened to those same individuals had 
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they not been exposed — and any deviation between the comparator and that counterfactual represents a 

potential bias. 

We partially rely on statistical approaches such as propensity score matching to mimic randomized 

assignment of treatment in RCTs and achieve balance in baseline characteristics between the target and 

comparator [335]. Nevertheless, even with appropriate statistical procedures inaccurate comparator 

selection may still lead to selection bias, confounding by indication or severity. 

 

In comparative studies, a common approach is to select an alternative treatment that exhibits the same 

characteristics as the target treatment so that we can assume that both target and comparator treatments 

are administered to similar patients. Such a choice is commonly based on background clinical 

knowledge [68], but there is a lack of research on whether expert-based comparator selection correlates 

with empirical selection and if a standardized approach can be developed to improve consistency and 

reliability. 

Having an unexposed group as the comparator as used in safety surveillance or effectiveness research 

presents even more challenges. The unexposed group generally represents a more heterogeneous 

population and does not have a clear disease onset date or exposure start date and can substantially 

deviate from the exposed group. 

 

This chapter discusses the strategies for defining the unexposed comparator and is organized around 

drug safety surveillance (Section 4.1) and drug effectiveness (Section 4.2) tasks using COVID-19 

vaccines as a case study.  

 



Chapter 4. Unexposed comparator definition as a source of bias 

 

 

149 

First, we develop original methods for background rate estimation and interpretation to be used in 

observed-to-expected analysis common in drug safety surveillance. We conduct a systematic experiment 

on 12 data sources, examining the influence of demographics, time-at-risk and index date choices and 

temporal trends on background rates of 15 adverse events of special interest and provide 

recommendations for their interpretation in the context of design choices. The background rates 

generated in this study were later used by the European Medicines Agency to assess COVID-19 vaccine 

safety for more than 700 million adults. 

 

We discover high sensitivity of the estimates to the choice of database, demographic characteristics of 

population and time-at-risk, as well as to the choice of the index date (anchoring), and proceed by 

investigating the impact of anchoring on baseline patient characteristics for influenza and COVID-19 

vaccines, which appears to influence baseline characteristics both short-term and long-term. We also 

describe original methods to empirically select an appropriate index date or event.  

 

Finally, we assess pre-analysis bias in vaccine effectiveness research. Given mixed reports regarding the  

effectiveness of COVID-19 vaccines during the first two weeks after the first dose, we investigate both 

short-term and long-term COVID-19 vaccine effectiveness. We conduct a cohort study accompanied by 

the chart review to uncover selection bias, health seeking behavior-associated bias and confounding by 

indication and severity. Given our findings, we recommend scrutinizing the data to ensure compared 

groups exhibit similar health seeking behavior and are equally likely to be captured in the data and 

highlight the need for comparative studies when differences in baseline infection rates are present.
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4.1 Assessing bias in defining an unexposed comparator for safety research 

 

 

Observational healthcare data support large-scale medical product safety monitoring by detecting a 

possible rise in the incidence of adverse events following exposure. Drug and vaccine surveillance uses 

a variety of methods from observed-to-expected analysis [336] to traditional case-control, cohort or self-

controlled case series studies [337], where comparator is typically an unexposed group or unexposed 

person time. 

 

For example, in observed-to-expected analysis, rate of adverse events following exposure is compared 

with the background incidence of events occurring naturally in the population not exposed to a drug of 

interest [338]. While there is a substantial body of research on accurate capture of events in the exposed 

population, there is lack of systematic approaches to unexposed comparator definition [339–342]. As the 

unexposed group represents a general population and, therefore, does not have clear inclusion criteria or 

index date, there is a need for systematic evaluation of the parameters of the unexposed group and how 

such parameters influence background rates. 

 

In Section 4.1.1 we conduct a systematic experiment on 12 data sources, examining the influence of 

demographics, time-at-risk choices and temporal trends on background rates of 15 adverse events of 

special interest and provide recommendations for background rates calculation and interpretation. We 

then proceed (Section 4.1.2) with investigating the influence of index date choice on baseline patient 

characteristics for influenza and COVID-19 vaccines.
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4.1.1 Sensitivity of background rates to the choice of unexposed comparator 4 

 

 

4.1.1.1 Background 

 

There is a body of research on accurately inferring observed rates of adverse events from spontaneous 

adverse event reporting systems such as FAERS, VigiBase or EudraVigilance [343–346] or patient 

portals and social media such as DailyStrength, PatientsLikeMe and Twitter [347,348].  

Meanwhile, there is less research on accurate and consistent capture of baseline incidence rates (IRs), 

which  becomes especially challenging for safety monitoring in new patient populations or mass 

preventative measures such as vaccination campaigns [338,349]. For example, the protocols for 

background rates for COVID-19 vaccine safety published by several regulatory bodies differ in data 

sources used, requirements for prior observation periods, index date and outcome definitions [350,351]. 

Recent papers on estimating background rates of adverse events of interest for COVID-19 vaccine also 

used heterogeneous definitions and settings [352–354]. Such discrepancies may result in producing 

different incidence rates and obscure their interpretation. 

 

 

 

 

 

4 This section is published in Frontiers in Pharmacology. The full citation for this publication is Ostropolets A, Li 

X, Makadia R, Rao G, Rijnbeek PR, Duarte-Salles T, et al. Factors Influencing Background Incidence Rate 

Calculation: Systematic Empirical Evaluation Across an International Network of Observational Databases. 

Frontiers in Pharmacology (2022) 
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Lack of a common framework and high variability in approaches for baseline IR calculation results in 

high heterogeneity of IRs in most of the meta-analyses of IRs [355–358]. As baseline IRs directly 

influence the study estimates and conclusions we draw, the current lack of guidance on baseline rate 

calculations may lead to biased inference about vaccine or drug safety. 

 

Several factors have been noted to influence baseline rates, such as age [359–362], sex [362–365], race 

[366–368], patient location [359,365,368,369] and primary healthcare institution [360,362,370,371]. For 

example, the studies reported up to a 10-fold difference in IRs of adverse events in different age groups 

[338], up to a 20-fold difference in IRs across different data sources [362]. Nevertheless, these factors 

have not been studied systematically. 

 

The impact of time-at-risk (TAR) start and duration has not been systematically examined either. In the 

exposed group TAR choice usually based on the pharmacokinetics and pharmacodynamics of the drug. 

On contrary, in background rates TAR is often set to a year and it is not clear if this discrepancy impacts 

study estimates. 

 

Another gap in research is related to the starting point (time zero or index date) used to estimate baseline 

IRs. Most of the studies use an arbitrary calendar date for time-at-risk start, which can be the date 

patients satisfy the inclusion criteria or start of the year for annual IRs. On the other hand, anchoring 

(i.e., indexing) time-at-risk intervals on a healthcare encounter may be more appropriate but is likely to 

be associated with observing more adverse events due to the impact of administered drugs or detection 

bias. 
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As there is insufficient empirical study of factors influencing incidence estimation and the magnitude of 

such influence, we systematically analyze the parameters influencing background rate estimation and 

discuss implications for interpreting incidence rates using the incidence rates for adverse events of 

special interest for COVID-19 vaccines as an example. 

 

 

4.1.1.2 Methods 

 

 

Study design 

 

Our primary research question was: “How does the selection of analysis parameter choices (such as 

target population, anchoring event, time-at-risk, and data source) influence baseline incidence rate 

estimation?” To address it, we identified the choices related to each part of the incidence rate estimation 

(Figure 19) and specified a set experiments to estimate the sensitivity to those parameter choices. 

All parameter choices are described separately below followed by the description of the experiment 

(“Sensitivity experiment”). 
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Figure 19. Baseline incidence rate calculation and its elements in the context of study of sensitivity of 

background rates.  

 

 

Phenotype development 

 

We used 15 outcomes outlined in the “Background Rates of Adverse Events of Special Interest for 

COVID-19 Vaccine Safety Monitoring” protocol published by Food and Drug Administration Center for 

Biologics Evaluation and Research [350]. 
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We followed OHDSI phenotype development and evaluation pipeline described in Chapter 2 to translate 

and expand the phenotype definitions from the above-mentioned protocol to ensure that the clinical 

codes cover US and non-US data sources. This was done through translating the codes to the standard 

representation in the OHDSI Standardized Vocabularies and iteratively expanding the code sets using 

PHOEBE [372]. We also systematically examined each cohort to assess patients’ characteristics such as 

demographics, baseline co-morbidities, drug use, procedures and health utilization using 

CohortDiagnostics [373].  

 

We did not examine phenotypes requiring an inpatient encounter on the outpatient data sources 

(Australia EMR, DA Germany, DA France, ICPI Netherlands). We also excluded the phenotypes that 

did not yield patients on given data sources, as well as age strata less than 55 years for MDCR. Results 

for transverse myelitis in JMDC and narcolepsy in Optum EHR were removed due to failed cohort 

diagnostics. 

 

Target Population 

 

The base population was the patients observed in the database at any time during 2017-2019 with at 

least 365 days of prior observation. The background rates calculated in this base population were 

published in a standalone clinical manuscript to guide decision-making for COVID-19 vaccines [16].  

 

We also selected several subgroups of interest for COVID-19 vaccine based on health state and behavior 

(Figure 19). For patients with a well visit, the latter was defined as a healthcare encounter associated 
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with CPT4 codes representing well visits. A chronic condition visit was defined as a healthcare 

encounter with at least one condition diagnostic code associated with a higher risk of complications as 

defined by CDC. Pregnancy episodes were constructed using a published algorithm [269]. The 

populations were further stratified on age (0–5, 6–17, 18–35, 36–55, 56–64, 65–74, 74–85, > 85), sex 

(male, female) and race (White, Black). Race was extracted from the patients’ electronic health record 

(CUIMC EHR and Optum EHR) or commercial claims (Optum SES) for whom a race field was 

populated. 

 

Time-at-risk 

 

We anchored the time-at-risk on a random date, health care visit, well visit or influenza vaccination, and 

we applied several time-at-risk interval durations (Figure 19). We studied years 2017, 2018, 2019 and 

2020 separately, and we studied seasonal intervals as dates 1/1–3/31, 4/1–6/30, 7/1–9/30 and 10/1–12/31 

in each year. We also compared the COVID-19 pandemic (4/1/2020–9/31/2020), to the same period in 

2019. 

 

Sensitivity experiment 

 

We performed calculations for each combination of outcome, target population and time-at-risk. We 

calculated incidence rate as the ratio of the number of cases to the total person-time the population was 

at risk (from cohort start date to the end of time-at-risk period, occurrence of an outcome or loss to 

follow-up whichever comes first). 
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To make comparisons between the incidence rates observed under different analysis settings, incidence 

rate ratios (IRR) were computed, holding all parameters constant except for the target parameter of 

interest. Comparisons using IRR included: male versus female patients, White versus Black patients, no 

‘at risk’ comorbid condition versus >=1 ‘at risk’ comorbid condition, outcome-specific clean window 

(minimum time between outcome occurrences to be considered separate events) versus no prior events 

as well as comparisons of different years and seasons. For all incidence rate ratios, we conducted 

random-effects model meta-analyses to generate age-adjusted and unadjusted pooled IRRs and 95% 

confidence intervals across data sources using R package metafor version 2.4 [374]. Heterogeneity was 

assessed using the I2 index [375].  

 

Data sources 

 

We conducted the experiment on 12 data sources (Table 1), including sources with different data source 

provenance (administrative claims data, electronic health record data), origin (the US, Australia, 

Germany, France, Japan, the UK), and representing different populations (privately insured employed 

patients in CCAE or patients with limited income in MDCD). 

Detailed descriptions of analysis parameters for each experiment can be found on GitHub [376].  

 

4.1.1.3 Results  

 

 

The number of included patients varied from 252,212 in Australia EMR to 40,955,085 in OPTUM EHR 

with the proportion of female patients from 45.0% in JMDC to 59.5% in CUIMC (Appendix 4.1). The 



Chapter 4. Section 1. Pre-analysis bias in safety research 

 

 

 

158 

data sources covered all age groups except for patients over 75 in CCAE and patients under 65 in 

MDCR with patients aged 35-54 years being the most common group. 

 

As expected, the incidence rates of the outcomes displayed a very wide range. When calculated for all 

age groups, target populations and anchoring events, IRs of outcomes showed more than 100,000-fold 

differences. 

 

Patient characteristics 

 

Age was the main contributor to the heterogeneity, with rates varying by up to a factor of 1,000 across 

age groups within one database (Figure 20). The effect of age was observed consistently across all data 

sources and outcomes, which highlights the extreme sensitivity of the incidence rate estimation to the 

age distribution of the measured population. 
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Figure 20. Incidence rates in age groups in 2017 – 2019 in patients entering on January 1 with a 365-

day time-at-risk and 365 days of pre-entry observation period. Outcomes were arranged by maximum 

incidence per age stratum from the most common to the least common.  

 

For sex, the IRR of incidence rates in males compared to females ranged from 0.76 to 2.17 and was 

statistically significant in 10 of 15 (Appendix 4.2 and 4.3). The direction generally matched the 

literature: transverse myelitis was more common in females, cardiovascular conditions and appendicitis 

were more common in males. For most of the conditions, race did not have a substantial effect on 

incidence rates (Appendix 4.2 and 4.4, range 0.67 to 1.49). Disseminated intravascular coagulation, 

myocarditis, non-hemorrhagic stroke and pulmonary embolism were diagnosed more often in Black 

patients and appendicitis and Guillain-Barre syndrome were diagnosed more often in White patients. 
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Differences of a factor of 10 across databases were common, especially for rare disorders like 

disseminated intravascular coagulation or transverse myelitis. Generally, these disorders had higher 

incidence in the non-US data sources compared to the US data sources. Notably, disseminated 

intravascular coagulation had a higher incidence in Japan. All age-sex population strata showed at least 

40% heterogeneity by I2 in strata- and outcome-specific meta-analyses.  

Patients with chronic conditions had significantly higher rates of all outcomes when compared to the 

group of patients with no chronic conditions (pooled IRR 2.16, 95% CI 1.91 - 2.44). Prior influenza 

vaccination was also associated with higher incidence compared to the general population (pooled IRR 

1.41, 95% CI 1.30 - 1.54, Appendix 4.5 and 4.6).  

 

Time-at-risk 

 

When adjusted for age, anchoring was the second-largest effect, where anchoring on a visit versus 

anchoring on January 1st for a short time-at-risk (2 days) was associated with up to a 100-fold increase in 

incidence (pooled IRR 26.8 (95% CI 21.9-32.8)). The effect was attenuated for longer times at risk 

(Figure 21): for example, IRR for 1-28 days was 1.4 (95% CI 1.3-1.5, Appendix 4.7).  
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Figure 21. Comparison of anchoring on a random visit versus anchoring on January 1st in patients with a 

visit in the next year for time-at-risk 1-28 days, 1-42 days, 1-90 days and 1-365 days, incidence rate 

ratio. 

 

Additionally, we found that when anchoring on a visit, the incidence rates for a 1-365 day time-at-risk 

were lower than in the group of patients with a visit in the next year anchored on January 1st. This may 

be explained by the fact that anchoring on a visit excluded the day of the visit from time-at-risk, while 

time-at-risk for anchoring on January 1st included the days of subsequent visits. Including day 0 in time-

at-risk mitigated this difference (Appendix 4.7).  

 

We observed similar trends for anchoring on a well visit or an influenza vaccination with the pooled 

IRR 1.21 (95% CI 1.11-1.31) and 1.17 (95% CI 1.11-1.22) respectively (Appendix 4.8 - 4.11). Notably, 
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incidence of Guillain-Barre syndrome was significantly increased when anchoring on an influenza 

vaccination and was less influenced by anchoring on a well visit or a random visit. 

Time-at-risk duration influenced incidence only when we anchored on an event. When anchoring on 

January 1st, comparing the time-at-risk for 1 day versus 365 days showed consistently little effect across 

all outcomes with the pooled IRR across databases and outcomes of 1.0 (95% CI 0.93-1.08).  

We observed seasonal trends for anaphylaxis, appendicitis, acute myocardial infarction, strokes and 

Guillain-Barre syndrome (Appendix 4.12 and 4.13). We also found a decrease in IRs in some of the data 

sources in 2020 compared to 2019-2017 (Appendix 4.14 and 4.15).  

 

Incident cases 

 

In this study, we defined incident cases as those that occurred for the first time in a given window. An 

alternative approach – using all patient history to identify incident cases – produced consistently smaller 

incidence rates for all outcomes with the pooled IRR of 0.83 (95% CI 0.79-0.87). Notably, IRRs for 

narcolepsy and Guillain-Barre syndrome were significantly smaller (IRR 0.69 (95% CI 0.65-0.74) and 

IRR 0.59 (95% CI 0.48-0.71) respectively, Appendix 4.16 and 4.17). 

This observation was supported by modestly lower incidence when requiring patients to have prior 

observation (pooled IRR 0.94 (95% CI 0.9 – 0.99)). While this trend was not observed for all outcomes, 

narcolepsy, Guillain-Barre syndrome and myocarditis again were greatly impacted. 
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4.1.1.4 Discussion 

 

 

Accurate estimation of background rates is essential for their use in safety or effectiveness studies. 

Background incidence rates are highly sensitive to demographic characteristics of population, so 

estimation requires age, sex, and potentially other adjustments to reduce bias. Such adjustments would 

best be performed within the same database, but even after that, incidence rates are highly influenced by 

the choice of the time-at-risk start date or event.  

 

When comparing background rates to estimated incidence rates, one must examine if the choice of 

anchoring is compatible between groups. If anchored, short time-at-risk intervals are associated with 

higher incidence, so the choice of time-at-risk requires thoughtful analysis. Similarly, the choice of clean 

window for defining incidence cases results in different incident rates. Finally, the choice of year and 

season may influence rates, albeit the influence is not prominent compared to the other factors. As 

opposed to demographic characteristics, which can be adjusted for in the analysis, these choices must be 

accurately assessed during the study design stage to mitigate potential bias. 

 

We will discuss each of the factors in more detail. 

 

Population at risk: age, sex, race 

 

Age and sex are the key characteristics previously shown to influence IRs [16,359,361,362,377–381]. 

Our study systematically explores them and shows the extreme size of the age effect in all outcomes and 



Chapter 4. Section 1. Pre-analysis bias in safety research 

 

 

 

164 

data sources. Therefore, one must perform age and sex adjustment when comparing background and 

observed rates. 

 

Database effects 

 

The large effect of data source choice is likely a combination of actual population differences—age, sex, 

race, acuity, differences in genetics and environmental exposure—as well as differences in 

measurement, such as collection via administrative claims versus electronic health records. Some data 

sources may be appropriate only for certain conditions due to their population characteristics. For 

example, MDCR contains patients over 65 years old, which makes it a poor choice for studying pediatric 

conditions. Data sources that reflect only some aspects of care (such as outpatient data sources like  

Australia EMR or DA Germany) may yield different rates for conditions that commonly require 

hospitalization. The differences suggest that, where possible, background rates should be calculated in 

the database where the surveillance will be done. Where this is not possible, a broad range of databases 

should be used and, based on a random-effects meta-analysis, prediction intervals should be calculated 

for the incidence rates.  

 

Large effect of anchoring on health encounters 

 

Anchoring was the second most important parameter to be accounted for, at least at the shortest time-at-

risk. Its influence was not quantified before and, surprisingly, was present for both random and well 

visits. 
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When studying background incidence in the context of COVID-19 vaccination (in cohort or self-

controlled studies), estimation of IRs of events following vaccination is anchored on the date of 

vaccination. To appropriately compare it to the background rates, one has to make an assumption of the 

type of encounter that represents the vaccination best. For example, in a wide population that receives 

the vaccine based on availability, a random date may be a good approximation for the date of 

vaccination. On the other hand, vaccination date in patients receiving vaccine upon hospital discharge or 

in nursing homes may represent a strong anchor with the effect like or even greater than anchoring on a 

random visit. This is especially relevant for outcomes like anaphylaxis with short times-at-risk. 

Influenza vaccination may serve as another proxy for COVID-19 vaccination, in terms of defining an 

anchoring event. But the population that receives an influenza vaccine in healthcare institutions may be 

different from those who receive it in pharmacies [382]. It may explain why we observed higher 

incidence of conditions in patients with prior influenza vaccine as vaccination in this case may be 

indicative of co-morbid conditions. 

 

Muted seasonal effect and small annual increase 

 

While previous research emphasized the influence of season on IRs [383], we observed that seasons had 

a minor effect on incidence. The direction of difference we observed generally matched the literature 

[359,384–386]. Temporal trends were moderate: incidence rates slightly increase from 2017 to 2019, 

which may correspond to better diagnosis or changes in coding practices. That agrees with the findings 

in the literature for encephalomyelitis, hemorrhagic stroke, anaphylaxis, narcolepsy, Bell’s palsy 

[362,386–390]. 
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Incident cases 

 

The strategy for selecting a clean window (minimum time between outcomes) consistently influences 

background rates. Lower incidence of chronic conditions or conditions that are likely to occur once 

(such as appendicitis) when using narrow clean windows reflects potential index event misclassification. 

It is possible that such patients are captured later in the course of the disease, which requires thoughtful 

examination of the patient history to determine the true condition start date. 

Using a requirement of prior observation ensures that patients were actively observed in the data source. 

In this study, we found that such a requirement did not produce a difference in IRs when compared to 

the broad population. On the other hand, it potentially reduces index event misclassification as more 

information about the patient is captured. 

 

 

4.1.1.5 Limitations 

 

 

Due to observational nature of the study, the data sources may not have complete capture of patient 

conditions. As the goal of the study was not to establish causality but to estimate sensitivity of incidence 

rates, phenotype measurement error or partial data capture should not influence the results of the study. 

As race is available only in three US data sources, our findings regarding race influence may not be 

generalizable to other data sources or populations. Differences in incidence of adverse events of interest 

in different races may be attributable to differences in healthcare utilization, clinical presentation and 

health state awareness rather than a true difference in incidence. 
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4.1.2 Sensitivity of baseline patient characteristics to the choice of unexposed 

comparator 5 

 

 

4.1.2.1 Background 

 

 

As we observed in the study of background rates of adverse events, patients indexed on an arbitrary date 

had lower incidence of adverse events compared to the same patients indexed on a visit, which 

highlights the importance of index date selection or, as we termed it, anchoring. 

 

In this section, we evaluate two alternative selection procedures for the index date in the unexposed 

group based on how vaccines are administered - coupled or decoupled to another healthcare encounter. 

We compare these approaches for influenza and COVID-19 vaccines and investigate how anchoring 

influences baseline patient characteristics. 

 

We chose influenza vaccine since under the time pressure, as observed in COVID-19 pandemic, we rely 

on the existing scarce body of research to assess vaccine safety and effectiveness, with influenza being 

an important example [18,391,392]. COVID-19 vaccination, nonetheless, differs in scope of 

vaccination, target vaccination groups and spectrum of delivery settings. The target vaccination group 

has shifted from the elderly and those with comorbidities in the early phases of vaccination to everyone 
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including the healthy children [393], with some nations already vaccinating the majority of their 

populations [394].  

COVID-19 vaccines are delivered in a wide variety of settings, from pop-up centers unconnected to 

health care delivery to inpatient facilities on hospital discharge. Other vaccines like those for influenza 

have a different delivery. They are often administered to specific vulnerable populations such as 

pregnant women, patients at high risk of complications or children, and are often administered during 

health care visits [395–397]. 

 

Therefore, the unique properties of COVID-19 vaccination may require adjusting study designs 

previously used for influenza vaccination, specifically the comparator definition.  

 

 

 

 

 

 

 

 

 

 

 

5 This section is published in JMIR Public Health Surveillance. The full citation for this publication is: Ostropolets 

A, Ryan PB, Schuemie MJ, Hripcsak G. Characterizing Anchoring Bias in Vaccine Comparator Selection Due to 

Health Care Utilization With COVID-19 and Influenza: Observational Cohort Study. JMIR Public Health 
Surveillance (2022) 
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3.1.2.2 Methods 

 

 

Study design 

 

We studied two types of vaccination: (a) influenza vaccine administered during 2017 – 2018 and (b) 

COVID-19 vaccine administered during 2020 – 2021. List of the codes used in the study can be found 

on GitHub [398]. 

 

For each vaccine, we mimicked two study designs.  

 

The first design (Figure 22, A) corresponds to a cohort method, where the target group was vaccinated 

patients, and the comparator group was unvaccinated patients. The index date for the target group was 

the date of vaccination; for the comparator it was (a) a date selected from the unvaccinated patient’s 

history (not necessarily with any medical event) such that it matched the index date of one of the target 

group participants or (b) a visit matched to the index date of one of the target group participants. Patients 

in each target and comparator pair were matched on age and sex.  

 

The second design (Figure 22, B) corresponds to a self-controlled design (case-crossover design) [12] 

where the cases were the vaccinated patients indexed (or “anchored”) on the day of vaccination and the 

controls were the same patients indexed on an arbitrary date or a visit within 180-450 days prior to the 

vaccination date. 
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Figure 22. Overview of the study design for investigating the influence of anchoring on baseline patient 

characteristics. 

 

For each group, we extracted patient baseline characteristics (covariates) recorded within five time 

intervals: at the index date (day 0), at the day before the index date (day -1), from 30 to 1 day prior to 

the index date (short term baseline covariates), from 180 to 31 day prior to the index date (medium term 

baseline covariates) and from 450 to 181 day prior to the index date (long term baseline covariates). 

Baseline covariates included all condition, procedure, measurement (laboratory tests and vital signs) and 

drug group codes available in patients’ structured data within a specified time interval. For each 

covariate, we calculated covariate proportion which is the proportion of patients with a covariate 

recorded in their electronic health record within a given time interval along with its standard deviation 
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(SD) for binary variables or an average number with SD for continuous variables (such as number of 

visits). 

 

We then compared the covariates in each target-comparator pair and calculated the standardized 

difference of means. The covariates were said to be balanced if the standardized difference of means 

was less than 0.1 [13-14]. The standardized difference of means for each covariate was then plotted for 

every time interval and target-comparator pair. 

 

Data sources 

 

We conducted the analysis on two electronic health record data sources: CUIMC EHR and Optum EHR 

(Table 1). Data source choice differed from the previous section and were selected based on the 

availability of both vaccines’ data and captured inpatient and ambulatory aspects of care.  

 

 

3.1.2.3 Results 

 

 

Study population 

 

Initial study population included 210,263 and 57,000 patients vaccinated with any COVID-19 in 2020-

2021 and 60,142 and 4,991,051 patients vaccinated with influenza vaccine in 2017-2018 in CUIMC and 

Optum EHR respectively. Proportion of female patients was 62.7% (131,922) and 72.3% (41,204) for 
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COVID-19 vaccinated patients and 61.4% (36,917) and 58.2% (2,906,757) for influenza vaccinated 

patients. Median age was 57 (Interquartile range, IQR = 39-71) and 45 years (IQR = 34-56) for COVID-

19 vaccinated patients and 35 (IQR = 12-63) and 50 years (IQR = 22-66) for influenza vaccinated 

patients. We then matched each vaccinated population to unvaccinated population on the date, age and 

gender so that the distribution of age and gender between each target and comparator group was the 

same. 

 

Table 12 presents the proportion of covariates with the standardized difference of means >0.1 for each 

comparison reflecting on the magnitude of the difference in baseline characteristics between a target and 

comparator. 

 

 

Table 12. Number of covariates (% of covariates with the standardized difference of means >0.1) for 

selected time intervals. 

 Index date (day 0) Long-term (450 to 181 days 

prior to the index date) 

CUIMC Optum EHR CUIMC Optum EHR 

COVID-19 vaccinated patients compared 

to unvaccinated patients indexed on a date  

9,073 

(0.3%) 

15,097 

(<0.1%) 

26,859 

(0.5%) 

51,075 

(0.1%) 

COVID-19 vaccinated patients compared 

to unvaccinated patients indexed on a visit 

18,741 

(2.2%) 

21,739 

(0.5%) 

37,073 

(0.1%) 

50,358 

(0.2%) 

Influenza vaccinated patients compared to 

unvaccinated patients indexed on a date 

12,684 

(3.7%) 

26,809 

(0.1%) 

25,782 

(3.4%) 

55,665 

(0.4%) 

Influenza vaccinated patients compared to 

unvaccinated patients indexed on a visit 

22,816 

(1.4%) 

32,931 

(0.1%) 

34,361 

(1.5%) 

56,387 

(0.2%) 
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Comparison of vaccinated patients and unvaccinated patients indexed on a date or a visit 

 

Influenza vaccinated population 

 

On the index date (day of vaccination = day 0), the influenza vaccinated population had markedly higher 

proportion of most covariates than an arbitrary date in the comparison group (pinning most covariates 

against the X-axis in Figure 23, A and B, yellow). The largest difference in covariate proportions 

between unvaccinated and vaccinated populations on day 0 was observed for inpatient and outpatient 

measurements such as blood count, metabolic panels, blood pressure and basal metabolic index, 

including both presence of measurements and proportion of patients with of abnormal results, meaning 

patients were far more likely to have measurements on the date of vaccination than on an arbitrary date. 

Moreover, influenza vaccinated population had higher covariate proportions even a year prior to the 

vaccination. 
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Figure 23. Baseline covariate proportion in vaccinated and unvaccinated populations on day 0, day -1, 

days -1 to -30, -31 to -180 and -181 to -450 in CUIMC and Optum EHR. Each dot represents a 

covariate; blue – covariate proportion in COVID-19 vaccinated population versus unvaccinated 

population and yellow – in influenza vaccinated population versus unvaccinated population.  

 

In contrast, comparison with unvaccinated population indexed on a visit (Figure 23, C and D) showed a 

smaller difference between covariate proportions in CUIMC and almost no difference in Optum EHR, 

potentially indicating that a visit is a better counterfactual for a vaccination date than an arbitrary date.  
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Covariate proportions in vaccinated patients were closer to the proportions in the unvaccinated 

population indexed on a visit even with a longer lookback period. 

 

COVID-19 vaccinated population 

 

As opposed to the influenza vaccinated population, the difference in covariate proportion between 

COVID-19 vaccinated population and unvaccinated population indexed on an arbitrary date was 

moderate. We observed that COVID-19 vaccination was associated with a visit in 2.7% of patients 

(compared to 1.2% on an arbitrary date). In contrast, 55% of influenza vaccinated population had a visit 

on the date of vaccination (compared to 0.5% of unvaccinated population on an arbitrary date). 

Vaccinated population tend to have higher proportion of covariates prior to  

the index date (looking back a year prior). 

 

When compared to the unvaccinated population indexed on a visit, COVID-19 vaccinated population 

had markedly lower proportion of most covariates. Those vaccinated with COVID-19 vaccine had much 

lower rates of diagnoses of both chronic and acute diseases on the date of vaccination compared to a 

visit in unvaccinated population. The list of conditions included common chronic conditions such as 

hypertension, depressive disorder, asthma, and diabetes mellitus along with acute conditions like 

dyspnea, chest pain and fever. Such a difference points out that an arbitrary date may be a better 

counterfactual for a vaccination date in COVID-19 vaccinated patients. 

 

Comparison of vaccinated patients indexed on the date of vaccination and the same patients 

indexed on a prior date or visit 
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Influenza vaccinated population 

 

 

Here, we compared vaccinated patients indexed on the vaccination date to the same patients indexed on 

a date or visit within a year prior as we would do in a self-controlled study. We observed that the date of 

influenza vaccination tended to have a higher proportion of covariates compared to an arbitrary date 

within a year prior (Figure 24, first column) and even higher compared to an arbitrary visit within a year 

prior. Patients indexed on the date of vaccination were more likely to have antecedent healthcare 

encounters, conditions and laboratory tests within a year prior to the vaccination date than within a year 

prior to their previous visits (Figure 24, C and D). For comparison with an arbitrary date, we observed a 

mixed effect: in Optum EHR, vaccinated patients had more events preceding their vaccination while in 

CUIMC they had fewer events. Nevertheless, in both data sources the difference between covariate 

proportions was larger in magnitude when compared to an arbitrary date than when compared to an 

arbitrary visit. 
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Figure 24. Baseline covariate proportion in vaccinated population indexed on the date of vaccination 

compared to the same population indexed on a prior visit or date on day 0, day -1, days -1 to -30, -31 to -

180 and -181 to -450 in CUIMC and Optum EHR. Each dot represents a covariate; blue – covariate 

proportion in COVID-19 population and yellow – in influenza vaccinated population. 

 

COVID-19 vaccinated population 
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The COVID-19 vaccinated population showed a markedly lower proportion of covariates on the day of 

vaccination compared to a visit or an arbitrary date within a year prior to vaccination. The difference 

was attenuated with a longer lookback period: COVID-19 vaccinated patients had fewer healthcare 

events within a year prior to their vaccination compared to their previous history. We observed mixed 

effect when comparing to a date in the past: some covariates such as exposure to COVID-19, COVID-19 

laboratory tests, vital signs or acetaminophen were present in a higher proportion immediately before 

vaccination. Others like glomerular filtration rate, thyrotropin measurement, urinalysis or 

glomerulonephritis were observed in a lower proportion immediately before the vaccination. 

 

 

3.1.2.4 Discussion 

 

 

As we saw, patient baseline covariates in the unexposed group or time are extremely sensitive to the 

choice of the index date. We found that COVID-19 vaccination and influenza vaccination differ 

drastically from each other, with the proportion of most covariates much higher on the date of 

vaccination in the influenza group than the COVID-19 group. Therefore, study designs previously used 

to assess influenza vaccination must be reassessed for COVID-19 to account for a potentially healthier 

population and lack of medical activity on the day of vaccination. For other medical products, anchoring 

has to be carefully assessed and the index date should be chosen based on the knowledge about 

administration patterns and empirical covariate balance examination as described in this study. 
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Persons vaccinated for influenza appear to have more comorbidities and past procedures and 

measurements than the average population, even after adjusting for age and sex, and persons vaccinated 

for COVID-19 appear to have a lower proportion of most medical covariates than the average 

population after adjusting for age and sex. This may be explained if influenza vaccination is targeted to 

sicker populations on average and if COVID-19 is targeted to the general public, which is healthier on 

average than those in our electronic health records [8,10]. 

 

The drastic effects on day 0—i.e., the day of vaccination and its comparison—are likely related to the 

context in which the vaccination is given. If the comparison is an arbitrary date in the person’s record, 

then influenza vaccination has markedly higher covariate proportions, reflecting the association of the 

vaccination with a healthcare encounter. Moreover, such a trend (not observed for COVID-19 vaccine) 

was present even when comparing the date of influenza vaccination to the prior patient visits. 

 

The abovementioned trends for COVID-19 vaccine were consistently observed in both data sources and 

the differences between the data sources were mainly related to the coding practices. For example, in 

CUIMC data COVID-19 vaccination was not associated with a visit but rather with a patient encounter. 

On contrary, COVID-19 vaccination in Optum EHR was associated with the providers entering 

‘Requires vaccination’ and ‘Vaccine Administration’ in the system along with the codes for the 

vaccines. For influenza vaccination, the observed patterns were also consistent when comparing the 

vaccinated population to the unvaccinated population. When looking at the vaccinated patients 

immediately before the vaccination compared to an arbitrary date in the past the mixed effect observed 

can be attributable to continuous surveillance of such patients in CUIMC, which results in having higher 

healthcare utilization over an extended time period in the past. 
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The first implication of these results is that, when comparing vaccinated to unvaccinated patients or 

time, the anchoring event for unvaccinated comparator must be selected carefully. Previous research 

acknowledged that comparing unexposed and exposed patients in the context of vaccine safety and 

effectiveness surveillance may lead to between-person confounding due to non-comparable groups [16]. 

For example, as noted before for influenza, vaccinated and unvaccinated patients differ in co-morbidity 

prevalence [17]. Nevertheless, even in the same population, the choice of the index date or event 

influences both baseline covariates and incidence rates of conditions following the index date. For 

COVID-19 vaccination, it appears that the comparison should not be purposely anchored on a health 

care visit unless it is a relevant vaccination subgroup (e.g., those vaccinated at hospital discharge).  

 

Adjusting for confounding will be extremely important, as it appears unlikely that a comparison can be 

chosen perfectly, although the comparisons between the same participants looking a year prior led to the 

best equivalency for both influenza and COVID-19. Moreover, the difference in patient characteristics 

require robust selection of covariates for a propensity score model or outcome model as opposed to the 

current exposed vs unexposed COVID-19 vaccine cohort studies, which only use a limited subset of 

covariates in their propensity score model [18]. 

 

Alternatively, this may argue for a self-controlled study design [19], which mitigates the difference in 

patient characteristics. However, this design is also sensitive to anchoring (which is what happens on 

day 0 and around it) and carries other challenges such as accounting for differences in COVID-19 risk 

over time. For example, we observed that the time before vaccination is compared to the time before a 

visit in the past, the former time interval is characterized by higher prevalence of COVID-19 diagnosis 
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and COVID-19 laboratory tests in both data sources as the previous visits mainly had occurred in 2020 

before COVID-19 pandemic started. 

 

This study has implications beyond using covariates for confounding adjustment. The day 0 results have 

direct implications for analyses of acute side effects like anaphylaxis that include day 0 because the side 

effect often occurs immediately. Any study of such short-term effects must directly account for 

anchoring to the context in which the vaccination is given. Furthermore, studies that compare 

effectiveness or safety among vaccines must account for differences in populations and in vaccination 

context. For example, single-dose vaccines may be given preferentially to sicker patients who are unable 

to return for a second dose, such as those being discharged from the hospital. 

 

 

3.1.2.5 Limitations 

 

 

This experiment was performed on two EHR data sources. The findings may not be generalizable to 

other types of data sources or international data sources, so the empirical evaluation of baseline 

covariate balance may have to be performed on those data sources separately. 

While CUIMC EHR is linked to the City and State Registries which ensures complete vaccination 

capture, Optum EHR may lack accurate vaccination status for some of the adults, which indicates that 

the covariate balance showed is only applicable to the captured adults
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4.2. Assessing bias in defining an unexposed comparator for effectiveness research6 

 

 

In previous sections we discovered that defining an unexposed comparator in safety research must 

account for bias arising from anchoring patients on a date or event as well as for heterogeneity stemming 

from selecting a specific study population, temporal window and season. 

This section dives deeper in the bias in vaccine effectiveness studies. We conduct a robust analysis of 

short-term and long-term COVID-19 vaccine effectiveness accompanied by several secondary analyses 

and chart review to discover and attempt to mitigate selection and health-seeking behavior biases as well 

as confounding by severity and indication. 

 

4.2.1 Background 

 

Randomized clinical phase-3 trials have demonstrated high efficacy for the four most commonly used 

COVID-19 vaccines against symptomatic COVID-19 infection, ranging from 66.9% and 70.4% for 

Ad26.COV2.S (Johnson & Johnson–Janssen) and ChAdOx1 (Astrazeneca) to 94.1% and 94.6% for 

BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna) vaccines [399–402]. Their rapid approval 

and widespread use require robust post-marketing studies that leverage large sample size, heterogeneous 

populations, and longer follow-up available in observational data. 

 

 

6 This section is published in BMJ Open. The full citation for this publication is:  

Ostropolets, A., Hripcsak, G. COVID-19 vaccination effectiveness rates by week and sources of bias: a retrospective cohort 

study. British Medical Journal Open (2022) 
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Recent observational studies showed effectiveness similar to the randomized clinical trials (RCTs) 

across the globe, both test-negative and cohort designs [403–410], followed by studies across different 

patient populations, variants and regimens [411–415].  

 

Nevertheless, multiple questions on study validity were raised, including vaccine status misclassification 

[416], matching vaccinated and unvaccinated populations [404] and addressing disease risk factor 

confounding and ascertainment bias [417–419]. 

 

One of such questions is COVID-19 vaccine effectiveness during the first two weeks following the first 

dose. Studies have shown contradicting results for Pfizer–BioNTech vaccine with estimates ranging 

from moderate effectiveness of 52% [401] to very high effectiveness of 92.6% [420]. Similarly, a recent 

study showed an unexplained high effectiveness of Janssen vaccine during week one [421]. Other 

studies simply excluded the first week(s) from the time-at-risk [407,411,422–424].  

Week one lack of effectiveness was suggested as a metric for lack of confounding in the long-term 

vaccine effectiveness studies, but the reasons for high effectiveness and its impact on the validity of the 

conclusions regarding the overall effectiveness remain unclear [407].  

 

Here, we aim to assess underlying bias associated with the use of observational data for short-term 

vaccine effectiveness and its impact on long-term vaccine effectiveness estimates. We employ large-

scale propensity score matching and many negative controls to reduce bias, and leverage a range of 

secondary analyses as well as manual review of the COVID-19 infection cases in week one to examine 

health-seeking behavior of vaccinated and unvaccinated patients. 
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4.2.2 Methods  

 

 

Study design 

 

For our main analysis, we studied two mRNA vaccines (Pfizer-BioNTech or Moderna). The exposed 

group included patients indexed on the first dose of one of the corresponding vaccines with no prior 

COVID-19 infection and no previous exposure to other COVID-19 vaccines (Figure 25). For the 

unexposed group, we selected unvaccinated patients and set their index date to a date that matched the 

index date of one of the exposed group participants. Both the exposed and unexposed groups had at least 

365 days of prior observation and primarily resided in New York City according to their zip code. 

Patients who did not reside in New York were excluded from the study to ensure reliable vaccination 

data capture. 

 

Outcomes of interest included a) COVID-19 infection defined as a positive COVID-19 test (reverse-

transcriptase–polymerase-chain-reaction assay) or a diagnostic code of COVID-19 and b) COVID-19 

hospitalization defined as an inpatient visit associated with a COVID-19 positive test or diagnosis within 

30 days prior or during the visit. Upon further examination of the results, we added two other outcomes: 

a) COVID-19 positive test only and b) COVID-19 hospitalization associated with a positive COVID-19 

test [425]. 
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Figure 25. Overview of the design of the retrospective cohort COVID-19 vaccine effectiveness study. 

 

 

We calculated vaccine effectiveness during six consecutive 7-day intervals after the first dose. Within 

each interval, patients were followed-up until an outcome, end of the period or death, whichever came 

earlier. Additionally, given the results for vaccine effectiveness during week one following the first 

dose, we conducted chart review for patients with a COVID-19 positive test recorded in the 

abovementioned period. We reviewed all cases for the vaccinated population as well a random sample of 

the cases in the unvaccinated population and extracted main complaint, COVID-19 history, including 
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symptoms (fever, shortness of breath, sore throat, cough etc.), severity, time from the first symptom to 

encounter and COVID-19 exposure.  

 

Secondary analyses 

 

We also conducted a set of secondary analyses to examine potential biases. First, given that the 

published studies focused on patients without prior COVID-19 infection, we studied all eligible patients 

regardless of their previous COVID-19 status. 

 

As the strategy for unvaccinated group index date selection (anchoring) has been reported to influence 

incidence of outcomes and baseline characteristics [10,11], we additionally tested unexposed patients 

indexed on a healthcare encounter matching the index date of one of the exposed group participants 

within 3 days corridor, with at least 365 days of prior observation located at New York. 

 

Finally, we assessed vaccine effectiveness in patients with at least one dose of a COVID-19 vaccine and 

in fully vaccinated patients over all available follow-up to compare the estimates to the results of the 

RCTs. The latter was defined as 14 days after the second dose of Pfizer-BioNTech or Moderna vaccines 

or first dose of Janssen vaccine. For each comparison we estimated hazard ratios (HRs) and constructed 

Kaplan-Meier plots as described below. 

 

Statistical methods 
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For each analysis, we fitted a lasso regression model to calculate propensity score and match patients in 

each exposed and unexposed group with 1:1 ratio. For large-scale propensity score model we used all 

demographic information, index year and month, as well as the number of visits, condition and drug 

groups, procedures, device exposures, laboratory and instrumental tests and other observations over long 

(prior year) and short-term period (prior month) [207,212]. 

For each outcome, we fitted a Cox proportional hazards models to estimate HRs and constructed 

Kaplan-Meier plots. Empirical calibration based on the negative control outcomes was used to identify 

and minimize any potential residual confounding by calibrating HRs and 95% confidence intervals (CIs) 

[139,204]. Vaccine effectiveness was calculated as 100% × (1−hazard ratio). 

 

Diagnostics 

We used multiple sources of diagnostics to estimate potential bias following best practices for evidence 

generation [74]. First, we examined covariate and propensity score balance prior to proceeding with 

outcome modelling and effect estimation to ensure that we have enough sample size and to control for 

potential observed confounding [74]. We plotted propensity scores to investigate the overlap in patient 

populations at the baseline and examined the balance of all baseline characteristics to determine if the 

exposed and unexposed cohorts were imbalanced at the baseline and after propensity score matching. 

Exposed and unexposed cohorts were said to be balanced if the standardized difference of means of all 

covariates after propensity score matching was less than 0.1 [267].  

For negative control calibration, we used 93 negative controls (Appendix 4.18) with no known causal 

relationship with the COVID-19 vaccines . Negative controls were selected based on a review of 
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existing literature, product labels and spontaneous reports and were reviewed by clinicians [426]. We 

assessed residual bias from the negative control estimates. 

We used CUIMC EHR (Table 1), which has an ongoing automated connection to New York City and 

State public health department vaccine registries and includes all within-state vaccinations for our 

population.  

 

 

4.2.3 Results 

 

 

Patient characteristics 

 

In total, we identified 179,666 patients with at least one dose of COVID-19 vaccine in January-May 

2021: 121,771 patients for Pfizer-BioNTech, 52,728 for Moderna and 5,167 for Janssen (Table 13). 

 

The sample included patients from all age groups, with or without co-morbidities captured in inpatient 

and outpatient settings. 

We observed that unexposed patients (Table 13) were on average younger and had fewer co-morbidities 

and less exposure to various drugs prior to matching. We were able to achieve balance on all covariates 

(up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score 

matching. Appendix 4.19 presents the covariate balance and propensity score balance plots showing that 

anchoring unvaccinated patients on a date allowed us to achieve better balance compared to anchoring 

patients on a visit. 
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Table 13. Patient baseline characteristics for patients with at least one dose of a COVID-19 vaccine and the unexposed patients, 

before and after propensity score matching. 

  Before matching After matching 

 Characteristic Vaccinated Unvaccinated Std. diff Vaccinated Unvaccinated  Std. diff 

Pfizer-BioNTech COVID-19 vaccine 

Patients, n 121,771 164,997   101,109 101,111   

Follow-up, days. Median (IQR) 107 (80 – 137) 104 (71-137)   107 (78-149) 107 (79-140)   

COVID-19 diagnosis or positive COVID-

19 test, n 

   822 1355  

Positive COVID-19 test, n    231 786  

Age group, % 

10-19 4.2 10.8 -0.25 4.8 4.3 0.02 

20-49 37.2 42.6 -0.11 40.3 40.1 0 

50-64 23.9 20.3 0.09 23.6 23.7 0 

65-74 18.8 12.6 0.17 15.8 16.6 -0.02 

75-84 11.3 8.9 0.08 10.6 10.7 0 

>84 4.1 3.8 0.02 4.2 4.1 0.01 

Gender, % 

Female 63.7 57.8 0.12 61.4 62 -0.01 

Race, % 

 race = Asian 3.8 2.6 0.07 3.5 3.4 0.01 

 race = Black or African American 12.4 14.2 -0.05 12.6 12.2 0.01 

 race = White 40.5 35.1 0.11 39.3 39.5 0 

Medical history, %  

Chronic liver disease 0.6 0.6 0 0.5 0.5 0 

Chronic obstructive lung disease 1.3 1 0.02 1 1 0.01 

Dementia 1.2 1.1 0 1.1 1 0.01 

Depressive disorder 5.3 4 0.06 4 3.7 0.02 

Diabetes mellitus 7.1 5.2 0.08 5.7 5.4 0.01 
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Human immunodeficiency virus infection 1.4 1.1 0.03 1.1 1 0 

Hyperlipidemia 12.9 8.1 0.16 10.2 9.5 0.02 

Hypertensive disorder* 16 11.3 0.14 13.1 12.2 0.03 

Obesity 5.1 4.9 0.01 4.4 4.1 0.02 

Osteoarthritis 7.3 4.7 0.11 5.8 5.3 0.02 

Renal impairment** 3.7 3 0.04 2.9 2.7 0.01 

Cerebrovascular disease 1.7 1.4 0.02 1.5 1.4 0.01 

Heart disease*** 8.6 7.1 0.06 7.5 7.1 0.02 

Malignant neoplastic disease 5.3 4.5 0.04 4.7 4.3 0.02 

Charlson comorbidity index, mean (SD) 1.75 (3.18) 1.69 (3.09) -0.01 1.70 (3.11) 1.63 (3.03) -0.01 

Influenza vaccination within a year prior 10.9 7.9 0.10 7.5 6.9 0.02 

Moderna COVID-19 vaccine 

Patients, n 52,728 148,795   50,517 50,517   

Follow-up, days. Median (IQR) 127 (102 – 153) 123 (99-153)   126 (101- 153) 126 (102-153)   

COVID-19 diagnosis or positive COVID-

19 test, n 

   382 786  

Positive COVID-19 test, n    94 447  

Age group, % 

10-19 0.5 1.7 -0.12 0.5 0.4 0.01 

20-49 35.7 45.7 -0.20 36.9 37.4 -0.01 

50-64 21.2 23.3 -0.05 21.7 21.4 0.01 

65-74 21.3 14.4 0.18 20.6 20.5 0.00 

75-84 15.4 10 0.16 14.6 14.6 0.00 

>84 5.8 4.8 0.04 5.6 5.6 0.00 

Gender, % 

Female 64.4 58.7 0.12 64.2 64.7 -0.01 

Race, % 

race = Asian 4.2 2.8 0.07 4.2 4.4 -0.01 

race = Black or African American 8.7 14.2 -0.17 9 8.4 0.02 
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race = White 48.3 34.4 0.29 46.9 47.9 -0.02 

Medical history, % 

Chronic liver disease 0.5 0.6 -0.02 0.5 0.5 0 

Chronic obstructive lung disease 1.4 1.1 0.02 1.2 1.2 0 

Dementia 1 1.2 -0.02 1 0.9 0.01 

Depressive disorder 4.7 3.9 0.04 4.2 4 0.01 

Diabetes mellitus 6.6 5.6 0.04 6.2 5.8 0.02 

Human immunodeficiency virus infection 0.9 1.2 -0.03 0.8 0.8 0 

Hyperlipidemia 14.9 8.9 0.19 13 12.6 0.01 

Hypertensive disorder 16 12.4 0.1 14.7 13.9 0.02 

Obesity 4 4.4 -0.02 3.8 3.6 0.01 

Osteoarthritis 7.7 5.3 0.1 6.8 6.5 0.01 

Renal impairment 3.5 3.3 0.01 3.3 3 0.01 

Cerebrovascular disease 2.2 1.6 0.05 2 1.8 0.02 

Heart disease 10.1 7.6 0.09 9.2 8.7 0.02 

Malignant neoplastic disease 6.5 5 0.07 5.9 5.5 0.02 

Charlson comorbidity index, mean (SD) 1.62 (2.81) 1.62 (3.00) 0.00 1.59 (2.80) 1.59 (2.99) 0.00 

Influenza vaccination within a year prior 8.4 6.3 0.08 7.2 6.8 0.02 

Janssen COVID-19 vaccine 

Patients, n 5,167 52,643   5,031 5,031   

Follow-up, days. Median (IQR) 79 (72-95) 79 (72-95)   79 (72-95) 79 (72-95)   

COVID-19 diagnosis or positive COVID-

19 test, n 

   31 37  

Positive COVID-19 test, n    8 16  

Age group, % 

10-19 0.8 0.8 0.00 0.8 0.8 0.00 

20-49 43.9 43 0.02 44.2 43.9 0.01 

50-64 31.7 31.7 0.00 31.8 31.3 0.01 

65-74 11.6 12.2 -0.02 11.5 12 -0.02 
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75-84 7.6 7.9 -0.01 7.2 7.9 -0.03 

>84 4.3 4.3 0.00 4.2 4 0.01 

Gender, % 

Female 63.4 63.2 0.01 63.5 61.1 0.05 

Race, % 

race = Asian 3.6 1.7 0.12 3.7 3.6 0.01 

race = Black or African American 15.9 15.5 0.01 15.7 15.5 0 

race = White 37.4 35.7 0.03 37.4 37.5 0 

Medical history, % 

Chronic liver disease 1.1 0.7 0.05 1 1.2 -0.02 

Chronic obstructive lung disease 2.4 1.3 0.09 2 2.2 -0.01 

Dementia 2.6 1.1 0.11 2.2 2.2 0 

Depressive disorder 8 4.8 0.13 7.1 8 -0.03 

Diabetes mellitus 10.3 6.2 0.15 9.5 10.2 -0.02 

Human immunodeficiency virus infection 1.7 1.4 0.02 1.6 1.8 -0.01 

Hyperlipidemia 14.3 10.2 0.13 13.4 14.3 -0.03 

Hypertensive disorder 21.4 13.8 0.2 20.1 21.7 -0.04 

Obesity 7.3 5.9 0.06 6.8 7.8 -0.04 

Osteoarthritis 8.4 6.2 0.08 7.8 8.8 -0.04 

Renal impairment 6.6 3.3 0.15 5.3 5.9 -0.02 

Cerebrovascular disease 2.7 1.7 0.07 2.3 2.4 -0.01 

Heart disease 11.8 8 0.13 10.3 11.7 -0.04 

Malignant neoplastic disease 5 4.9 0 4.8 5.2 -0.02 

Charlson comorbidity index, mean (SD) 1.84 (3.34) 1.55 (2.96) -0.07 1.56 (3.04) 1.43 (2.79) -0.03 

Influenza vaccination within a year prior 12.5 8.0 0.15 10.1 11.4 -0.04 

 

* Hypertensive disorder includes primary and secondary hypertension 

** Renal impairment includes acute and chronic renal failure (prerenal and renal); 

*** Heart disease includes cardiac arrythmias, heart valve disorders, coronary arteriosclerosis, heart failure, etc.
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Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared 

to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On 

average, the latter group was older, had more patients with race recorded as Black, and had more co-

morbidities such as diabetes mellitus or hypertensive disorder. 

 

When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with 

at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 

doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 

patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations. 

 

Within our database, Moderna was administered early on with a peak in January 2021 (Figure 26), while 

Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with 

Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of 

post-observation.  
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Figure 26. Distribution of vaccination month for COVID-19 vaccines. Black dots represent the number 

of incident COVID-19 cases (defined as a positive test) in each month. 

 

 

Main week-by-week effectiveness analysis 

 

Figure 27 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one 

dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). 

Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.  

 

While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against 

COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we 
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observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 

approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-

19-associated hospitalization. 

 

 

Figure 27. Effectiveness of Pfizer-BioNTech and Moderna vaccines over six 7-day intervals after 1st 

dose, % and 95% CI for COVID-19 infection and COVID-19 hospitalization.  

 

 

We then looked at the week one COVID-19 infection cases to explain high effectiveness (Figure 28). A 

chart review of week one positive COVID-19 tests revealed a high proportion of unvaccinated patients 

seeking care related to COVID-19 symptoms or COVID-19 exposure (85% in total) compared to only 

69% of vaccinated patients. Initial healthcare encounters in vaccinated population were oftentimes 

related to other medical reasons such as co-morbid conditions or surgeries (39% compared to 21% in 
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unvaccinated population, Appendix 4.20). Moreover, an observed gap between symptom onset and an 

initial healthcare encounter was more pronounced in the vaccinated cohort as the patients attributed their 

symptoms to temporal vaccine side effects as opposed to COVID-19 infection.  
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Figure 28. Chart review of COVID-19 cases (defined as a positive COVID-19 test) during week one, 

vaccinated and unvaccinated patients, main complaint on initial encounter (top) and COVID-19 

symptom severity (bottom). 

 

When looking at the severity of COVID-19 symptoms at the initial encounter during week one after the 

index date, we observed that the unvaccinated cohort had a higher proportion of asymptomatic cases 

(39% compared to 11%) while the vaccinated population had more severe or mild cases (34% and 48% 

respectively). 

 

Secondary analysis 

 

As cohort analysis allows us to construct Kaplan-Meier curves to assess effectiveness over time, we also 

looked at the effectiveness during the year after the first dose (Appendix 4.21-4.23). We observed 

similar trends with all three vaccines being less effective during the first month after the first dose. After 

that, Pfizer-BioNTech and Moderna were highly effective against both COVID-19 infection and 

COVID-19 associated hospitalization, while Janssen vaccine exhibited a wide range of effectiveness 

(Appendix 4.24). 

 

The results for fully vaccinated patients with time-at-risk starting at the full vaccination matched the 

results of the clinical trials for corresponding vaccines (detailed estimates are provided in Appendix 4.25 

and 4.26). 
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Our initial design included a positive COVID-19 test or a diagnostic code as an outcome. Upon further 

case examination, we discovered that COVID-19 diagnostic codes in the CUIMC data were partially 

assigned to the patients with negative COVID-19 tests on or immediately following the date of 

diagnosis. In that case, ICD-10(CM) code U07.1 “Disease caused by Severe acute respiratory syndrome 

coronavirus 2” was entered in the system for billing purposes (COVID-19 molecular or antibody tests) 

or for COVID-19 sequelae. We, therefore, focused on positive COVID-19 test only for our primary 

outcome, which led to higher effectiveness for all vaccines compared to using both positive test and 

diagnosis.  

 

Finally, exclusion of patients with prior COVID-19 infection in our main analysis resulted in higher 

effectiveness. Inclusion of patients regardless of their prior COVID-19 status led to a small decrease in 

observed effectiveness (Appendix 4.27) for both COVID-19 infection and hospitalization in patients 

vaccinated with Moderna or Janssen. 

 

 

4.2.4 Discussion 

 

 

In this retrospective cohort study, we examined the effectiveness of COVID-19 mRNA vaccines over 

six 7-day intervals after the first dose. We scrutinized the effectiveness of the mRNA vaccines following 

the first dose and confirmed the findings of moderate vaccine effectiveness during the first two weeks. 

For week one following the first dose we discovered previously uncaptured differential biases in 

vaccinated and unvaccinated populations resulting in high vaccine effectiveness. Other researchers 
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suggested that the difference between vaccinated and unvaccinated groups can be mitigated by adjusting 

for previous healthcare utilization such as number of visits before baseline, co-morbidities or prior 

vaccination behavior [404,411,422]. Nevertheless, the confounding we observed remains even upon 

controlling for a large number of covariates including those above. 

 

Vaccination directly influenced the attitude of patients towards their symptoms, causing a delay in 

seeking care and a higher symptom severity threshold needed to seek care or get tested. On contrary, 

vaccinated patients in other studies had higher rates of testing compared to unvaccinated [417,427]. This 

indicates that patients’ attitude toward risk of infection and testing may vary geographically and over 

time. Similarly, frequency of testing may depend on local policies and practices.  

 

In unvaccinated patients, mild COVID-19 related symptoms were the reason to seek care; in vaccinated 

patients such cases were mainly captured upon seeking outpatient and inpatient care for other 

conditions.  

For example, vaccinated patients could be hospitalized for elective surgery or delivery and be tested 

positive for COVID-19 on the day of admission or later on. Differential symptom severity was 

previously reported for other vaccines [428] and may affect any observational study that uses 

hospitalization as a surrogate for COVID-19 severity as it can be hard to accurately identify the main 

reason for hospitalization in structured data. 

 

Previous research suggested that vaccinated patients do not have an increase in the number of cases 

immediately following vaccination as they are unlikely to get vaccinated if sick [123,407]. Our review 

of the cases in week one adds to ‘healthy vaccinee’ effect by showing that vaccinated patients are more 
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likely to attribute their symptoms to common vaccine side effects and, therefore, are less likely to seek 

care.  

 

Nevertheless, even when this differential bias is present, the estimates of the COVID-19 vaccine 

effectiveness in subsequent weeks still match the results of the RCTs. This indicates that high 

effectiveness during week one following vaccination does not necessarily undermine the estimates of 

subsequent vaccine effectiveness. On the other hand, we argue against using estimates of vaccine 

effectiveness within a short period after the vaccination as a negative control as the differences between 

the groups observed in this study are likely to be time-variant and may diminish over time [429].  

 

Our secondary analyses discovered several challenges and potential biases that must be accounted for 

when conducting vaccine effectiveness studies on observational data. First, we observed that outcome 

definitions are prone to measurement error, which has not been studied thoroughly. Some of the 

published studies used ICD-10 or ICD-10(CM) codes to identify COVID-19 outcomes [430–432]. We 

found that the specifics of data capture and billing processes were associated with some patients having 

assigned COVID-19 diagnosis codes for billing for tests rather than as an indicator of active disease. 

Another reason for assigning the code was COVID-19 sequela, where the actual date of COVID-19 

infection could have been anywhere from 6 months to a couple of weeks in the past. Some researchers 

have previously reported high positive predictive value of ICD-10 diagnostic codes for COVID-19, 

which points out that index date misclassification should be scrutinized in each institution participating 

in the analysis to make valid inferences [433,434]. 
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Second, inclusion or exclusion of patients with prior COVID-infection influenced estimated 

effectiveness. We observed that inclusion of patients with prior COVID-19 leads to lower effectiveness 

for all vaccines regardless of the outcome definition.  

 

Third, an appropriate index event (anchor) for the unvaccinated cohort must be chosen to represent a 

counterfactual for vaccination [10,435]. In our study, we confirmed that an arbitrary date represents a 

better counterfactual than a medical visit for COVID-19 vaccination, which is reflected in propensity 

score balance and covariate balance. Nevertheless, other institutions may have different vaccination 

pathways such as vaccination on discharge, which can make a visit a better counterfactual for 

vaccination. More generally, completeness of vaccination data capture is a crucial feature that influences 

the robustness of the study. While CUIMC data ensures complete exposure capture by linking EHR to 

the City and State Registries, the researchers should exhibit caution with conducting studies on the data 

sources with unknown vaccination capture.  

 

In general, our findings support the RCTs and previously published post-marketing studies for all three 

vaccines. Larger sample size for patients vaccinated with COVID-19 mRNA vaccines allowed us to 

have more power, which resulted in overlapping yet narrower confidence intervals compared to the 

RCTs. On the other hand, our study had fewer patients with the Janssen vaccine, which resulted in wider 

yet overlapping intervals compared to the Janssen’s vaccine RCT [399,400,405]. Nevertheless, an 

indirect comparison of these vaccines may not be accurate due to the differences in the populations we 

observed in our study. First, patients vaccinated with Janssen were substantially different from mRNA 

patients: on average, they were older, had a higher proportion of patients with race recorded as Black 
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and had more comorbidities. Therefore, comparative effectiveness studies of Janssen and mRNA 

vaccines require robust techniques such as large-scale propensity matching to ensure valid comparison.  

 

Second, while Moderna and Pfizer patients had similar baseline characteristics, the temporal distribution 

of vaccinations in CUIMC data differ. Moderna vaccine was administered early on in 2021 with the 

peak in January, while Pfizer vaccination peaked in April. 

Given the fluctuating baseline COVID-19 infection prevalence in 2021, a comparison of mRNA 

vaccines requires matching patients on calendar month to account for this potential bias. These vaccines 

also had different administration pathways in our system. As opposed to Pfizer vaccine, which was 

administered at CUIMC/NYP sites to all patients over a prolonged period, Moderna vaccination was 

performed elsewhere and recorded for actively observed patients. Such patients were more likely to get 

tested or receive care outside of our healthcare system. 

 

 

4.2.5 Limitations 

 

 

Due to observational nature of the study, the data sources may not have complete capture of patient 

conditions as the patients could seek care outside of the hospital system. While our outcome phenotype 

algorithms may be subject to measurement error, we provided additional analyses with alternative 

outcome definitions. Exposure misclassification was mitigated by having free and available COVID-19 

testing and COVID-19 vaccination in Columbia University Irving Medical Center and New York-

Presbyterian sites as well as by having data capture from New York City and State Immunization 
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Registries. Along with availability of testing, COVID-19 baseline infection rate difference was mitigated 

by matching the exposed and unexposed groups on the index date and using the index month as a 

covariate in propensity score model. We attempted to address potential differences between exposed and 

unexposed groups by selecting a large number of covariates in our propensity score model such as 

number of visits, procedure and drug utilization, prior vaccine behavior, race and others.  

The results of the study may not be generalizable to other countries or settings with different vaccine 

administration practices and policies. Finally, the study period did not allow us to stratify the results by 

COVID-19 variants, which limits generalizability of findings to other variants.
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4.3 Chapter summary and lessons learned 

 

 

 

This chapter uncovered several biases related to the choice of unexposed group and its index date both 

in safety and effectiveness research.  

 

As we demonstrated, background rates commonly used in drug surveillance are sensitive to the choice of 

age group (variability in rates up to a factor of 1,000), index event definition or anchoring (up to a factor 

of 100) and data source (up to a factor of 10) and less sensitive to the choice of gender, race, season, or 

year. Anchoring also influences patient baseline characteristics with the effect being most prominent on 

the index date but persisting up to a year prior.  

 

To ensure reliability of observed-to-expected analysis, we recommend using one data source for both 

cohorts’ construction, ensuring that the exposed and unexposed have similar demographics distribution, 

time-at-risk and are captured within the same year and season. Additionally, the researchers must ensure 

that appropriate methods for confounding adjustment are used, arguing for large-scale propensity score 

matching as one of the robust methods that uses the maximum number of covariates possible to balance 

the cohorts. As self-controlled case series is also prone to anchoring, similar procedures can be used to 

balance the exposed and unexposed time [436]. We recommend empirically examining anchoring to 

select an appropriate index date or event based on the covariate distribution and background knowledge 

about drug administration settings. 
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We observed that short-time (e.g., two weeks) estimates are especially prone to bias. Fist, the estimates 

of background rates of anaphylaxis, which were estimated within a short time-at risk, were sensitive to 

demographics, anchoring, season, year, and new case identification strategy. Similarly, short-term  

effectiveness estimates were prone to bias despite the robustness of long-term estimates. There were 

several biases that the adjustment on the analysis stage failed to correct for: selection bias, bias by 

severity and indication and healthcare seeking bias. Measurement error discussed in detail in the 

previous chapters may have larger influence on short-term estimates if the number of events is small as 

demonstrated when comparing the diagnosis-based COVID-19 phenotype and laboratory test-based one. 

 

Given that these biases were uncovered only through in-depth chart review of cases, we suggest that any 

study should thoroughly examine patient characteristics and use extensive diagnostics, especially if the 

estimates deviate from the baseline assumptions or background knowledge. In future, the formal and 

standardized processes should be established.  
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Chapter 5. Generating responsive and reliable evidence at the point of care 
 

 

 

RCTs cannot readily address all the clinical questions and a substantial number of them remains 

unanswered [13,43,49–52]. Upon creating standardized procedures, frameworks and tools for generating 

reliable evidence, the process can become less time-consuming, which may enable evidence generation 

in real or near-real time. This chapter builds up on the knowledge learned in the previous chapters to 

examine the ability of observational data to support evidence generation and delivery at the bedside. 

Throughout this section we hypothesize and show that robust evidence can be delivered on-demand at 

the point of care. 
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We first interview 30 clinicians at NewYork-Presbyterian hospital, use thematic analysis and develop a 

taxonomy of information needs related to a gap in knowledge unmet by the current evidence. We 

demonstrate that despite the abundancy of knowledge, clinicians have multiple questions that are not 

covered by the current evidence and oftentimes have shared areas of unmet needs such as optimal 

treatment of patients with multiple comorbidities or rare disorders, elderly and children or effectiveness 

and safety of new drugs. We discover that experienced and inpatient physicians would benefit from a 

clinical decision support system (CDSS) that generates evidence at the point of care. 

 

We proceed by conducting a formal scoping review of clinical decision support tools that generate real-

world evidence, which identifies 25 expert-based and data-driven tools that can generate new clinical 

evidence and further classify them according to their approach to evidence generation. We discover that 

the tools oftentimes are on the prototype stage and lack demonstration of their utility so that their impact 

on healthcare processes and patient outcomes remains unclear. Moreover, thorough and systematic 

assessment of bias in such CDSSs is lacking. 

 

Based on these discoveries, we design and pilot a study of a data consult service that generates clinical 

evidence at the bedside with the clinicians affiliated with CUIMC. We create and implement a pipeline 

(question gathering, data exploration, iterative patient phenotyping, study execution, and evidence 

validity assessment) for generating new evidence in real time, which results in 24 answered questions 

collected from 22 clinicians. 

 

We identify the key components required for successful early-stage implementation such as proactive 

involvement of the study team and participation in clinical rounds and shadowing. We classify and 



Chapter 5. Responsive and reliable evidence at the bedside 

 

 

209 

describe in-depth the main challenges we encountered such as missing and incomplete data, 

underreported conditions, nonspecific coding and accurate identification of drug regimens, and discuss 

user engagement and satisfaction.
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5.1. Clinicians’ information needs unmet by the current evidence 7 

 

As we hypothesize that the lessons we learned in Chapters 3 and 4 and the methods and pipelines we 

developed can enable responsive and reliable evidence generation, we explore the potential clinicians’ 

questions that newly generated evidence can address. We conduct a series of interviews with clinicians 

at CUIMC and discover that, despite the availability of the evidence and growing number of 

observational studies, clinicians on average have at least four unmet evidence-related information needs, 

and such needs do not decrease with years of clinical experience accumulated. 

 

The interviews result in a taxonomy of information needs including the areas commonly inadequately 

covered by the RCTs such as treatment of patients with multiple comorbidities or rare disorders, elderly 

and children, or questions related to effectiveness and safety of new drugs. We find that the most 

common topic is drug effectiveness, which aligns well with the earlier studies, indicating that it may be 

the most common use case for the service that delivers evidence at the bedside. 

 observe that specialty physicians seek more in-depth knowledge, which indicates that they, along with 

the experienced clinicians, are likely to benefit from such a service.  

 

 

 

 

7 This section is published in JAMIA Open. The full citation for this publication is:  

Ostropolets A, Chen R, Zhang L, Hripcsak G. Characterizing physicians’ information needs related to a gap in knowledge 

unmet by current evidence. JAMIA Open (2020) 

 

5.1.1  Background  
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Current evidence has been reported to be inadequate or missing for specific clinical cases [40,82]. For 

example, guidelines include a large proportion of recommendations based on expert opinion or case 

studies indicating a lack of reliable data to act upon [437] and cannot always address physicians’ 

information needs. 

Apart from insufficient evidence, general information needs have been studied since the early stages of 

electronic health record systems adoption. Smith et al. in 1996 summarized the studies related to 

doctors’ information needs, concluding that the prevailing part of the unmet information needs consists 

of treatment questions that are often complex and highly patient-specific [52]. This finding was 

supported by Ely et al., who found that most of the immediate questions generated during consultations 

remain unanswered, mainly due to the lack of time [82,438,439]. These studies did not distinguish 

between the information needs that could potentially be answered using existing evidence and those, for 

which no RTCs or clinical guidelines existed. While evidence exists, clinicians tend to use it to guide 

their decision-making [440,441]. Nevertheless, it is unclear which part of the clinical questions remained 

unanswered due to evidence lacking. 

 

After more than twenty years, a growing pool of evidence requires an up-to-date assessment of the 

current evidence utilization and its ability to cover physicians’ needs. More recent studies have mainly 

focused on specific cohorts of doctors: primary care physicians [442–445], family physicians [446,447] 

and residents [448–450], while the other specialties have not been studied thoroughly. Meanwhile, 

specialty physicians usually face complex clinical cases that may shape additional information needs 

[451] and remained unaddressed by the existing evidence. These studies addressed the immediate 

information requests mainly in outpatient settings where physicians have limited time and resources to 

answer their questions [82,438,442,443,452]. Surprisingly, there is little knowledge on evidence 
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utilization and sufficiency among specialty physicians or senior physicians working in secondary and 

tertiary care services.  

 

In this section, we address this knowledge gap, shedding light on current physicians’ information needs 

that are specifically related to insufficient evidence and therefore cannot be answered with the existing 

guidelines. These needs are not only of theoretical significance: with the growing pool of healthcare 

data, it has become possible to drive its secondary utilization to guide clinical decision-making by 

incorporating clinical decision tools into practice. Nevertheless, few of them have been adopted in 

routine practice. Among the other reasons, these tools might have been designed without a precise study 

of the current information needs and the proper target group identification. Unmet information needs 

specify user scenarios and use cases, which drives the methodology behind such CDSS, their design and 

implementation.  

 

 

5.1.2  Methods  

 

 

Unmet information needs 

 

We used convenience sampling method to select thirty physicians (thirty participated, eight declined 

participation) affiliated with NewYork-Presbyterian and Columbia University Irving Medical Center. 

The one-hour in-depth face-to-face interviews were conducted over a 4-month period in the location of 

physicians’ choice; one interview was conducted over the telephone. The open-ended semi-structured 
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questionnaire included questions about (a) perceived information needs and (b) knowledge resources 

that physicians use to fulfill these needs (textbooks, electronic resources such as PubMed and 

commercial tools, clinical consultants, and pharmacists). To examine information needs, we asked 

interviewees to provide the number of questions for which they found no appropriate or insufficient 

medical evidence, the time expended searching for evidence, and examples of the questions that 

occurred. We provided examples of questions from our practice as well as other participants’ scenarios. 

To facilitate recall, we provided scenarios related to different aspects of care (diagnosis of rare events or 

disorders, treatment strategies, quality of care, patient compliance).  

 

We collected demographic data, number of years in practice, clinical rank, departmental affiliation, and 

clinical specialty. Physicians were additionally classified as practicing in an inpatient or outpatient 

setting based on the primary type of care they provide.  

 

Thematic analysis 

 

The interviews were analyzed by two independent investigators using deductive thematic analysis 

according to six phases defined by Braun and Clarke [453].  

First, we entered the transcripts into the N-Vivo data management program with manual semantic code 

identification, which was moderated to ensure their validity and consistency across all transcripts. By 

creating codes applicable to all the data, we reduced the volume of text for analysis and identified new 

structures to incorporate disparate responses.  
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We applied cutting and sorting method [454] to identify the low-level codes and then generated a coding 

framework to connect related codes together to discover themes that are closely related to physicians’ 

information needs. Merged codes formed themes that served as a basis for our themes of information 

needs related to a gap in knowledge unmet by current evidence. Each theme was refined to ensure 

proper association of its definition and name with the coded extracts and coherency across all interview 

transcripts.  

The final themes were adjusted based on the discussions with both interviewees and investigators. 

Throughout the analysis, three co-researchers used pair debriefing to discuss disagreements and reach an 

agreement on the themes and subthemes achieving at least 80% inter-rater agreement between the 

investigators 

 

Statistical analysis 

 

We conducted additional statistical analyses to identify the correlation between clinical experience, 

clinical specialty, setting of clinical care and the characteristics of information needs. As we intended to 

study clinical information needs, we excluded two interviewees as they were not engaged in active 

clinical practice. To approximate perceived information needs, we used the number of questions or 

clinical scenarios that physicians recall during interviews and three main themes of clinical needs 

(diagnosis, treatment, and public health and quality of care) that we identified based on our hierarchical 

set of themes.  

 

We then compared the distribution of the types of questions across specialties working settings and 

clinical experience using Pearson's Chi-squared test. To assess if there was a difference in the 
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information needs among specialized and non-specialized physicians and among physicians working in 

different settings, Wilcoxon rank sum test with continuity correction was used; Kruskal-Wallis rank sum 

test was used to test if there is a difference in information needs based on clinical rank or departmental 

affiliation.  

 

 

5.1.3  Results  

 

 

We interviewed thirty physicians from a broad range of specialties: pediatrics (23.3%), general internal 

medicine (20%), nephrology (16.7%), cardiology (13.3%), neurology (6.7%), gastroenterology (6.7%), 

infectious diseases (6.7%), emergency medicine (3.3%), and intensive care (3.3%). On average, 

physicians have spent 13.48.3 years in clinical practice and most of them have an academic 

appointment (77%) : assistant (52%), associate (39%) or full professor (9%). Twenty-three percent of 

clinicians indicated outpatient practice as their main working setting and seventy-seven predominantly 

practiced in inpatient settings. Clinicians raised on average 4.32 questions per interview. 

 

Thematic analysis 

 

Twenty-seven physicians in our study said that they use evidence knowledge sources routinely. The 

other three listed socio-economic determinants, patient compliance and evidence irrelevance to the real-

world practice as the obstacles to evidence use. Low patient compliance was said to influence 

medication prescribing and duration of therapy. For example, shorter courses of treatment or modified 
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drug regimen were sometimes more convenient for patients but deviated from the current standards of 

care. Low income and hospital remoteness were also said to influence patterns of prescribing, favoring 

aggressive and short therapy. Some clinicians identified clinical guidelines and clinical trials as 

‘overcautious’ and prescribed formally contraindicated drugs as they had not observed listed adverse 

events in their practice. 

 

Ninety-one distinct clinical problems related to absent or insufficient medical evidence were raised 

during the interviews. The final taxonomy comprised fifteen end leaves and three main themes: 

treatment, diagnosis, and public health and quality of care (Figure 29). Majority of questions regarded 

treatment (81% of all questions), while others involved diagnosis and public health and quality of care 

(11.6% and 7.4% respectively).  
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Figure 29. Taxonomy of unmet evidence-related information needs. Green boxes represent themes and 

subthemes and a bracket with blue boxes represents broad topics applicable to included subthemes. 

 

 

Almost all the questions in the treatment group were related to drug treatment. We obtained only a few 

non-drug treatment questions, which did not allow us to specify this theme further. The information 

needs related to drug therapy further fell into four main sub-themes based on the steps in drug 
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prescribing: decisions on drug necessity, choice of a drug and its dose and decisions on when to 

discontinue treatment. Drug choice included three sub-themes and had the broadest range of possible 

clinical scenarios that were not covered by the existing evidence.  

Clinicians reported that the current studies appeared to fail to provide evidence for newly marketed 

drugs (“Should a diabetic patient on ACE inhibitors, diuretics and SGLT2-inhibitors be taken off 

diuretics as SGLT2-inhhibitors act as diuretics?”). The available evidence also was said to inadequately 

cover certain populations such as pregnant women, children, elderly and patients with multiple chronic 

conditions and rare disorders. Such questions were usually formulated within the Population, 

Intervention, Comparison, Outcome, Time (PICOT) framework [89], where population corresponded to 

a group of patients with conditions of interest, intervention and comparison – drugs or procedures that 

were intended to be used for a patient of interest, outcome – to a disorder or event to be used to compare 

interventions and time – to time-at-risk.  

 

Applying PICOT to the questions highlights shared common population or intervention. For example, 

chronic kidney disorder fell into multiple subthemes: ‘Comparative effectiveness’ (“Which one of the 

new SGLT2 inhibitors is best for patients with chronic kidney disorder?”), ‘Indication and 

Contraindication’ (“Do we know if rivaroxaban or apixaban should not be prescribed for patients with 

kidney failure in real practice?” ), ‘Drug Safety and Adverse Events’ (“In patient with chronic kidney 

failure and hypertension taking five drugs, how do we know which one caused an adverse event?”) and 

‘Drug Dose’ (“Tacrolimus for kidney transplantation: what is the start dose, how often its level should 

be measured in blood?”). There was a small number of questions that do not fall into the PICOT 

framework (e.g., “What are the risk factors for vancomycin-induced kidney injury?”) that were mainly 

related to characterizing patients of interest. 



Chapter 5. Section 1. Clinicians’ information needs 

 

 

 

219 

 

The ‘Diagnosis’ theme mainly included questions related to laboratory tests as well as vague symptoms 

and syndrome; questions related to screening, prognosis and ancillary services were classified as a broad 

‘Public Health & Quality of Care’ theme.  

 

While most of the questions were unambiguous and straightforward, others required additional 

clarification. For example, one clinician asked a question that at first glance could have been interpreted 

a diagnostic question: “How should patients be screened for dementia?”. Further discussion revealed the 

rationale behind the question, which allowed us to classify it into the “Screening” theme: “It [dementia] 

often is confused with depression especially if a person has a history of depression. We need this 

information to properly educate primary physicians on how to take care of such patients”. 

 

Additional Analysis 

 

More than half of the physicians (60%) indicated an unspecified commercial tool as their primary source 

of evidence and only 10% turned to guidelines first to answer their questions (Appendix 5.1).  

 

We found no correlation between the primary source of evidence and primary clinical settings (X-

squared = 6.16, p = 0.29) or academic rank (X-squared = 18.67, p = 0.54). On the other hand, we found 

a difference in specialty and primary care practitioners: primary care physicians preferred the 

commercial tool (X-squared = 9.85, p = 0.08), while specialty physicians used PubMed, guidelines and 

the commercial tool.  
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We found that the number of questions related to insufficient evidence in clinical practice did not 

decrease with clinical experience, and in fact appeared to increase with experience (R = 0.55, p < 0.01). 

Physicians who mainly work in an inpatient setting identified more information needs (W = 120.5, p = 

0.01). The number of questions was unrelated to their specialty and did not change irrespective of 

whether they were primary care or specialty physicians (W = 58, p = 0.1). 

 

When we analyzed the distribution of type of questions based on our themes, we found that inpatient 

physicians had significantly more questions related to treatment (W = 134, p < 0.01). On the other hand, 

the type of questions was unrelated to clinical experience or academic rank. 

 

 

5.1.4  Discussion  

 

 

Patterns of information needs 

 

In this study, we found a significant gap in clinical evidence, which resulted in a large variety of 

information needs across different specialties and care settings. The majority (90%) of physicians in our 

study indicated that they practice evidence-based medicine and use evidence knowledge sources 

routinely. The main obstacles to applying evidence in practice were low patient compliance and socio-

economic determinants along with mistrust of clinical guidelines and clinical trials. While other studies 

[452,455–458] listed lack of time, personal unawareness, disengagement and passivity as the strongest 

barriers, our findings just partially support it. Indeed, outpatient physicians could rarely find time for 
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literature review and usually thought of their clinical scenarios as routine and straightforward. On 

contrary, the length of inpatient stay might give physicians more time to search for evidence. They also 

tend to face more challenging cases, which oftentimes requires more thoughtful research, team 

collaboration and experience sharing. This may imply that inpatient physicians are more likely to 

practice evidence-based medicine and use additional knowledge sources to find additional evidence for 

their clinical cases. 

 

Surprisingly, we found that experienced physicians and tertiary care practitioners have more information 

needs arising from a gap in current evidence than those who have less experience. The focus of previous 

studies was shifted towards the most vulnerable groups: residents, family and primary care physicians 

[82,438,442–444,448,449,458], assuming that these categories require information the most. We have 

discovered that the need for clinical evidence does not diminish with physicians’ maturity: while 

residents and practitioners at the early stages of their career [459] may experience lack of clinical 

expertise and knowledge, more senior physicians have already gained this expertise and oftentimes 

require more complicated and precise evidence. This observation relates to the Dreyfus model of Skill 

Acquisition [460], according to which one progresses through five levels of proficiency: novice, 

advanced beginner, competent, proficient and expert. At the expert level, clinicians no longer have to 

rely on the set of rules or analytical principles that they had been taught but use their background 

experience to ‘intuitively’ make decisions. On the other hand, experts can identify knowledge gaps and 

acknowledge their relevance to clinical scenarios. Constant search for evidence when no established 

practice exists seems to be a feature of experts, who tend to apply analytical problem solving to novel or 

complicated clinical cases. 
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We classified such clinical cases based on the main areas where physicians struggled to find answers 

(Figure 29). These broad areas included multiple co-morbidities, rare disorders, polypharmacy, elderly, 

and young patients. Our findings align with previous studies, which reported that the patient 

comorbidities and contexts play an important role in inability to answer clinical questions at the point of 

care [40,49,452].  

 

When analyzing narrow question themes, most of the them were related to drug therapy, which reflects a 

persistent trend in information needs [461,462] and is well supported by the recent studies 

[442,448,449]. Moreover, the pull of unanswered questions grows with an increasing number of newly 

marketed drugs and poor generalizability of clinical trials [43,44,463]. The distribution of the types of 

questions also reflects this paradigm: while thirty years ago the percent of medication-related questions 

was around 30% [448,461], in our study we saw that it doubled.  

 

We observed that physicians practicing in inpatient settings were more likely to ask questions related to 

treatment and diagnosis, while most of the questions related to quality of care or public health-related 

questions were asked by the outpatient physicians. Due to its nature, outpatient care tends to be more 

influenced by non-clinical factors, such as socio-economic determinants or patient compliance and 

adherence. When prescribing treatment or diagnostic procedures, healthcare provider should account for 

patients’ capacity to pay for their treatment and diagnosis, compliance with medications and follow-up 

appointments and other factors. [448,464]. For example, one of the questions (“Should we prescribe 

Vitamin D in children knowing that compliance may be low?”) considered the relative effect of the 

Vitamin D tablets that are prescribed once a week. As such regimen was observed to be associated with 

forgotten and missed doses, the clinician required additional information on its efficacy in real-world 
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practice. As outpatient care requires relatively fast and cheap diagnostic procedures, outpatient 

practitioners may be interested in evidence related to symptoms and syndromes, which would allow to 

interpret routine diagnostic procedures more effectively (“Can obesity inflammation alone get 

erythrocyte sedimentation rate up to a very high level?”).  

 

When searching for evidence to answer these questions, the commercial tool was the main knowledge 

source used by physicians in this study, which aligns with the previous findings [458,465]. It was said to 

be used for the new drugs, unfamiliar rare disorders, and disorders outside of physicians’ specialty. 

Other physicians, especially those who preferred PubMed, characterized the commercial tool used as a 

superficial knowledge base that did not provide case-specific information or in-depth knowledge (“It 

usually tells me what I already know. I may use it to browse new drugs, but otherwise look for new 

studies”). Cook et al. [458] also reported its inability to answer complex questions, which, together with 

our findings, may explain why specialty physicians preferred to use PubMed. The choice of primary 

knowledge base may also indicate the predominant characteristics of information needs arising from a 

gap in current evidence in specialty physicians. The latter may require evidence that addresses specific 

patient contexts rather than the general knowledge about a disorder and its treatment. Therefore, 

specialty physicians may benefit from an additional knowledge source that accounts for these needs and 

provides them with the evidence for a specific clinical case. 

 

These observations support the previously observed inferential gap [43,44,463] between the guidelines 

and trials (which show effectiveness only for selected groups of patients) and a real patient with a 

complex of individual disorders, medical history and non-clinical characteristics. Not surprisingly, 

physicians within a specialty share the same needs and attempt to answer them based on their 
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observations and experience. For example, we saw that some of the same questions in nephrology 

occurred across multiple interviews with physicians trying to answer these questions on their own. This 

may lead to the disparate solutions to the same clinical problem even within a single institution and, 

eventually, to suboptimal patient care. 

 

Lack of evidence and inability of existing evidence to answer complex real-world clinical questions 

points to a need for a CDSS that can address clinicians’ information needs arising from a gap in current 

evidence at the point of care. We can bring the pipelines and frameworks we developed in Chapters 2 

and 3 to build a service (‘Data Consult Service’) that can generate evidence at the bedside to facilitate 

clinical decision-making and guide clinicians. Using EHR and administrative claims data and domain 

expert knowledge, such CDSS select a group of patients similar to the patient of interest and use 

statistical approaches to compare it to another group that represents an alternative scenario. For example, 

the question “Which one of the new SGLT2 inhibitors is best for patients with chronic kidney disorder?” 

can be answered by conducting a comparative retrospective new-user cohort study using institutional 

EHR data. In such study, patients with chronic kidney disorder are classified into a target or comparator 

group based on their SGLT2 inhibitor exposure, balanced using propensity score adjustment and 

analyzed to examine relative risk of an outcome of interest. Data analysis can vary from simple 

descriptive statistics to comparative effectiveness studies, but generally allows one to learn from 

previous patient care. For example, the question “How do we interpret Synachten test in patients on 

long-term steroid therapy?” (Diagnosis theme) can be answered by characterizing patients on long-term 

steroid therapy and comparing their outcomes based on the length of therapy and their 

adrenocorticotropic hormone level (measured using Synachten test).  
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As noted in other studies [40,49,452], lack of time and difficulty remembering questions had been 

contributing to the pool of questions that remained unanswered by clinicians even despite the 

availability of CDSS and knowledge resources. Thus, a CDSS should allow obtaining relevant and 

concise answers in a timely manner. 

 

Another important aspect of CDSS design is proper target group identification. Specialty physicians, 

compared to primary physicians, used more knowledge sources and may have more time to search for 

additional evidence. Specialty physicians also reported an increased need for a knowledge source that 

helps to answer complex context-specific clinical questions, which implies that they are more likely to 

benefit from such CDSS. As we observed an association between clinical experience and the number of 

questions, experienced clinicians may also use the tool that provides answers to these questions.  

 

It may seem paradoxical that we exclude novices from the target group for such tool. While novices may 

have more broad general information needs and may struggle with applying evidence-based practices, 

they would rather require guidance on applying existing knowledge to practice. On the other hand, Data 

Consult Service would be beneficial to clinicians who routinely apply evidence-based medicine 

practices, identify gaps in current evidence, and deal with complex clinical cases. 

 

As these clinical cases are often complex and non-trivial, the team behind CDSS or the CDSS itself need 

to be able to identify an appropriate study design. For example, the question “How should patients be 

screened for dementia?” (Appendix 5.2) may be interpreted as a question about appropriate tools for 

dementia screening. Nevertheless, the further discussion with the clinician revealed that the question 

considered common misdiagnosis of dementia patients with a prior history of depression. We, therefore, 
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would rather transform it into a characterization study of the patients with a history of depression who 

were and were not further diagnosed with dementia. These two groups can then be compared to identify 

the distinctive features of patients who had depression and developed dementia. The identified features 

can then be used by clinicians to promptly diagnose dementia.  

Such difference in interpretations has implications on study design, the volume of EHR data needed to 

conduct a study and eventually on the ability to address the question. All the relevant details should be 

taken into consideration and a tool should allow for further question interpretation. 

 

 

5.1.5  Limitations  

 

 

Our study has several limitations. First, we assumed that the number of questions physicians raised 

during the interviews could serve as an approximation of their information needs arising from a gap in 

current evidence. We believe that the time-consuming and effortful nature of literature search has made 

mentioned clinical cases memorable, which provides sufficient accuracy for our approximation. We did 

not cover all clinical specialties, but the variety of interviewed specialties allowed us to get a broad 

picture of information needs.  

We conducted our study in a single institution, which only represents the unmet information needs in a 

large tertiary care hospital and does not characterize clinicians’ information needs elsewhere. 
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5.2. Gaps in bias-mitigating strategies of evidence-generative CDSS8 

 

 

 

As we observed in the previous section, physicians can benefit from a service that produces new clinical 

evidence at the point of care to answer the questions not covered by existing RCTs or observational 

studies. 

 

Given the potential challenges associated with deploying such a service, in this section we look at the 

existing clinical decision support tools to learn from their experience, particularly regarding the 

strategies for mitigating bias and evidence quality assurance. We conduct a scoping review [466] 

covering a broad spectrum of CDSS that generate new evidence, from disease-specific expert-based to 

more complex data-driven, characterize and classify 25 tools according to their methodology and 

implementation stage and provide a synthesis of their features, scope and bias-mitigating strategies.  

 

We discover that only one tool partially addresses bias, which points to the need for a CDSS with robust 

analytical methods and pre-analysis bias assessment.  

 

 

 

 

 

8 This section is published in JAMIA. The full citation for this publication is: 

Ostropolets A, Zhang L, Hripcsak G. A scoping review of clinical decision support tools that generate new knowledge to 

support decision making in real time. JAMIA (2020) 
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5.2.1 Methods  

 

 

Search strategy 

We conducted a scoping review, including the use of a formal search strategy, appraisal of study quality, 

and a narrative synthesis of findings. To inform our analysis, we performed a systematic search of four 

databases (PubMed, Embase, Proquest, and IEE Xplore) for articles published in English before May 22, 

2020. 

We identified four components of our search: (1) electronic health records, (2) clinical decision support 

tools, (3) evidence-based medicine and (4) complex clinical cases. 

For each component, we included the hyponyms, synonyms and broader terms identified in the previous 

literature and through discussions with librarians [443,452,461,467–470]. The search terms included 

MeSH concepts (PubMed), EMtree (Embase), and free-text terms, combining the four groups of terms 

described above (Appendix 5.3).  

 

We included articles that described any type of clinical decision support system, which was defined as 

any computer system designed to impact clinician decision making about individual patients at the point 

in time that these decisions are made [471], that use patient data to address clinical questions not 

covered by existing evidence and are designed to be used by clinicians. We focused on those CDSS that 

either modify existing evidence tailoring it to the patient of interest or generate previously unknown 

knowledge to facilitate decision-making.  

We excluded articles meeting any of the following criteria: 

1. The CDSS only used existing evidence (clinical trials, guidelines, published literature)  
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2. The study was in a language other than English 

3. The study used data other than clinical (for example, genomic or protein data) or simulated 

datasets 

 

Review articles were used to obtain relevant references and to inform this discussion. 

 

Study selection and data synthesis 

 

Two reviewers (including AO) independently screened the title and abstract for each study for inclusion 

and exclusion criteria. The level of agreement between the two reviewers was assessed by a Cohen's 

kappa score. Disagreements between the two reviewers were resolved by discussion until consensus was 

reached. The list of studies selected for full text review was screened for relevant references. AO 

reviewed the full text of the selected studies and extracted the year of implementation or evaluation, the 

site of intervention, its main area (specialty), focus (patient care, research, quality improvement), 

methods used, evaluation type and evaluation outcomes. Extracted data was reviewed and approved by 

the second reviewer.  

 

 

5.2.2  Results  

 

 

We retrieved 3427 articles, out of which 172 articles were potentially relevant based on the abstract, 

title, and keywords screening. 144 papers were identified as duplicates and removed. The level of 
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agreement between the two reviewers was reflected by a Cohen's kappa of 0.84.We additionally found 

83 articles through reference lists. 53 manuscripts describing 25 CDSS were selected for this review 

(Figure 30).  

 

 

Figure 30. PRISMA flow chart describing the article selection and review for the scoping review of the 

clinical decision support tools that generate new evidence. 

 

Only 36% (n=9) of the tools were implemented in more than one site with 64% (n=16) of the tools 

developed in the USA, the others – in Europe (6), UK (1) or China (2). All CDSS included in the study 
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were either used or planned to be used for clinical care and 68% of CDSS also focused on quality of care 

or research (eight (32%) and nine (36%) respectively, Appendix 5.4). Oncology was the main area of 

use (nine CDSS, 36%) followed by surgery, psychiatry and internal medicine (two, 8% each). The other 

tools did not have a specific area of use, albeit specific use cases were used to show the features of some 

prototypes (potentially unrestricted). Only 40% (n=10) of the tools were deployed and used in practice. 

 

We classified the tools into two groups based on the main approach used to infer new knowledge: (1) 

data-driven tools, which use patient data to generate practice-based evidence [472] in real time and (2) 

expert-based tools, which require experts to incorporate practice-based evidence into algorithms 

subsequently used in CDSS. Both groups produce knowledge that does not explicitly exist outside of 

CDSS and should be useful for decision-making for a patient of interest. Based on the analytical 

component, data-driven tools can further be classified into (1) visual non-analytics-based tools and (2) 

analytics tools (Table 14).  

 

Table 14. Included articles grouped by the inference mechanism and analytical component. 

Group 
Sub-group Included CDSS 

Data-driven 

CDSS 

(n = 17 ) 

Visual non-analytics-

based tools (n = 6) 

“Composer”, “ePEPS”, “CaVa”, “CareFlow”, 

“Patient-like-mine”, “PatternFinder” 

Analytics tools 

(n = 11) 

“Care Pathway Workbench”, “Green Button”, 

“CoCo”, “VisualDecisionLinc”, “Melanoma Rapid 

Learning Utility”, “DICON”, CDSS for radiologists 

(Morrison et al.), two CDSS for prostate cancer 
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(Bernard et al.), two CDSS for diabetes mellitus and 

acute coronary syndrome (Xia et al.) 

Expert-based CDSS 

(n = 8) 

“MayoExpert”, “e-bipolar”, ROAD2H CDSS, 

“Oncology Expert Advisor”, “P4 Pathways”, “Level I 

Pathways”, “ViaOncology”, “eviti” 

 

Data-driven tools 

 

Visual non-analytics-based tools 

 

Visual non-analytics-based tools allow defining patients based on the criteria of interest, aggregating 

them according to a set of rules defined by a clinician and visually inspecting resulting patient cohorts. 

Individual patient data or aggregated data can be aligned by timeline and presented to a clinician for 

comparison. With rare exceptions [473] they do not require a third party to perform analysis, so that the 

users can obtain relevant information on their own. Patient criteria can be selected from a pre-defined 

list [473,474] or from any structured data in the EHR system [475]. The latter increases the variety of 

questions clinician can ask as any diagnosis, procedure or laboratory test from the EHR system can be 

selected. While such tools are not capable of generating gold-standard evidence, they allow clinicians to 

learn from previous care, observe and compare patient outcomes. 

 

One of the tools, “PatternFinder” [476–480] visualizes patient records according to temporal queries and 

allows specifying an index event and two additional events only. Visualization is limited to matched 

events, so that clinicians can only explore the common events but not those that differ among patients. 

The authors performed extensive 4-months usability testing for patients with contrast nephropathy. 
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“CaVa” [473] visually represents the changes in the pre-defined variables of interest through line 

thickness, where lines connect clinical events and are aligned by timeline. As opposed to 

“PatternFinder”, it does not limit the number of events to display but requires the study team to identify 

patients and select variables in advance. A prototype, developed for cardiology patients, could also 

support similarity measurements and utilization analysis. “CareFlow” [481], developed independently, 

has a similar interface and features. It was similarly tested for cardiology patients (congestive heart 

failure).  

 

A CDSS for radiologists presented by Morrison et al. [482] aims at identifying patients with similar 

demographic and lung cancer-related characteristics. It displays descriptive statistics mainly focusing on 

cancer characteristics and unlike the other tools it is characterized by limited visualization. Another 

distinctive feature is repurposing of a lung screening trial data set, which limits its ability to learn from 

the new patient data.  

 

Similarly to the previous tool, “Composer” [474] was developed for a single specialty, assisting 

orthopedic surgeons in assessing patient state after spinal procedures. The developers pre-specified 

outcome measures and subsequently plotted them for individual patients or aggregated cohorts. 

 

“ePEPS” toolbox [475,483,484] was built on top of the nationwide French EHR database, leveraging the 

benefits of linking patient data across multiple institutions. It supports constructing patient cohorts based 

on all available structured data, not limiting variables to a pre-defined set. Clinicians can then compare 
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the cohorts based on geographic distribution, explore the distribution of the events of interest across 

groups, and inspect patient trajectories. 

 

A tool presented by Li et al. [485] used elastic search to search for patients of interest in real time. The 

tool preserves the ability to transparently explore “what-if” scenarios for cohorts of patients. It is 

achieved by comparing the trajectory of a given person to the trajectories of similar patients and visually 

analyzing if his or her trajectory is within normal bounds.  

 

Analytics tools 

 

Analytics tools aggregate patient data and use statistical approaches to compare patient cohorts. Data 

analysis can vary from simple descriptive statistics to comparative effectiveness studies, but generally 

allows not only to learn from previous patient care but also to reliably compare patient outcomes and 

characteristics. The tools described in this section mainly differ in the methods used to obtain cohorts 

and the ways results are presented to clinicians. 

We start with the tools that combine visual representation of patient cohorts with statistical analysis that 

allows clinicians to obtain estimates (odds ratios or relative risk) for the groups of interest. 

 

“CoCo” [486], which stands for “Cohort Comparison”, provides visualization of interactively refined 

patient cohorts as well as individual patient records as time sequences. Clinicians can then compare the 

cohorts using formal statistical approaches (survival analysis and log-rank test).  
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Bernard et al. [487] developed a dashboard similar to “CoCo” to visualize multiple patient trajectories 

for patients with prostate cancer. Clinicians can select patients and compute correlations between 

variables and a patient cohort. Patient histories are synchronized, and each history is shown as a line 

with a color corresponding to a phase of prostate cancer treatment. The authors further explored this area 

by developing dashboard networks to allow cohort comparison [488]. To conduct user acceptance 

testing Barnard et al. asked clinicians to run an observational study using the prostate cancer dashboard. 

They showed that the system increased the efficiency of analytics and provided visual assistance for 

complicated temporal relationships in the data. Malik et al. [486] took the same evaluation approach for 

“CoCo” and generated use cases to access perceived usefulness of the tool in emergency department 

settings.  

 

“Melanoma Rapid Learning Utility” (MLRU) [489] and “VisualDecisionLinc” [490] similarly enable 

physician-driven cohort selection and comparative effectiveness analysis for melanoma and major 

depressive disorder respectively. Physicians construct cohorts based on demographic data, drug 

exposure data and melanoma-related variables (MLRU) and can subsequently inspect odds ratios of 

outcomes produced by survival analysis. MLRU underwent user acceptance testing with positive 

feedback and physicians more interested in using it for research purposes. It was deployed, but the actual 

use of the tool has not been reported. 

 

Nan Cao et al. used a glyph-based visualization system (DICON [491]) to show structured data from 

patients’ EHR and compute similarity scores across patient data elements. The tool calculates the 

correlation between selected features (e.g., International Classification of Diseases, 10th Revision, 

Clinical Modification codes) and the cluster of similar patients. The authors conducted a formal mixed 
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(qualitative and quantitative) user acceptance testing with domain experts and non-experts focusing on 

the design of the icons that represented patient cohorts. They found that their design provided higher 

efficiency on group comparison; they provided limited information about user feedback. 

 

Xia at al. [492,493] developed two separate prototypes that use clustering techniques to identify patient 

sub-groups within a disorder (acute coronary syndrome and diabetes mellitus). Upon clinical encounter, 

a clinician can see a cluster of patients who are similar to the patient of interest and inspect their 

characteristics, including demographics, disease onset and progression, drug exposure and outcomes. 

 

As opposed to visual analytics-based tools, “Green Button” [494–496] presents cohort comparison in the 

form of reports that the developers supply to clinicians. Developed primarily for clinical care, it 

leverages observational studies to answer clinical questions ranging from simple descriptive statistics to 

comparative effectiveness studies. A fast search engine retrieves patients of interest and visualizes their 

medical events as temporal sequences, allowing fast and efficient iterations. This is the only tools that 

mitigates confounding (propensity score matching) in addition to survival analysis, incidence rates or 

descriptive statistics. Compared to the other tools described here, clinicians have to supply their 

questions to the study team and cannot execute analysis on their own. The CDSS delivers reports 

through protected e-mail and phone conversations rather through a standalone user interface. 

 

The last tool in this section, “Care Pathway Workbench” [497] transitions from pure data-driven 

approaches to integration of newly generated real practice evidence into existing care pathways. It uses 

Hidden Markov Models to identify the deviations of real practice from clinical guidelines and mines 
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EHR data to obtain clinical event sequences. It then presents these insights from real-world practice to 

clinicians so that they can modify care plans for a specific patient. 

 

Expert-based (knowledge-aggregative) tools  

 

Expert-based CDSS rely on a study team (usually a multidisciplinary clinical team) to synthesize 

multiple sources of evidence into a knowledge base incorporating evidence-based recommendations and 

local insights of previous patient care and outcomes. Similarly to the traditional rule-based CDSS, such 

tools use an existing evidence knowledge base complemented by the newly generated practice-based 

evidence, which is not available outside of the tool.  

 

A significant portion of the tools presented in this group relates to cancer care. The latter is characterized 

by multiple “best” treatments that accommodate specific patients’ characteristics. Such treatments or 

pathways are often selections of the most cost-effective treatments and are developed collaboratively 

with local specialists. “P4 Pathways” [498–500], “ViaOncology” [501,502], “Level I Pathways” [503–

509] and “eviti” [510,511] have been widely adopted across the United States. They aggregate and 

modify cancer clinical guidelines according to the community-based practices and practice-based 

evidence so that these human-curated pathways reflect the way care is delivered. These tools can be 

used to query EHR data and obtain the cohorts of similar patients for whom specific pathways are 

applicable.  

 

Disadvantages of such tools include sensitivity to incomplete data, dependence on local experts and 

previous practices, and focus on treatment cost. On the other hand, they have established feedback loops 
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for fast evidence modification upon practices changes, or new knowledge becomes available. As 

treatment pathways are curated by the leaders in the field, they can be perceived as trustworthy, which 

may have facilitated their adoption [512]. 

 

Pathway-related tools underwent extensive evaluation, including patient and quality outcomes. “Level I 

Pathways” was made available to the clinicians within the US Oncology Network (a network of more 

than 400 integrated, community-based oncology practices) in 2013 and was proven to reduce costs of 

treatment for patients with lung, breast and colorectal cancer; reduce duration of treatment; and lower 

cancer-related re-admission rates [503,505]. Nevertheless, no statistically significant difference in 

survival rates was found. “P4 Pathways” reduced inpatient admission rate and duration of therapy for 

chronic lymphocytic leukemia [499]. “ViaOncology” showed the same results for metastatic colorectal 

cancer [502]. 

 

“Oncology Expert Advisor” [513] is a closely related CDSS that also provides pathway-like 

recommendations related to cancer care. While it also aggregates multiple sources of evidence, the core 

function of this tool is to promote sharing best practices by incorporating peer-to-peer consultations 

based on the patient profile created by this tool. It subsequently includes the advice management system 

that allows consultation tracking.  

ROAD2H [514,515] and MayoExpert [516] are two other practice-based evidence learning health 

systems, which aggregate recommendations from international, national, local guidelines and 

institutional practices to provide tailored knowledge. ROAD2H uses argumentation with a clear 

provenance trail to resolve conflicting recommendations, while MayoExpert represents care models as 

sequence of nodes, where a node is a decision point. They provide clinicians with a patient-specific 
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recommendation based on hospital EHR data prioritizing institutional best practices. ROAD2H has been 

piloted in two sites and currently provides recommendations for patients with chronic obstructive 

pulmonary disorder and chronic kidney failure. MayoExpert, on the other hand, incorporated 106 

models at the time of publication at the time of publication and was used by 60% of clinicians at the 

Mayo Clinics sites. The authors found that general practice specialists and less experienced practitioners 

used the tool more often than specialists and more experienced clinicians. 

“e-bipolar” [517] stands on its own in this review. As opposed to the “top-down” approach used by 

pathway-related tools, “e-bipolar” helps French practices in getting practice-based advice from the other 

specialists. Coordinating center manages assessments, provides guidance on optimal treatment and 

shares practice-based evidence by providing anonymized data through a web-application “e-bipolar”. 

 

 

5.2.3  Discussion 

 

In this paper we explored the tools that aim at guiding clinicians in complicated clinical cases for which 

they do not have gold-standard evidence. Existing reviews focus on the tools that facilitate evidence-

based practices, but the latter cannot answer all questions outside of guidelines or trials [518–520]. 

Meanwhile, the availability of knowledge plays an important role in the quality of decision-making 

(Appendix 5.5) [521–523]. For questions not covered by existing evidence, clinicians must rely on their 

limited experience. For example, there is no clear consensus on common clinical questions like “Should 

a diabetic patient on angiotensin-converting enzyme (ACE) inhibitors, diuretics and sodium glucose co-
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transporter 2 (SGLT2) inhibitors be taken off diuretics as SGLT2 inhibitors act as diuretics?”, which 

results in clinical practice variation. 

Among other solutions, CDSS can generate additional knowledge to guide clinicians.  

Visual tools focusing at presenting longitudinal patient data has been known for a long time, starting 

with LifeLines [524] and KNAVE [525]. They evolved in two directions: (1) adding more sophisticated 

features to individual views and (2) aggregating patient data into groups with a subsequent visual or 

statistical analysis. The main highlights of visual systems are automated process, fast execution, 

flexibility, relatively small maintenance cost and intuitive representation of the results. On one hand, an 

ability to quickly explore aggregated patient data facilitates fast answers to clinical questions in real 

time. It also means that tool utilization is relatively cheap as it does not rely on a team supporting query 

execution and report generation. On the other hand, it demands familiarity with the data, which can be 

unfeasible for non-experienced clinicians. Additionally, such tools are inferior to analytic CDSS in 

terms of scientific rigor as they do not imply that observed differences in patient cohorts are statistically 

significant or unbiased [67].  

 

Another approach, implemented in “CaVa”, “Green Button” and expert-based CDSS, requires a third 

party (study team or experts) to generate knowledge either by running small-scale observational studies 

on patient data or incorporating new practice-based evidence into personalized recommendations. An 

advantage of such approach is involvement of skilled professionals, who are familiar with the data and 

research methods. In expert-based tools, the knowledge is gathered in advance and then tailored to 

patient’s characteristics. New knowledge, therefore, cannot readily be made available if complicated 

clinical scenarios are not covered by the existing pool of care models. As timely answers can be critical 

in decision-making, another approach adopted by “Green Button” is to run observational studies in real 
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time. While it can address a broader spectrum of questions in a timely manner, such a type of CDSS 

must rely on efficient communication with clinicians to capture additional details and refine questions. 

On the other hand, such CDSS have a potentially broader audience since they do not require specific 

skills or knowledge and the results can be interpreted by skilled personnel or introduced in a simplified 

form in the reports. 

 

Regardless of knowledge inference methods, CDSS for new evidence generation were mainly developed 

and implemented at one site and rarely disseminated. Data-driven tools mostly used structured data 

(ICD-10, CPT-4 and ATC codes); unstructured data was processed by only two tools [485,526,527]. 

None of the tools harmonized data from disparate data sources or used common data models [528]. Lack 

of data standardization can pose a challenge if generating knowledge requires gathering data from 

multiple sites or sources, for example, if a disorder or event is rare. 

 

Lack of evaluation is another finding in our study. For some of the tools, there was no information about 

evaluation including the types of tests that should be performed at the initial stages. The pathway-related 

group was the only group for which an impact on patient and quality outcomes has been shown. These 

CDSS are based on pathways supported by payors [498], which may be a reason for their wide adoption 

and evaluation. Another possible reason may be expert involvement.  

 

As long as traditional RCTs cannot deliver sufficient evidence on time, such tools may be a good 

alternative to disparate intuitive clinical practices. Due to the limitations of the current tools, new robust 

CDSS may be needed. They should build upon previous designs and incorporate their strength in 
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delivering new evidence at the point of care. Most importantly, they should implement more robust 

strategies to ensure reliability of evidence. 

Ease of use and intuitive result presentation should be combined with robust statistical methods and 

phenotyping. While full-scale observational studies usually undergo rigorous assessment [56,83], small-

scale real-time studies may not produce unbiased estimates. For example, rule-based phenotyping with 

chart review validation [114] may not be feasible in real time, which creates a need for best practices for 

fast yet accurate patient identification. If a tool aims to answer questions from different areas or 

specialties, the ability of a particular data source to supply accurate data should be articulated to 

clinicians and any data quality issues or other limitations should be acknowledged. If phenotyping is 

done by an individual other than the end user, phenotyping principles, accuracy and limitations should 

be transparently described as well. Regardless of the design used, a CDSS has also to be seamlessly 

integrated in the workflow.
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5.3. Generating and delivering evidence at the bedside: Data Consult Service 9 

 

 

Based on the assessment of clinicians’ information needs and review of existing clinical decision 

support tools, we proceed with designing a service (Data Consult Service) for generating new evidence 

at the point of care, which specifically focuses on providing robust and reliable evidence.  

We run a pilot study at NewYork-Presbyterian hospital, which results in answering 24 questions from 22 

clinicians, and start a knowledge base that describes current challenges related to use of observational 

data in real time evidence generation. 

 

We show that such a service is capable of supplying new evidence to clinicians to inform their decision-

making and partially address their information needs. In providing such a service, it is mandatory to 

ensure reliability of delivered evidence by accurately phenotyping patients of interest, assessing the 

quality and completeness of the data, and using appropriate research methods to mitigate bias.  

 

 

 

 

 

 

 

 

 

9 This section is published in JAMIA. The full citation for these publication is: 

 Ostropolets A, Zachariah P, Ryan P, Chen R, Hripcsak G. Data Consult Service: Can we use observational data to address 

immediate clinical needs? JAMIA (2021). 
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5.3.1  Background  

 

 

Despite the growing body of medical knowledge, a substantial number of clinical questions remain 

unanswered [13,43,49–52]. Observational data can be used to address some of them with publications 

and presentations being a common way to disseminate new evidence. Nevertheless, observational 

studies are still time-consuming with an average study taking up to year [72,260]. 

 

As we showed in the previous section, new CDSSs ranging from visualization tools to complex learning 

systems aim at generating new evidence in real or near-real time [14]. While promising, such CDSSs are 

generally not scalable as they usually focus at one condition or area at a time and are oftentimes 

descriptive in nature as they do not address bias and confounding properly. 

 

Given known limitations and pitfalls of observational data [84], it is unclear to what extent observational 

data used by such tools can address clinicians’ immediate information needs [496]. It is unclear if the 

methods used to mitigate bias can be applied in a timely manner to ensure the quality of evidence 

generated at the point of care. There is, therefore, a need to identify the scope of the immediate clinical 

information needs observational data can address and, more importantly, the pitfalls that have to be 

considered. 

 

Second, there is limited knowledge on the use of this group of tools in real clinical practice. Most of the 

tools that were deployed in clinical settings and showed improved outcomes involved traditional rule-
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based approaches [14]. On the other hand, data-driven CDSSs remain limited to a single center and are 

rarely used. 

 

Similar to the Green Button project [496], we launched a pilot project called the Data Consult Service 

that uses observational data to produce new knowledge and facilitate clinical decision-making in near- 

real time.  

 

 

5.3.2  Methods  

 

 

We launched a pilot study of the Data Consult Service with the clinicians affiliated with Columbia 

University Irving Medical Center aiming at assessing the feasibility of the project and the ability of 

observational data to meet clinicians’ needs. We designed and implemented a pipeline, which involves 

five steps (Figure 31) starting with clinician recruitment and question gathering. 

 



Chapter 5. Section 3. Data Consult Service 

 

 

246 

Figure 31. Data Consult Service pipeline. 

 

Clinician recruitment and question gathering 

 

Initial recruitment of clinicians affiliated with CUIMC was done using snowball sampling strategy [529] 

through email communication and in-person meetings. Clinical questions were subsequently collected at 

the initial or follow-up encounter through email communication, in-person meetings or clinical rounds, 

whichever was more convenient for the clinicians. We collected routine clinical questions that can be 

answered with aggregated patient data, such as questions related to practice patterns, treatment 

pathways, patient outcomes and others. We did not provide identifiable patient-level information. 

During March – December 2020, the consults have been limited to email communication due to the 

restrictions placed on in-person meetings. 

 

Question refinement and initial data exploration 

 

After clinicians submitted questions, we clarified them and reformatted according to the Population, 

Intervention, Comparison, Outcome, Time (PICOT) framework [89]. As our study team designed and 

executed studies, we assumed that our target users had little experience with data processing or research 

methods. Therefore, we additionally clarified the rationale behind the question to apply an appropriate 

study design (incidence or prevalence rates, treatment pathways, comparative effectiveness, predictive 

analytics) and asked for known issues related to data capture in local EHR system (for example, known 

confounders or missing data elements).  
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After the research question was fully formulated, we proceeded with initial data exploration to assess the 

feasibility of the study. It included identifying necessary data components, estimating sample size and 

accessing data plausibility. Data exploration and analysis relied heavily on the OHDSI infrastructure: 

OMOP CDM, Standardized Vocabularies, tools and pipelines. If a question was deemed to be 

addressable, we created phenotype algorithms for identifying patients of interest. Such algorithms were 

written in SQL or using the OHDSI tool Atlas, which was used to create cohorts of patients by defining 

inclusion and exclusion criteria using available structured data. After defining an initial set of patients, 

we explored patient characteristics (demographic information, incidence rates, co-morbidities and other 

relevant information). We iteratively refined the definition and randomly reviewed individual patient 

histories to ensure that the patients represented the target population of interest, assess missing data and 

plausibility of patient profiles.  

 

Observational study execution 

 

After defining cohorts of patients, we proceeded with running the observational study, which was 

designed in Atlas or SQL and executed in R. The study design spectrum included patient 

characterization, treatment pathways and incidence rate analysis, population-level effect estimation 

(using comparative cohort, case-control, self-controlled case series, self-controlled cohort, or case-

crossover designs) and patient-level prediction studies. The OHDSI infrastructure provided a seamless 

study execution environment and ensured that validated observational research practices were used. The 

OHDSI observational research framework [74] emphasizes a systematic process for generating reliable 

evidence, such as pre-specifying the study design any data analysis to avoid P-hacking, mandatory 

application of methods to control confounding (large-scale propensity score matching using all available 
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covariates [134,530]) and examination of study diagnostics including empirical evaluation through the 

use of 15-100 positive and negative controls [204] to detect residual bias and for p-value and 

confidence-interval calibration [531]). Such practices increased the transparency of analyses and 

allowed the study team to assess potential biases and decide if the results should be delivered to 

clinicians.  

 

After a full study specification was generated, we selected appropriate data sources for the study based 

on the target population of interest, necessary data elements and available patient sample size. The list of 

data sources included CUIMC EHR, MDCD, MDCR and CCAE (Table 1). If applicable, we ran the 

study in multiple data sources to examine the consistency of findings. Each database had been 

transformed into the OHDSI OMOP CDM version 5 and had been used in numerous studies 

[24,195,215,259,532–535]. Additionally, we leveraged the multi-step quality assurance process adopted 

by the OMOP CDM [100,101,536], which comprises checks for data plausibility, conformance and 

completeness. Upon study result generation, we examined the output for potential bias (e.g. propensity 

score balance and comparison of calibrated and non-calibrated estimates) as well as overall plausibility 

(via review by two team member physicians). The list of potential biases we assess include participant 

selection bias, attrition and detection biases, confounding and reporting bias [215,533,537,538]. 

 

Answer delivery 

 

We compiled the results into a study report, which contained a summary of the study following 

STROBE guidelines [539]: study design, our findings and appropriate visualizations (plots, charts etc.), 

study limitations and potential biases, along with the information about data sources used. We used 
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visualization techniques to tailor the reports to clinicians’ knowledge of research methods and data. If 

requested, we performed additional post hoc analyses, such as studying other patient subgroups or 

conducting additional as-treated or intent-to-treat analyses. 

 

Upon delivering the report, we discussed the results and their limitations with clinicians and collected 

users’ feedback. We asked if the report answered their question, if it was comprehensive and easy to 

understand, if it aligned with their experience or prior beliefs and if it was likely to change their practice.  

 

  

5.2.3 Results 

 

 

Overall results 

 

At the time of writing this manuscript, we have collected 29 research questions from twenty-two 

clinicians, with 24 (83%) having been answered or in progress (Appendix 5.6). The other five (18%) 

questions could not be answered due to a lack of data elements. While most of the clinicians (19 

clinicians, 86%) supplied one question, the others supplied up to seven questions. We observed that 

clinical rounds gathered more questions per person as we collected questions during clinical care, while 

email communication and in-person meeting were associated with fewer questions asked. Also, as our 

service had already been in place during Spring 2020, COVID-19 related questions could have only 

been supplied by email due to the clinical service disruption. 
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As we started our initial recruitment among internal medicine specialists (cardiology, infectious disease 

and pediatrics), the questions were mainly related to infectious disorders (9, 31%), cardiology (8, 28%), 

nephrology (6, 21%) and COVID-19 infection (5, 17%).  

 

We also classified questions based on what the answers are intended to be used for (Appendix 5.6, 

characteristics). Most of the questions (17, 59%) considered a group of patients, for which those 

questions recurrently emerged over time. For example, the question “What is the relative risk of major 

cardiovascular events and bleeding within two years after anticoagulation therapy initiation in patients 

with end stage renal disorder treated with warfarin compared to patient treated with apixaban, 

rivaroxaban or dabigatran?” was relevant to a large group of patients and was requested by multiple 

specialists. Six (21%) questions (predominantly collected during clinical rounds) considered a specific 

patient treated at that time. For example, the question “How often Kocuria marina can be seen in the 

microbial culture?” is unlikely to be highly relevant for other patients with infectious diseases due to 

rarity of this bacterium. Finally, the other six primarily considered research questions intended to be 

published and, in this way, to be influencing clinical decision-making for a larger healthcare audience. 

 

User feedback 

 

The Data Consult Service received positive feedback with most of the users willing to share new 

knowledge (Appendix 5.6) with their peers. For all questions that we answered, the clinicians reported 

that the service met their information needs. For 8 questions, they also expressed interest in further 

research. Answers mostly aligned with prior clinicians’ beliefs and did not require changes in current 

practice patterns. For these questions which aligned (20 out of 22 answered, 91%), the clinicians 
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indicated that would use the results in their practice and disseminate the findings. The results for the 

other two (9%) questions did not align with prior clinicians’ beliefs, and they stated they would not 

change practice based on the study results.  

All clinicians commented that the reports were easy to understand, even when the research methods used 

did not align with original study design formulated by the clinicians. As reports underwent iterative 

changes based on user feedback, all the users were satisfied with the reports’ quality and 

comprehensiveness. Additional comments provided in Appendix 5.6 mainly concerned the ability of 

observational data to capture patients and events of interest, including underreported conditions or lack 

of data elements in structured data. 

 

Questions characteristics 

 

A large portion of questions (17, 58.6%) were answered using incidence rate or patient characterization 

design, followed by drug comparative effectiveness and safety (12, 41.3%). Patient characterization 

included computing descriptive statistics in patient groups of interest including summarizing key 

features and estimating incidence rates of outcomes. We also included characterization of treatment 

pathways (as in question 13, Appendix 5.6) in this group. Most of the questions collected on clinical 

rounds involved incidence rate or patient characterization design, while questions gathered through 

indirect communication mainly involved comparative effectiveness study design. Question complexity 

varied greatly. Comparative effectiveness studies were on average more complex as hypothesis testing 

involved methods for asserting causality and mitigating bias.  
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Processing time varied greatly with comparative effectiveness studies taking up to a week to produce 

reports. Incidence rates and characterization questions were usually answered within a day with up to 

five days needed to discuss the results with clinicians and adjust the reports to their knowledge. While 

constructing reports, we used a template that included original questions, methods used and the 

description of the data source. Nevertheless, the process of writing and tailoring reports appeared to be 

the most time-consuming part of the pipeline. On average, a report consisted of four pages (examples 

provided in Appendix 5.7) and took up to two days with additional modification to clinicians’ needs. 

Because the questions were aimed at addressing questions in clinical care and not purely research, 

output was formatted to inform the clinical requestor and support decision-making, rather than framed as 

a publication. Nonetheless, one study was of sufficient interest to reframe and expand into a clinical 

journal article [17]. 

 

Use of observational data for real-time evidence generation 

 

Both comparative effectiveness studies and patient characterization required accurate patient 

phenotyping, which appeared to be the main category of issues we encountered. Accurate phenotyping 

was infeasible for some of the questions due to the lack of data elements (Table 15, “Events poorly 

captured in structured data”). For questions related to drug therapy in patients with chronic conditions, 

drug adherence, therapy modification and over-the-counter drug therapy were the main issues. 

 

For example, when attempting to estimate a relative risk of arrythmias in patients on different anti-

diabetic drugs (question 8, Appendix 5.6) we had to design cohorts accounting for the fact that patients 

oftentimes change their antidiabetic therapy and can be on multiple drugs simultaneously. For the same 
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question, the drug exposures were recorded as pharmacy prescriptions which did not necessarily imply 

that the patients took those medications. Additionally, the prevalence of ventricular fibrillation (one of 

the outcomes) in the EHR was lower than the average prevalence in the population, which suggested 

insufficient capture of this disorder in structured data. 

 

Table 15. Groups of data-related issues observed when designing, conducting and reporting studies in 

Data Consult Service arranged around measurement error and pre-analysis bias. 

Group Examples 

Measurement error 

Duration of drug therapy 

identification 

How to properly identify possible exposure gap for dual 

antiplatelet therapy to be considered continuous when 

multiple duration of therapy exists in practice? 

Over the counter drugs Information about famotidine exposure may be missing in the 

EHR database as it is an over-the-counter drug. 

Underreported conditions 

(events poorly captured in 

structured data) 

Non-life-threatening allergic reactions are generally poorly 

recorded within EHR, which requires additional clinical note 

analysis when attempting to answer questions related to drug 

allergy; 

Preliminary data analysis revealed unusually low prevalence 

of deep venous thrombosis. 

Non-specific coding In-stent thrombosis is coded as non-specific code (Other 

complications due to other cardiac device, implant, and graft), 

which obstructs proper patient phenotyping.  

Pre-analysis bias 

Identifying appropriate study 

design 

Given non-random fashion of COVID-19 testing and therapy, 

a COVID-19 related study has to be carefully designed to 

mitigate bias. 

Drug adherence in outpatient 

prescriptions 

Actual drug exposure is unknown in patients on oral 

anticoagulants as pharmacy prescription filling is recorder in 

the EHR database only for a subset of patients. 

Frequent therapy 

modification  

In antidiabetic drug comparison, how to identify target and 

comparator groups given that patients often switch therapy or 

stay on multiple antidiabetic drugs?  

Other issues 
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Limited sample size There is a limited number of patients with breast cancer on 

estrogen receptor blocker or aromatase inhibitors who 

underwent COVID-19 testing in the EHR database. 

Noncompatible groups 

(study diagnostics failure) 

Study diagnostics reveals unsatisfactory propensity score 

balance when comparing patients on warfarin and direct oral 

anticoagulants 

Data missingness As ceftriaxone is believed to increase bilirubin levels in 

neonates, we expect such patients to have bilirubin measured. 

How should we interpret a large number of patients without 

bilirubin measurements? 

 

On the other hand, questions that involved prevalent conditions, clear principles of coding or low 

treatment variation were overall less time and effort demanding. 

 

For a portion of COVID-19 related questions, preliminary results were generated but would require 

larger sample size to produce reliable estimates; a subset of questions were not answered due to a lack of 

data elements. The latter involved data elements not converted to structured data at the time of analysis 

(echocardiography or blood culture reports) or data elements of unsatisfactory quality (vasopressor 

infusion regimens). 

 

 

5.3.3  Discussion  

 

 

Generating evidence at the point of care enables reliably answering clinical questions that otherwise 

remain unanswered until evidence from clinical trials or observational studies is published. As 

previously shown [540], a lack of unambiguous evidence may contribute to variability of clinical 
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practice and lead to suboptimal patient care [38]. As shown in our pilot study, the Data Consult Service 

enables real-time evidence generation for such questions, both those that recur over time and those that 

are only applicable to individual patients. While the latter are proposed to be addressed by multiple 

precision medicine initiatives [38,541,542], we also address the questions related to a larger group of 

patients, which are not covered by the existing evidence. Although recurrent clinical questions point to a 

need for formal research projects to disseminate evidence, the Data Consult Service did still fill the need 

in a timely manner. It showed a potential to meet clinicians’ information needs and provide new 

evidence that is likely to be disseminated within a healthcare institution.  

 

Despite its advantages, generating evidence on time poses multiple challenges. Clinicians have to 

identify gaps in their knowledge and communicate them to the study team. As previously shown, lack of 

time and complicated access to information resources prevent clinicians from pursuing their questions 

[40,49,50]. In this study, we found that interacting with clinicians during clinical rounds were the most 

productive and convenient way to obtain clinical requests. Similar findings have been shown in the 

clinical librarianship program, which highlighted direct presence of librarians in clinical settings to tailor 

answers to questions to specific clinical context [543]. Questions can be gathered in real time through 

rounds and do not require additional effort to submit to the Data Consult Service team. Clinical rounds 

ensured seamless transition of questions from clinicians to the study team and minimized the risk of 

being forgotten. Moreover, being present on rounds allowed us to participate in the discussion and 

support clinicians in recognizing potential needs. Compared to other “on-demand” services [494], Data 

Consult Service included participation in clinical rounds, which allowed pro-active collection of clinical 

questions. 
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Measurement error and patient phenotyping 

 

One must ensure that the evidence is reliable. Accurate patient phenotyping and assessing data quality 

are critical in producing recommendations for clinicians. Previous studies [494,496,544] emphasized a 

need for a fast search engine, which allows quick iterations on patient cohorts. Our experience shows 

that search time is not the main constraint in phenotyping as opposed to having reliable approaches to 

phenotyping. The latter oftentimes requires advanced data exploration, which goes beyond identifying 

people with ICD-9/10(CM) condition codes, which are used in other studies [14]. Missing or inaccurate 

data in observational data sources may obscure valid inference, which makes it important to identify 

possible pitfalls and biases prior to informing clinicians. Developing a phenotype library to improve re-

use of previously applied definitions and establishing a standardized framework to design and evaluate 

phenotypes could greatly improve the quality and efficiency of future Data Consult Service activities. 

 

As a large portion of questions considers drug exposures, phenotyping oftentimes requires accurate 

identification of exposed patients, including combination therapy, patient switching and discontinuing 

drugs and over-the-counter drugs. As previously noted, the estimation of drug adherence [296] may be 

complicated when prescription filling is recorded for only a subset of patients. We encountered similar 

issues and generally considered inpatient drug administration as more reliable. Nevertheless, we had 

more confidence in outpatient prescriptions if patients had reoccurring prescriptions every three or six 

months, which indicated that they were likely adherent to a treatment regimen. Additionally, over-the-

counter drug exposures were rarely captured in the EHR, which required phenotype algorithm 

modifications whenever such drugs were a part of phenotype of treatment. 
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Similarly to over-the-counter drugs, some of the studied disorders were underrepresented in the 

structured data. Although this trend has been shown in administrative claims datasets for acute [545] and 

chronic [9,273] kidney failure, thromboembolism [546], ventricular arrythmias and cardiovascular death 

[547] there is less research for EHR sources. The clinical informatics community would benefit from a 

comprehensive list of such disorders as underreporting may have direct implications on study results, 

especially if misclassification bias is differential [69].  

 

Also, a portion of questions could not be answered due to the lack of data elements present only in 

clinical notes or reports. As opposed to the category of abovementioned conditions, such elements (for 

example, echocardiography data) are generally present in observational data but are missing in a 

particular instance. These elements can potentially be added to our OMOP CDM instance in the future 

by applying natural language processing techniques [186]. As noted before [548], there is a need for a 

comprehensive catalogue of feasibility counts for disorders and drugs in observational data sources. 

Such a catalogue will allow research teams to quickly estimate if a question is addressable and if 

additional data sources are needed. Although there is an ongoing work on this topic [166,242], a 

comprehensive knowledge base does not exist yet. 

Even if the data elements required by phenotyping algorithms are present, the study team has to inspect 

the accuracy of patient capture. While common phenotype validation methods such as manual chart 

review allow computing performance metrics to assess the quality of phenotyping algorithms [325], 

their use is not feasible due to time constraints. Instead, we assess the general plausibility of a cohort 

(e.g., number of patients, sequences of clinical events, sampling review of patient data) using data-

driven approach. This approach is analogous to chart review in inspecting the features of groups of 

patients to determine if they belong to the studied populations and requires both data knowledge and 
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clinical expertise. Patient profiles described in Section 3.5 were developed after we had ran the pilot. 

Otherwise, they could be a valuable addition to these practices.  

Addressing bias 

Appropriate methods to control for bias must be applied. When delivering evidence that intended to be 

used for clinical practice, the study team must assess evidence validity and reliability. Using methods 

that were previously shown to mitigate bias (large-scale propensity score, negative and positive controls) 

[204,530,537], as well as controlling for patient selection, detection, measurement and reporting bias, 

ensures that only high-quality evidence is delivered. First, study design and result interpretation require 

collaborative work of clinicians, statisticians and informaticians. Using a large-scale propensity score 

model as adopted by OHDSI [530] based on all demographic, condition, drug, measurement and 

procedure codes available in the structured data allows to achieve better control of confounding [208]. 

Using a large number of negative and synthetic positive controls allows to estimate the extent of residual 

bias present after statistical adjustment, and empirically calibrate the findings to account for this 

systematic error [204]. Replicating the analyses on multiple databases allows to assess consistency of 

the results. By following a consistent approach to study design and execution and using standardized 

open-source analytic tools throughout the process, we also increase the transparency of study results, 

which is particularly important when study results raise concerns. For example, we observed that 

patients with end stage renal disorder on warfarin were substantially clinically different from patients on 

oral anticoagulants, so we could not achieve full propensity score balance needed to produce reliable 

estimates. Delivering such results require extensive and transparent communication with the target users 

regarding limitations of the study and potential bias. 
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As we used data transformed into a common data model, data processing and standardization have to be 

conducted beforehand by a separate extract-transform-load (ETL) team. While it means that additional 

data elements in the native EHR system are rarely used, the CDM allows us to minimize time spent on 

obtaining relevant information and address questions from various specialties. Moreover, the OHDSI 

data network provides an opportunity to leverage multiple data sources, increase sample size and include 

diverse populations.  

 

Having data with different provenance also provides opportunities to select a data source appropriate for 

a specific research question. As previously shown, EHR data sources provide better capture of inpatient 

drug administration [88]. While we also observed this pattern, we noted that outpatient prescriptions 

were better captured in administrative claims datasets. 

 

Nevertheless, EHR sources provided an opportunity to use laboratory test results and vital signs not 

otherwise available in administrative claims datasets. The former was crucial when studying 

underreported conditions as it allowed detecting patients of interest by using alternative laboratory 

criteria. Additionally, data source use may be prioritized based on predominant populations. For 

example, in the question related to diabetes therapy (Appendix 5.6, question 8), we used MDCR as it 

both provided better capture of drug prescription frequency and duration and mainly had elderly patients 

with increased prevalence of diabetes mellitus type II. Nevertheless, while we can use multiple data 

sources converted to OMOP CDM in our institution, new policies and practices are needed to enable 

timely and seamless data exchange across institutions.  
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Finally, the last challenge was related to clinicians’ perception of results. In concordance with the 

literature [549] , clinicians are likely to use informal reasoning in their decision-making. We observed 

that clinicians in our study were more inclined to use and disseminate our reports if the latter aligned 

with their baseline expectations. 

 

We show that observational data can be used to generate evidence at the bedside. Nevertheless, future 

work needs to address several considerations to increase the usability of such services. First, increasing 

patient sample size by including other OMOP data sources into analysis would facilitate large scale 

propensity score comparison and enable research for rare outcomes. Second, using alternative 

approaches for phenotype performance estimation such as probabilistic evaluation [115] or patient 

profile review as described in Chapter 2 would enable better patient phenotyping. Third, as clinical 

rounds leveraged the most questions per clinician and allowed answering patient-relevant questions in a 

timely manner, future development can attempt to optimize clinician engagement and make it more 

scalable.
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5.4 Chapter summary and lessons learned 

 

 

In Chapters 3 and 4 we investigated pre-analysis bias and measurement error associated with patient 

phenotyping and comparator definition. We developed standardized pipelines, new methods and 

approaches for reducing bias, which, coupled with common environment (a common data model and 

standardized vocabularies) and robust large-scale analytical and statistical methods (large-scale 

propensity modelling, negative controls and p-value and confidence interval calibration), facilitate 

generation of reliable and robust evidence. While it is an achievement on its own, these standardized 

approaches also make the generation process more efficient and less time-consuming. 

This opens a possibility of generating evidence in real or near-real time to address clinicians’ immediate 

information needs. 

 

As we observed throughout the interviews with clinicians, there are multiple, oftentimes shared, 

questions regarding drug effectiveness, safety and utilization that are not covered by the existing 

guidelines, clinical trials, or observational studies. This gap in clinical knowledge in not likely to go 

away with a growing number of new drugs highlighting a need for responsive yet reliable evidence. 

 

Yet, it is not an easy endeavor. In our review of the tools attempting a similar task, only one attempted 

to properly address bias. Our experience with the Data Consult Service mirrored this finding at the main 

bottleneck in evidence generation and delivery was bias mitigation. To deliver reliable on-demand 

evidence, we had to ensure that the study design reflects clinicians’ rationale, the concept sets, and 

phenotypes identify the patients of interest, the data quality issues are accounted for, the study 
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diagnostics meet objective criteria of evidence quality. If our procedures showed potential bias at any of 

these steps, we would iterate over the previous steps. Not surprisingly, while most of the questions could 

be addressed within two days, some of them took weeks. 

 

Having both clinical and informatics expertise was crucial in fast evidence delivery. Green Button, 

which was the predecessor of the Data Consult Service, had a team of data scientists, clinicians and local 

experts. We found that these aspects of expertise can effectively be combined in one person (the author 

of this thesis), which provides more flexibility and increases efficiency. As we noted, it is only possible 

if we rely on already established practices and tools for reliable evidence generation. 

 

Although one may find these results discouraging, the efforts to produce reliable evidence resulted in 

high appreciation of the results by the clinicians and increased their trust in observational data.  

While more research is needed to establish fast and efficient pipelines for evidence generation, the 

experience of the Data Consult Service encourages us in future efforts. We do not claim that 

observational data at a given institution can answer all clinical questions reliably, but as we accumulate 

more knowledge about the data and its limitations, we can both discard the questions we cannot answer 

faster and further develop targeted methods to address these limitations. 
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Chapter 6. Conclusions and future work 

 

 

6.1. Conclusions 

 

In this thesis, we hypothesized that actionable observational evidence can be generated in near-real time 

to address clinicians’ information needs not covered by the existing evidence.  

For such evidence to be used in decision-making for patient care, it must be reliable and accurate. To 

cover the gaps in methods for reliable observational evidence generation, we systematically assessed 

pre-analysis bias in observational studies and developed novel approaches and informatics tools to 

mitigate it. 

 

Phenotyping or identification of patients of interest is a major source of measurement error in 

observational studies. As it can only be partially controlled by analytical methods, investigators are 

required to use all appropriate methods to ensure that patient capture is accurate. While phenotyping has 

been extensively studied over the years, the problem of developing scalable phenotypes that can be 

generalizable to multiple data sources has not been solved. To our knowledge, we were the first 

researchers to perform large-scale assessment of heterogeneity in observational data networks and its 

implications on phenotyping. We developed novel methods to estimate data source granularity, which, 

along with the analysis of real-world code utilization patterns, contributed to characterization of 22 US 

and international data sources containing more than 272 billion records. 
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This work informed development and evaluation of the recommender system (PHOEBE) that enables 

creating comprehensive concept sets that account for data source heterogeneity. As opposed to the 

concept sets developed on a local data source or those borrowed from the literature, concept sets 

generated with PHOEBE are generalizable to multiple data sources and can identify patients accurately 

and early on in the course of the disease. PHOEBE substantially reduces the time needed to create 

portable concept sets even if the researchers do not have the access to all of them. 

 

Similarly to the choice of codes, the choice of inclusion and exclusion criteria and the order of their 

application influences patient selection and may introduce bias. In our systematic experiment of 

assessing algorithmic implementations of the conceptual definition of a cohort, we highlighted 

significant variability that impacts patient composition. Explicit documentation and reporting in 

reproducible form of machine-readable objects is a necessary step in any observational study and is 

required for accurate interpretation of its results. 

 

As phenotypes can introduce measurement error they should be evaluated in a robust fashion. The 

current gold standard for phenotype evaluation (manual chart review) is not always possible, is variable 

and is time-consuming. We developed and evaluated a novel data-driven and interpretable approach that 

organizes structured data in a systematic fashion using clinical reasoning principles. We demonstrated 

that our system (KEEPER) achieves similar accuracy of evaluation, better inter-rater reliability, and 

substantially faster review compared to manual chart review. KEEPER can enable scalable and reliable 

phenotyping on EHR and claims data sources. 
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Comparator definition is another source of bias in observational studies, which, as we demonstrated in 

this thesis, influences both patient composition and study estimates. We discovered lack of empirical 

evidence and guidance on how unexposed comparators should be defined. Variable unexposed 

comparator definition strategies can bias inference in safety and effectiveness studies or delay them, 

which is especially important for mass and urgent campaigns such as COVID-19 vaccination. 

 

To cover this gap, we systematically assessed robustness of background incidence rates commonly used 

in safety surveillance. To our knowledge, we were the first to do a systematic and comprehensive 

examination of the magnitude of variability of incidence rates depending on different design choices. 

Observed high age- and gender-dependent variability in rates was expected, but sensitivity of 

background rates to the choice of data source, time-at-risk parameters, and unexposed comparator index 

date was not quantified at scale before. As those parameters highly influence the rates of events in 

general population and, as a result, interpretation of drug safety, regulatory bodies and researchers 

should carefully consider these choices when interpreting observed-to-expected studies. 

 

We uncovered a large effect of index date selection strategy (anchoring) on the rates of events and 

baseline patient characteristics. We developed empirical methods to define an appropriate anchor to 

reflect target exposure features. If these or similar methods are not used, imperfect anchoring strategy 

can lead to biased estimates in cohort studies and self-controlled case series, especially if statistical 

methods fail to incorporate a large number of potential confounders to balance the target and 

comparator. 
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We used the background incidence rate methods that we developed to calculate rates for the European 

Medicines Agency during its determination on the AstraZeneca COVID-19 vaccine in March 2021. The 

Agency used our rates to reveal an increase in very rare clotting disorders, but no increase in more 

common clotting disorders, and the Agency determined that the vaccine’s benefits outweighed its risks, 

making it available again throughout Europe. 

 

We examined bias in vaccine effectiveness studies. As there was no consensus on interpretation of high 

COVID-19 vaccine effectiveness during the first two weeks after vaccination, we investigated short-

term effectiveness and bias associated with it using robust analytical methods, a set of secondary 

analyses and chart review. We found selection and health-seeking behavior biases as well as 

confounding by severity and indication that explained high effectiveness and provided further 

considerations for future short-term effectiveness studies.   

 

We subsequently tested the hypothesis that building scalable and robust pipelines to address bias enables 

both more robust and faster evidence generation. Using the methods and knowledge we generated in 

Chapter 3 and 4 we proceeded with building a service that delivers actionable, reliable, and timely 

evidence to clinicians. We first explored the potential clinicians’ questions newly generated evidence 

can address. We interviewed 31 clinicians at CUIMC and created a modern taxonomy of information 

needs not covered by the existing evidence. Such needs did not decrease with years of clinical 

experience and were mainly related to selecting an optimal treatment for patients not typically covered 

by RCTs, which highlighted a need for timely observational evidence. 

  
We thoroughly analyzed the experience of previous CDSS that generated new evidence. As we 

characterized and classified 25 tools we found, we discovered that all available tools lacked robust and 
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thorough bias-mitigating strategies. Based on the assessment of clinicians’ information needs and review 

of existing clinical decision support tools, we designed a service (Data Consult Service) for generating 

new evidence at the point of care, which specifically focuses on providing robust and reliable evidence. 

We ran a pilot study at NewYork-Presbyterian hospital, prospectively collected 29 questions from 22 

clinicians and answered 24 of them. On average, we were able to produce publishable quality reports in 

1-2 days. We classified the challenges we encountered and proposed future steps for  reliable real time 

evidence generation. 

 

Summary 

 

 

In this thesis, we showed that it is feasible to deliver newly generated on-demand observational evidence 

to clinicians. As such evidence is used in decision-making, it is mandatory to ensure its reliability and 

report its limitations transparently and honestly. These two principles increase trust in the evidence, 

which is especially important if clinicians are to act on it. Reliability requires systematic and 

standardized approaches to data quality assurance, patient phenotyping, comparator definition, and 

robust effect estimation.  

 

Upon examination of the current state of the field of observational research, we identified the gaps in 

knowledge and lack of informatics solutions for patient phenotyping and comparator definition in 

heterogeneous distributed data networks. Throughout this thesis, we contributed, both methodologically 

and empirically, to addressing phenotyping and comparator definition as a source of pre-analysis bias, 

which resulted in more scalable and robust evidence generation pipelines. 
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The lessons we learned about data source heterogeneity and granularity, the impact of data 

standardization and harmonization, the ability of structured data to effectively reflect patient state, and 

the importance of addressing temporal, selection and other biases at the design stage were crucial to 

delivering evidence to the clinicians at NYP. The lessons we learned about the limitations of 

observational data may be even more important as they allowed us to discard unreliable evidence.  

The evidence we generated throughout this thesis had direct clinical impact: we calculated background 

rates for adverse events of special interest influencing safety decision for 700 million patients and we 

generated the evidence that directly impacted patient care for 22 clinicians. We believe that our 

experience with the Data Consult Service can be scaled to a larger group of clinicians and a larger group 

of institutions if we continue working on establishing scalable and standardized workflows for evidence 

generation. 
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6.3. Future directions 

 

The findings reported in this thesis point to many directions for future research. Here, we present some 

of the possible extensions of this work in the order they appear in the thesis. 

 

First, while we developed methods and tools to improve scalability, more can be done to establish more 

scalable and robust pipelines for phenotyping. 

 

The methods for estimating data source granularity we developed can potentially inform the initial 

stages of phenotyping. Our methods used SNOMED-CT terms from the Condition domain, which 

represent a large portion of all structured data in a data source. Future studies may examine the 

hypothesis whether codes for procedures and measurements contain uncaptured information about 

granularity. Examining influence of procedural and measurement terminologies such as CPT-4 or 

LOINC on data source granularity would require aligning these terminologies to create joint hierarchies 

of procedures and measurements as the latter is currently lacking comprehensiveness in the OHDSI 

Standardized Vocabularies and does not exist elsewhere. We may also want to examine if leveraging 

other SNOMED-CT relationships that define concepts (such as ‘part-of’ or ‘has-a’) achieves better 

precision in estimating individual concept granularity to be used in the overall data source granularity 

estimation. 

 

Another part of future work concerns concept selection in phenotyping. While PHOEBE, a 

recommender system for concept selection we developed, is efficient in expanding concept sets and is 

actively used in the network studies in OHDSI, more can be done to improve its recommendations. 
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Adding data-driven approaches that leverage patient context can potentially enrich recommendations 

[331,550]. As data-driven recommendations may produce more sensitive (broad) concept sets at a cost 

of decreased specificity, more studies are needed to determine an appropriate balance between more and 

less specific recommendations for efficient concept selection.  

 

We will be doing more work on phenotype evaluation. We envision that our profile review system 

(KEEPER) can greatly contribute to scalable phenotype pipelines if integrated into a larger stack of 

OHDSI tools. To achieve that, we need to (a) build an executable package or user interface and (b) 

develop or adopt automated disease-agnostic approaches to relevant information extraction. There are 

many works on identifying similar concepts, including lexical, ontological and data-driven approaches 

[329–331] to can be leveraged to accomplish this task. An approach suitable for KEEPER will have to 

identify relevant but not necessarily semantically similar concepts, concepts from different domains 

(such as laboratory tests relevant to a given disease) and clinically meaningful concept pairs (such as 

diagnosis-differential diagnosis pairs [334]) and is therefore likely to be a mixed-methods approach. 

More studies are needed to examine portability of patient profiles to institutions with different data 

capture or patient composition.  

 

Second, more can be done to standardize comparator definition process and assess bias at this stage. We 

provided our recommendations on how to empirically select comparators and the next step can be 

formalizing the process and criteria so that they can become an executable package to guide comparator 

definition. Future work may concern investigating and establishing computational criteria to automate 

comparator selection. While we focused on the unexposed comparator, we hope to collaborate with our 

colleagues to expand this work to the exposed comparator definition and selection.  
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We hope that the future work (our and our colleagues) would enable us to scale the Data Consult Service 

to cover more clinicians, further reduce time and increase the scope of the questions we can answer.  

For example, we can investigate if increasing patient sample size by including other OMOP data sources 

into analysis facilitates question answering. While it may enable research for rare outcomes, it requires 

establishing fast pipelines for study execution between institutions. Similarly, adding the currently 

missing elements to our OMOP CDM (such as blood culture results) may enable more efficient and 

faster evidence generation for those questions that require these elements. 
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Appendix 3.1 Deviations observed in teams’ GLP1-RA cohort implementation. 

 

Same as in the master cohort Deviations from the master cohort 

Team 1 

2. Inclusion criteria: At least 365 

days of prior observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included any GLP1-RA 

drugs, including combination drugs. Exclusion criteria: excluded patients who had GLP1-

RA exposure any time prior [-all, -1] 

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had T2D drug exposure with drug exposure start 

within [-365;-1] days prior to the index date OR those who had 1 inpatient visit with T2D 

diagnosis within [-365; 0] days prior to the index date OR those who had 2 outpatient visits 

with T2D diagnosis within [-365;0] days prior to the index date 

8. Exclusion criteria: excluded 

patients who had insulin exposure 

within [-365; -1] days prior to the 

index date 

5. Inclusion criteria: included patients who had CLRD drug exposure with drug exposure 

start within [-365;0] days prior to the index date OR those who had 1 inpatient visit with 

CLRD diagnosis within [-365; -1] days prior to the index date OR those who had 2 

outpatient visits with CLRD diagnosis within [-365;0] days prior to the index date  

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1]  

7. Exclusion criteria: excluded patients who had pregnancy codes within [-365;-1] days prior 

to the index date  

  9. Exclusion criteria: excluded patients who had DPP4 exposure within [-all; 0] days prior to 

the index date  

  10. Inclusion criteria: did not add add-on therapy 

Team 2 
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2. At least 365 days of prior 

observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included only mono GLP1-

RA drugs. Exclusion criteria: excluded patients who had GLP1-RA exposure any time prior 

[-all, -1] 

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had T2D drug exposure with drug exposure start 

within [-365;-1] days prior to the index date OR those who had 1 inpatient visit with T2D 

diagnosis within [-365; 0] days prior to the index date OR those who had 2 outpatient visits 

with T2D diagnosis within [-365;0] days prior to the index date 

9. Exclusion criteria: excluded 

patients who had DPP4 exposure 

within [-365; 0] days prior to the 

index date 

5. Inclusion criteria: included patients who had CLRD drug exposure with drug exposure 

start within [-365;0] days prior to the index date OR those who had 1 inpatient visit with 

CLRD diagnosis within [-365; 0] days prior to the index date OR those who had 2 outpatient 

visits with CLRD diagnosis within [-365;0] days prior to the index date  

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1]  

7. Exclusion criteria: excluded patients who had pregnancy procedure/measurement codes 

within [-60;60] days or pregnancy diagnosis within [-270;270] days 

  8. Exclusion criteria: excluded patients who had insulin exposure within [-all; -1] days prior 

to the index date  

  10. Inclusion criteria: included patients with metformin exposure with exposure start [-all, -

1], exposure end [30, all], duration - at least 30 days  

Team 3 

1. Inclusion criteria: identified the 

first GLP1-RA exposure within 

2006-2016. Included only mono 

GLP1-RA drugs 

4. Inclusion criteria: included patients who had 1 inpatient visit with T2D drug exposure 

with drug exposure start within [-365;0] days prior to the index date OR those who had 1 

inpatient visit with T2D diagnosis within [-365; 0] days prior to the index date OR those 

who had 2 outpatient visits with T2D diagnosis within [-365;0] days prior to the index date 

OR those who had 2 outpatient visits with T2D drug within [-365;0] days prior to the index 

date 

2. At least 365 days of prior 

observation 

5. Inclusion criteria: included patients who had 1 inpatient visit with CLRD drug exposure 

with drug exposure start within [-365;0] days prior to the index date OR those who had 1 

inpatient visit with CLRD diagnosis within [-365; 0] days prior to the index date OR those 

who had 2 outpatient visits with CRLD diagnosis within [-365;0] days prior to the index date 
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OR those who had 2 outpatient visits with CLRD drug within [-365;0] days prior to the 

index date 

3. Inclusion criteria: Age > 17 at the 

index date 

7. Exclusion criteria: excluded patients who had pregnancy codes within [-365;-1] days prior 

to the index date  

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1]  

8. Exclusion criteria: did not exclude patients with prior insulin exposure 

 
9. Exclusion criteria: excluded patients who had DPP4 exposure within [-all; 0] days prior to 

the index date 

  10. Inclusion criteria: included patients with metformin exposure with exposure start [-365, -

1], exposure end - any, duration - any  

Team 4 

2. At least 365 days of prior 

observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included any GLP1-RA 

drugs, including combination drugs. Exclusion criteria: excluded patients who had GLP1-

RA exposure any time prior [-all, -1] 

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had 1 inpatient visit with T2D drug exposure 

with drug exposure start within [-365;-1] days prior to the index date OR those who had 1 

inpatient visit with T2D diagnosis within [-365; -1] days prior to the index date OR those 

who had 2 T2D diagnosis within [-365;-1] days prior to the index date OR those who had 2 

T2D drug exposures within [-365;-1] days prior to the index date  

10. Inclusion criteria: included 

patients with at least 2 antidiabetic 

drugs with exposure start [-all, 0] 

and exposure end [0, all] 

5. Inclusion criteria: included patients who had 1 inpatient visit with CLRD drug exposure 

with drug exposure start within [-365;-1] days prior to the index date OR those who had 1 

inpatient visit with CLRD diagnosis within [-365; -1] days prior to the index date OR those 

who had 2 CLRD diagnosis within [-365;-1] days prior to the index date OR those who had 

2 CLRD drug exposures within [-365;-1] days prior to the index date 

  6. Exclusion criteria: excluded patients with exclusion conditions within [-all;0] days prior to 

the index date (has to be [-365;-1]. For conditions requiring corticosteroid treatment, 

required condition and corticosteroid exposure within [-365;-1] day 
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  7. Exclusion criteria: excluded patients who had pregnancy codes within [-280;280] days 

prior to the index date (has to be [-180;180]) 

  8. Exclusion criteria: excluded patients who had insulin exposure within [-all; 0] days prior 

to the index date  

  9. Did not exclude patients with prior DPP4 exposure 

Team 5 

2. At least 365 days of prior 

observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included any GLP1-RA 

drugs, including combination drugs. Exclusion criteria: excluded patients who had GLP1-

RA exposure any time prior [-all, -1]  

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had 1 inpatient visit with T2D diagnosis within [-

365; -1] days prior to the index date OR those who had 2 T2D diagnosis within [-365;-1] 

days prior to the index date OR those who had 1 T2D drug exposure within [-365;-1] days 

prior to the index date 

9. Exclusion criteria: excluded 

patients who had DPP4 exposure 

within [-365; 0] days prior to the 

index date 

5. Inclusion criteria: included patients who had 1 inpatient visit with CLRD diagnosis within 

[-365; -1] days prior to the index date OR those who had 2 CLRD diagnosis within [-365;-1] 

days prior to the index date OR those who had 1 CLRD drug exposure within [-365;-1] days 

prior to the index date  

8. Exclusion criteria: excluded 

patients who had insulin exposure 

within [-365; -1] days prior to the 

index date  

7. Exclusion criteria: excluded patients with pregnancy-related conditions, procedures or 

measurements at day 0 

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1] days prior to the 

index date 

10. Inclusion criteria: included patients who had antidiabetic drug exposure with exposure 

start [-365, -1], exposure end - any, duration - any 

Team 6 

2. At least 365 days of prior 

observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included any GLP1-RA 
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drugs, including combination drugs. Exclusion criteria: excluded patients who had GLP1-

RA exposure any time prior [-all, -1]  

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had 1 inpatient visit with (T2D diagnosis or T2D 

drug exposure) AND (CLRD diagnosis or CLRD drug exposure) within [-365; -1] days prior 

to the index date OR those who had 2 outpatient visits with (T2D diagnosis or T2D drug 

exposure) AND (CLRD diagnosis or CLRD drug exposure) within [-365; -1] days prior to 

the index date 

8. Exclusion criteria: excluded 

patients who had insulin exposure 

within [-365; -1] days prior to the 

index date  

7. Exclusion criteria: excluded patients with pregnancy-related conditions, procedures or 

measurements within [-365;-1] days 

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1] days prior to the 

index date 

9. Exclusion criteria: excluded patients who had DPP4 exposure within [-all; 0] days prior to 

the index date 

  10. Inclusion criteria: did not add add-on therapy 

Team 7 

2. At least 365 days of prior 

observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included any GLP1-RA 

drugs, including combination drugs. Exclusion criteria: excluded patients who had GLP1-

RA exposure any time prior [-all, -1]  

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had T2D drug exposure with drug exposure start 

within [-365;-1] days prior to the index date OR those who had 1 inpatient visit with T2D 

diagnosis within [-365; -1] days prior to the index date OR those who had 2 outpatient visits 

with T2D diagnosis within [-365;-1] days prior to the index date 

8. Exclusion criteria: excluded 

patients who had insulin exposure 

within [-365; -1] days prior to the 

index date 

5. Inclusion criteria: included patients who had CLRD drug exposure with drug exposure 

start within [-365;-1] days prior to the index date OR those who had 1 inpatient visit with 

CLRD diagnosis within [all; -1] days prior to the index date OR those who had 2 outpatient 

visits with CLRD diagnosis within [-365;-1] days prior to the index date  
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6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1] days prior to the 

index date 

7. Exclusion criteria: excluded patients who had pregnancy codes within [-365;0] days prior 

to the index date 

  9. Did not exclude patients with prior DPP4 exposure 

  10. Inclusion criteria: did not add add-on therapy 

Team 8 

1. Inclusion criteria: identified the 

first GLP1-RA exposure within 

2006-2016. Included only mono 

GLP1-RA drugs 

4. Exclusion criteria: did not exclude prior GLP1-RA exposure within 365 days prior 

2. At least 365 days of prior 

observation 

5. Inclusion criteria: included patients who had a CLRD diagnosis within [-365;0] days prior 

to the index date 

3. Inclusion criteria: Age > 17 at the 

index date 

7. Exclusion criteria: excluded patients who had pregnancy codes within [-30;0] days prior 

to the index date 

4. Inclusion criteria: included 

patients who had a T2D diagnosis 

within [-365;0] days prior to the 

index date 

8. Exclusion criteria: excluded patients who had insulin exposure within [-365; 0] days prior 

to the index date 

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;0] days prior to the 

index date 

10. Inclusion criteria: did not add add-on therapy 

9. Exclusion criteria: excluded 

patients who had DPP4 exposure 

within [-365; 0] days prior to the 

index date 

  

Team 9 
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2. At least 365 days of prior 

observation 

1. Inclusion criteria: identified the first GLP1-RA exposure in the patient history and then 

excluded those who had the first exposure outside of 2006-2016. Included any GLP1-RA 

drugs, including combination drugs. Exclusion criteria: excluded patients who had GLP1-

RA exposure any time prior [-all, -1] 

3. Inclusion criteria: Age > 17 at the 

index date 

4. Inclusion criteria: included patients who had 2 outpatient visits with (T2D drug exposure 

or T2D diagnosis) within [-365;-1] days prior to the index date OR those who had 1 inpatient 

visit with (T2D drug exposure or T2D diagnosis) within [-365; 1] days prior to the index 

date  

6. Exclusion criteria: excluded 

patients with exclusion conditions 

within [-365;-1] days prior to the 

index date 

5. Inclusion criteria: included patients who had 2 outpatient visits with (CLRD drug 

exposure or CLRD diagnosis) within [-365;-1] days prior to the index date OR those who 

had 1 inpatient visit with (CLRD drug exposure or CLRD diagnosis) within [-365; 1] days 

prior to the index date  

8. Exclusion criteria: excluded 

patients who had insulin exposure 

within [-365; -1] days prior to the 

index date 

7. Exclusion criteria: excluded patients who had pregnancy codes within [-365;-1] days prior 

to the index date 

9. Exclusion criteria: excluded 

patients who had DPP4 exposure 

within [-365; 0] days prior to the 

index date 

10. Inclusion criteria: included patients who another antidiabetic drug exposure with 

exposure start [-all, 1], exposure end - any, duration - any 
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Appendix 3.2 Patient characteristics in the master implementation and teams’ implementations. 

 

  Master  Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7 Team 8 Team 9 

Total, n 6356 43641 18701 11260 8417 3126 2159 63619 12618 31253 

Female 

patients, n (%) 

4207 

(66.2%) 

28396 

(65.1%) 

11575 

(61.9%) 

7594 

(67.4%) 

4903 

(58.3%) 

1794 

(57.4%) 

1460 

(67.6%) 

39740 

(62.5%) 

8531 

(67.6%) 

19860 

(63.5%) 

Age groups, n (%) 

15 - 19 9 (0.1%) 98 (0.2%) 32 (0.2%) 

20 

(0.2%) 

<5 

(<0.1%) 

<5 

(<0.1%) 

<5 

(<0.1%) 

104 

(0.2%) 

14 

(0.1%) 46 (0.2%) 

20 - 24 

35 

(0.6%) 

309 

(0.7%) 96 (0.5%) 

74 

(0.7%) 

12 

(0.1%) 

20 

(0.6%) 8 (0.4%) 

329 

(0.5%) 

78 

(0.6%) 

123 

(0.4%) 

25 - 29 

39 

(0.6%) 

543 

(1.2%) 

185 

(1.0%) 

127 

(1.1%) 

56 

(0.7%) 

33 

(1.1%) 

12 

(0.6%) 

645 

(1.0%) 

120 

(1.0%) 

222 

(0.7%) 

30 - 34 

121 

(1.9%) 

1,398 

(3.2%) 

512 

(2.7%) 

338 

(3.0%) 

158 

(1.9%) 

86 

(2.8%) 

36 

(1.7%) 

1,731 

(2.7%) 

308 

(2.4%) 

695 

(2.2%) 

35 - 39 

282 

(4.4%) 

2,863 

(6.6%) 

1,086 

(5.8%) 

726 

(6.5%) 

389 

(4.6%) 

140 

(4.5%) 

117 

(5.4%) 

3,710 

(5.8%) 

647 

(5.1%) 

1,674 

(5.4%) 

40 - 44 

608 

(9.6%) 

4,685 

(10.7%) 

1,908 

(10.2%) 

1,255 

(11.2%) 

750 

(8.9%) 

253 

(8.1%) 

200 

(9.3%) 

6,374 

(10.0%) 

1,238 

(9.8%) 

3,073 

(9.8%) 

45 - 49 

897 

(14.1%) 

6,778 

(15.5%) 

2,905 

(15.5%) 

1,758 

(15.6%) 

1,222 

(14.5%) 

379 

(12.1%) 

303 

(14.0%) 

9,634 

(15.1%) 

1,865 

(14.8%) 

4,800 

(15.4%) 

50 - 54 

1,322 

(20.8%) 

8,736 

(20.0%) 

3,907 

(20.9%) 

2,304 

(20.5%) 

1,744 

(20.7%) 

543 

(17.4%) 

444 

(20.6%) 

12,727 

(20.0%) 

2,597 

(20.6%) 

6,698 

(21.4%) 

55 - 59 
1,500 
(23.6%) 

9,343 
(21.4%) 

4,378 
(23.4%) 

2,424 
(21.5%) 

2,115 
(25.1%) 

780 
(25.0%) 

528 
(24.5%) 

14,228 
(22.4%) 

2,850 
(22.6%) 

7,492 
(24.0%) 

60 - 64 

1,448 

(22.8%) 

8,291 

(19.0%) 

3,540 

(18.9%) 

2,071 

(18.4%) 

1,877 

(22.3%) 

820 

(26.2%) 

476 

(22.1%) 

13,143 

(20.7%) 

2,660 

(21.1%) 

6,101 

(19.5%) 

65 - 69 

95 

(1.5%) 

597 

(1.4%) 

152 

(0.8%) 

163 

(1.5%) 

90 

(1.1%) 

68 

(2.2%) 

31 

(1.4%) 

994 

(1.6%) 

241 

(1.9%) 

329 

(1.1%) 

Patients with a condition record within a year prior to the index date, n (%) 

Asthma 

4,059 

(63.9%) 

6,463 

(14.8%) 

2,596 

(13.9%) 

3,391 

(30.1%) 

1,918 

(22.8%) 

491 

(15.7%) 

1,290 

(59.8%) 

9,199 

(14.5%) 

7,839 

(62.1%) 

6,842 

(21.9%) 
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Chronic 

obstructive 

lung disease 

1,452 

(22.8%) 

2,132 

(4.9%) 

808 

(4.3%) 

1,203 

(10.7%) 

780 

(9.3%) 

286 

(9.2%) 

654 

(30.3%) 

3,042 

(4.8%) 

2,603 

(20.6%) 

2,477 

(7.9%) 

Hypertensive 
disorder 

4,497 
(70.8%) 

27,373 
(62.7%) 

11,694 
(62.5%) 

7,723 
(68.6%) 

6,172 
(73.3%) 

2,095 
(67%) 

1670 
(77.3%) 

41,603 
(65.4%) 

8,821 
(69.9%) 

20,911 
(66.9%) 

Congestive 

heart failure 

274 

(4.3%) 

823 

(1.9%) 

322 

(1.7%) 

312 

(2.8%) 

371 

(4.4%) 

192 

(6.1%) 

146 

(6.8%) 

1,190 

(1.9%) 

444 

(3.5%) 

802 

(2.6%) 

Coronary 

arteriosclerosis 

723 

(11.4%) 

3,413 

(7.8%) 

1,438 

(7.7%) 

1,043 

(9.3%) 

1,075 

(12.8%) 

526 

(16.8%) 

301 

(13.9%) 

5,347 

(8.4%) 

1,254 

(9.9%) 

2,916 

(9.3%) 

Acute 

myocardial 

infarction 

69 

(1.1%) 

264 

(0.6%) 

116 

(0.6%) 

107 

(0.9%) 

102 

(1.2%) 

47 

(1.5%) 

38 

(1.8%) 

413 

(0.7%) 

107 

(0.9%) 

240 

(0.8%) 

Cardiac 

arrhythmia 

484 

(7.6%) 

2,258 

(5.2%) 

907 

(4.9%) 

774 

(6.9%) 

649 

(7.7%) 

275 

(8.8%) 

217 

(10.1%) 

3,504 

(5.5%) 

969 

(7.7%) 

1,963 

(6.3%) 

Hyperlipidemia 

4,183 

(65.8%) 

26,436 

(60.6%) 

11,464 

(61.3%) 

7,381 

(65.6%) 

5,905 

(70.2%) 

1,984 

(63.5%) 

1,509 

(69.9%) 

40,811 

(64.1%) 

8,474 

(67.2%) 

20,190 

(64.6%) 

Obstructive 

sleep apnea 

syndrome 

1,494 

(23.5%) 

7,533 

(17.3%) 

3,137 

(16.8%) 

2,442 

(21.7%) 

1,800 

(21.4%) 

504 

(16.1%) 

578 

(26.8%) 

11,032 

(17.3%) 

2,930 

(23.2%) 

5,802 

(18.6%) 

Cerebral 

infarction 

54 

(0.9%) 

255 

(0.6%) 

102 

(0.5%) 

99 

(0.9%) 

121 

(1.4%) 

50 

(1.6%) 

32 

(1.5%) 

390 

(0.6%) 

93 

(0.7%) 

226 

(0.7%) 

Hypothyroidis

m 

1,115 

(17.5%) 

7,468 

(17.1%) 

2,903 

(15.5%) 

2,151 

(19.1%) 

1,263 

(15%) 

496 

(15.9%) 

425 

(19.7%) 

10,721 

(16.9%) 

2,395 

(19%) 

5,271 

(16.9%) 

Pneumonia 

471 

(7.4%) 

1,590 

(3.6%) 

626 

(3.4%) 

703 

(6.2%) 

496 

(5.9%) 

177 

(5.7%) 

214 

(9.9%) 

2,229 

(3.5%) 

823 

(6.5%) 

1,324 

(4.2%) 

Depressive 

disorder 

1,031 

(16.2%) 

6,064 

(13.9%) 

2,353 

(12.6%) 

1,979 

(17.6%) 

1,280 

(15.2%) 

466 

(14.9%) 

438 

(20.3%) 

8,536 

(13.4%) 

2,192 

(17.4%) 

4,488 

(14.4%) 

Chronic 

nonalcoholic 

liver disease 

275 

(4.3%) 

1,512 

(3.5%) 

622 

(3.3%) 

508 

(4.5%) 

380 

(4.5%) 

131 

(4.2%) 

118 

(5.5%) 

2,288 

(3.6%) 

523 

(4.1%) 

1,251 

(4%) 

Obesity 

1,967 

(31%) 

11,130 

(25.5%) 

4,488 

(24%) 

3,471 

(30.8%) 

2,570 

(30.5%) 

697 

(22.3%) 

880 

(40.8%) 

15,,627 

(24.6%) 

4,028 

(31.9%) 

7,971 

(25.5%) 

Glaucoma 
330 
(5.2%) 

1,768 
(4%) 

789 
(4.2%) 

488 
(4.3%) 

445 
(5.3%) 

223 
(7.1%) 

101 
(4.7%) 

2,814 
(4.4%) 

605 
(4.8%) 

1,416 
(4.5%) 

Hypoglycemia 

51 

(0.8%) 

604 

(1.4%) 

198 

(1.1%) 

157 

(1.4%) 

94 

(1.1%) 

73 

(2.3%) 

28 

(1.3%) 

745 

(1.2%) 133 (1%) 304 (1%) 
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Patients with a drug exposure record within a year prior to the index date, n (%) 

Metformin 

5,858 

(92.2%) 

37,353 

(85.6%) 

17,464 

(93.4%) 

11,260 

(100%) 

6,,852 

(81.4%) 

2106 

(67.4%) 

1,797 

(83.2%) 

54,742 

(86.1%) 

9,907 

(78.5%) 

26,151 

(83.7%) 

Sulfonylureas 

2,888 

(45.4%) 

15,284 

(35%) 

8,366 

(44.7%) 

3,824 

(34%) 

3,731 

(44.3%) 

1,069 

(34.2%) 

880 

(40.8%) 

25,061 

(39.4%) 

4,390 

(34.8%) 

12,980 

(41.5%) 

Sodium-

glucose co-

transporter 2 

(SGLT2) 

inhibitors 

596 

(9.4%) 

2,860 

(6.6%) 

1,620 

(8.7%) 896 (8%) 

1,052 

(12.5%) 

141 

(4.5%) 

207 

(9.6%) 

6,267 

(9.8%) 

1,152 

(9.1%) 

2,746 

(8.8%) 

Thiazolidinedi

ones 

1460 

(23%) 

9,,506 

(21.8%) 

5,046 

(27%) 

1,957 

(17.4%) 

1,772 

(21%) 

888 

(28.4%) 

397 

(18.4%) 

13,503 

(21.2%) 

2,027 

(16.1%) 

7,301 

(23.4%) 

 

 

Appendix 3.3  Unit conversion table for units associated with kidney function measurements. 

 

Measurement Source unit Conversion factor Target unit Measurement Source unit Conversion factor Target unit 

creatinine ng/ml 0.0001 mg/dl albumin and 

protein 

mg/g 1 mg/l 

creatinine mcmol/l 0.0113 mg/dl albumin and 

protein 

mg/24h 1 mg/l 

creatinine mol/l 11300 mg/dl albumin and 

protein 

mg/dl 0.1 mg/l 

creatinine mmol/l  11.3 mg/dl albumin and 

protein 

g/l 0.001 mg/l 

creatinine g/l 1000 mg/dl albumin and 

protein 

mg/ml 0.001 mg/l 

heigh m 100 cm albumin and 

protein 

mmol/l 0.00067 mg/l 
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height inch 2.54 cm  
 

  

 

 

Appendix 3.4. Flowchart for the gold standard algorithm for chronic kidney disease. 
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Appendix 4.1 Demographic characteristics of included patient populations stratified by database. 

 

  CCAE CUMC MDCD MDCR OPTUM 

EHR 

OPTUM 

SES 

IPCI SIDIAP DA 

FRANCE 

DA 

GERMAN

Y 

AUSTRA

LIA EMR 

JMDC 

Total, n 25,315,777 1,164,196 12,966,011 1,533,709 40,955,085 18,643,608 1,536,283 2,217,536 1,746,371 9,295,525 252,212 6,501,991 

Sex, n (%)  

Female 13,037,440 

(51.5) 

693,190 

(59.5) 

7,322,471 

(56.5) 

849,301 

(55.4) 

23,220,748 

(56.7) 

9,595,675 

(51.5) 

783,660 

(51.0) 

1,120,373 

(50.5) 

926,180 

(53.0) 

5,340,273 

(57.5) 

137,203 

(54.4) 

2,926,702 

(45.0) 

Age group, n (%) 

1-5 1,256,501 

(5.0) 

40,678 

(3.5) 

1,755,796 

(13.5) 

0 1,852,425 

(4.5) 

627,032 

(3.4) 

78,848 

(5.1) 

99,838 

(4.5) 

99,309 

(5.7) 

308,728 

(3.1) 

13,430 

(5.1) 

414,167 

(6.4) 

6-17 4,122,110 

(16.3) 

105,520 

(9.1) 

4,188,247 

(32.3) 

0 4,773,000 

(11.7) 

1,930,638 

(10.4) 

211,037 

(13.7) 

260,102 

(11.7) 

268,591 

(15.4) 

823,235 

(8.9) 

31,780 

(12.6) 

1,044,041 

(16.1) 

18-34 6,395,387 

(25.3) 

199,020 

(17.1) 

2,885,991 

(22.3) 

0 8,182,549 

(20.0) 

3,331,356 

(17.9) 

304,971 

(19.9) 

374,994 

(16.9) 

328,759 

(18.8) 

1,411,620 

(15.2) 

50,995 

(20.2) 

1,533,866 

(23.6) 

35-54 8,096,864 

(32.0) 

300,818 

(25.8) 

2,006,493 

(15.5) 

0 10,737,664 

(26.2) 

4,389,220 

(23.5) 

394,868 

(25.7) 

663,537 

(29.9) 

446,804 

(25.6) 

2,338,535 

(25.2) 

69,872 

(27.7) 

2,330,010 

(35.8) 

55-64 4,716,207 

(18.6) 

183,612 

(15.8) 

1,004,957 

(7.8) 

0 6,655,199 

(16.3) 

2,384,571 

(12.8) 

219,990 

(14.1) 

288,494 

(13.0) 

229,016 

(13.1) 

1,580,565 

(17.0) 

36,329 

(14.4) 

880,065 

(13.5) 



Appendix to Chapter 4 

 

 

328 

65-74 728,708 

(2.9) 

171,940 

(14.8) 

633,262 

(4.9) 

733,157 

(47.8) 

4,829,968 

(11.8) 

3,106,611 

(16.7) 

180,581 

(11.8) 

246,763 

(11.1) 

197,816 

(11.3) 

1,279,048 

(13.8) 

27,272 

(10.8) 

279,277 

(4.3) 

75-84 0 110,883 

(9.5) 

341,267 

(2.6) 

536,970 

(35.0) 

2,652,453 

(6.5) 

1,985,356 

(10.7) 

104,288 

(6.8) 

180,903 

(8.2) 

117,067 

(6.7) 

1,191,402 

(12.8) 

15,319 

(6.1) 

20,565 

(0.3) 

≥85 0 51,725 

(4.4) 

149,998 

(1.2) 

263,582 

(17.2) 

1,271,827 

(3.1) 

888,824 

(4.8) 

41,700 

(2.7) 

102,905 

(4.6) 

59,009 

(3.4) 

362,392 

(3.9) 

7,215 (2.9) 0 

Race, n (%) 

White   427,525 

(38.4) 

5,747,120 

(48.9) 

 
27,337,580 

(73.2) 

10,731,895 

(62.3) 

            

Black   105,201 

(9.5) 

3,948,066 

(33.6) 

 
3,925,225 

(10.5) 

1,576,310 

(9.2) 

            

 

Appendix 4.2 Pooled age-adjusted incidence rate ratios for race and sex comparison, from meta-analyses, IRR and 95% CI. 

 

Outcome Male versus female 

 

Patients with race=Black versus patients 

with race=White  

Acute myocardial infarction 2.17 (1.89-2.49) 1.12 (0.84-1.47) 

Anaphylaxis 0.87 (0.81-0.93) 1.02 (0.91-1.15) 

Appendicitis 1.09 (1.02-1.15) 0.67 (0.51-0.88) 

Bell’s palsy 1.05 (0.97-1.13) 0.98 (0.79-1.22) 

Deep vein thrombosis 0.93 (0.86-1.02) 1.13 (0.91-1.41) 

Disseminated intravascular coagulation 1.17 (0.99-1.38) 1.49 (1.2-1.84) 

Encephalomyelitis 1.21 (1.11-1.31) 1.25 (1.02-1.53) 

Guillain-Barre syndrome 1.37 (1.2-1.58) 0.76 (0.6-0.96) 

Hemorrhagic stroke 1.39 (1.31-1.49) 1.13 (0.94-1.35) 

Immune thrombocytopenia 0.96 (0.85-1.09) 0.86 (0.7-1.07) 

Myocarditis and pericarditis 1.57 (1.45-1.69) 1.25 (1.19-1.32) 

Narcolepsy 0.99 (0.85-1.14) 0.81 (0.55-1.2) 
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Non-hemorrhagic stroke 1.34 (1.25-1.45) 1.48 (1.17-1.87) 

Pulmonary embolism 1.05 (1.01-1.1) 1.29 (1.08-1.55) 

Transverse myelitis 0.76 (0.68-0.86) 0.99 (0.9-1.1) 

all 1.15 (1.03-1.29) 1.07 (0.97-1.18) 

 

Appendix 4.3 Pooled age-adjusted incidence rate ratios (incidence rates for male versus female patients) from meta-analyses, IRR and 

95% CI. 

 
Appendix 4.4 Pooled age-adjusted incidence rate ratios (incidence rates for patients with race=Black versus white patients with 

race=White) from meta-analyses, IRR and 95% CI. 
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Appendix 4.5. Incidence rate ratios of incidence rates for patient subgroups from meta-analysis, IRR and 95% CI. 
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Outcome Patients with prior influenza 

vaccine versus general 

population 

 

Patients with chronic conditions 

versus patients with no chronic 

conditions  

 

Acute myocardial infarction 1.48 (1.21-1.8) 2.94 (2.29-3.79) 

Anaphylaxis 1.41 (1.26-1.59) 1.78 (1.57-2.02) 

Appendicitis 1.09 (0.99-1.2) 1.34 (1.2-1.49) 

Bell’s palsy 1.35 (1.17-1.55) 2.08 (1.87-2.31) 

Deep vein thrombosis 1.49 (1.28-1.74) 2.59 (2.25-2.98) 

Disseminated intravascular coagulation 1.69 (1.33-2.14) 4.06 (2.95-5.59) 

Encephalomyelitis 1.61 (1.3-1.99) 2.84 (2.33-3.47) 

Guillain-Barre syndrome 1.01 (0.84-1.22) 2.03 (1.61-2.56) 

Hemorrhagic stroke 1.44 (1.19-1.75) 2.19 (1.74-2.76) 

Immune thrombocytopenia 1.62 (1.41-1.85) 2.35 (2.05-2.7) 

Myocarditis and pericarditis 1.99 (1.63-2.43) 2.94 (2.44-3.54) 

Narcolepsy 1.21 (1.03-1.42) 1.93 (1.63-2.29) 

Non-hemorrhagic stroke 1.47 (1.19-1.8) 2.58 (2.01-3.29) 

Pulmonary embolism 1.54 (1.33-1.78) 2.75 (2.35-3.22) 

Transverse myelitis 1.27 (1.08-1.49) 1.65 (1.37-1.99) 

All 1.41 (1.29-1.55) 2.29 (1.99-2.64) 
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Appendix 4.6 Comparison of incidence rates for patients with chronic conditions versus patients with no chronic conditions (A) and 

patients with prior influenza vaccination versus general population (B) from meta-analysis, IRR and 95% CI. 
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Appendix 4.7 Pooled age-adjusted incidence rate ratios (incidence rates of outcomes when entering the cohort on a visit versus 

entering on January 1st in patients with a visit in the next year) from meta-analyses, IRR and 95% CI. 

 

Outcome Time at risk 0-1 

days 

Time at risk 1-

28 days 

Time at risk 1-

42 days 

Time at risk 1-

90 days 

Time at risk 1-

365 days 

Time at risk 0-

365 days 

Acute myocardial 

infarction 24.72 (14.35-42.6) 

1.23 (1.12-

1.35) 

1.08 (0.99-

1.18) 0.9 (0.82-1) 0.83 (0.76-0.9) 

0.98 (0.95-

1.01) 

Anaphylaxis 

49.94 (33.83-

73.73) 

1.48 (1.24-

1.77) 

1.37 (1.18-

1.58) 

1.13 (1.02-

1.24) 

0.91 (0.88-

0.94) 

1.09 (1.03-

1.16) 

Appendicitis 

51.79 (42.26-

63.47) 

1.17 (1.01-

1.36) 1.01 (0.9-1.14) 0.83 (0.77-0.9) 

0.79 (0.74-

0.83) 

1.03 (0.99-

1.07) 

Bell’s palsy 34.17 (25.9-45.07) 

1.19 (0.95-

1.49) 

1.05 (0.88-

1.27) 0.9 (0.79-1.01) 

0.86 (0.83-

0.89) 

1.03 (0.98-

1.09) 

Deep vein 

thrombosis 31.13 (22.48-43.1) 

1.42 (1.25-

1.61) 

1.28 (1.16-

1.42) 

1.09 (1.02-

1.16) 

0.91 (0.89-

0.93) 1.03 (1-1.07) 

Disseminated 

intravascular 

coagulation 

24.51 (15.31-

39.23) 2.04 (1.7-2.45) 

1.81 (1.53-

2.14) 

1.44 (1.26-

1.64) 

1.02 (0.94-

1.09) 

1.13 (1.07-

1.19) 

Encephalomyelitis 

16.17 (10.09-

25.89) 

1.92 (1.72-

2.14) 

1.59 (1.47-

1.71) 

1.24 (1.15-

1.33) 

0.93 (0.88-

0.97) 1 (0.98-1.03) 

Guillain-Barre 

syndrome 

20.77 (15.14-

28.49) 1.71 (1.46-2) 

1.43 (1.23-

1.65) 

1.08 (0.98-

1.19) 

0.87 (0.82-

0.93) 

0.99 (0.95-

1.02) 

Hemorrhagic 

stroke 27.14 (17.21-42.8) 

1.51 (1.38-

1.66) 1.3 (1.18-1.42) 

1.03 (0.93-

1.14) 

0.86 (0.78-

0.94) 

1.01 (0.98-

1.04) 

Immune 

thrombocytopenia 25.39 (17.57-36.7) 

1.49 (1.26-

1.77) 

1.33 (1.17-

1.52) 

1.04 (0.96-

1.13) 

0.89 (0.86-

0.92) 1 (0.97-1.04) 

Myocarditis and 

pericarditis 

26.79 (17.04-

42.13) 

1.47 (1.25-

1.73) 1.32 (1.16-1.5) 

1.03 (0.93-

1.13) 0.9 (0.86-0.93) 

1.03 (0.98-

1.08) 

Narcolepsy 

33.25 (22.52-

49.07) 

1.15 (1.04-

1.27) 

1.06 (0.98-

1.14) 

0.96 (0.92-

1.01) 

0.88 (0.85-

0.91) 1 (0.96-1.03) 
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Non-hemorrhagic 

stroke 

24.01 (13.42-

42.94) 

1.34 (1.25-

1.42) 

1.18 (1.12-

1.24) 

0.96 (0.91-

1.02) 0.84 (0.79-0.9) 

0.98 (0.96-

1.01) 

Pulmonary 

embolism 24.33 (17.3-34.22) 

1.41 (1.25-

1.59) 

1.28 (1.16-

1.41) 1.06 (1-1.13) 

0.91 (0.89-

0.94) 

1.03 (1.01-

1.06) 

Transverse 

myelitis 17.33 (10-30.02) 

1.54 (1.25-

1.89) 

1.36 (1.17-

1.58) 

1.03 (0.92-

1.16) 

0.88 (0.86-

0.91) 

0.97 (0.94-

1.01) 

All 

28.04 (23.11-

34.03) 

1.45 (1.33-

1.57) 

1.28 (1.18-

1.38) 1.04 (0.98-1.1) 

0.89 (0.87-

0.91) 1.02 (1-1.03) 

 

 

Appendix 4.8 Pooled age-adjusted incidence rate ratios (incidence rates of outcomes when entering the cohort on an influenza 

vaccination versus on January 1st with an influenza vaccination in the next year, from meta-analyses, IRR and 95% CI. 

 

Outcome Time at risk 0-1 

day 

Time at risk 1-

28 days 

Time at risk 1-

42 days 

Time at risk 1-90 

days 

Time at risk 1-365 

days 

Acute myocardial 

infarction 3.91 (1.46-10.46) 1.28 (1.09-1.51) 1.22 (1.06-1.4) 1.15 (1.01-1.31) 0.97 (0.82-1.13) 

Anaphylaxis 

13.61 (8.97-

20.65) 1.12 (1.05-1.2) 1.12 (1.06-1.19) 1.05 (1.01-1.09) 0.94 (0.92-0.96) 

Appendicitis 

11.65 (6.81-

19.94) 0.9 (0.83-0.99) 0.9 (0.83-0.97) 0.85 (0.78-0.94) 0.87 (0.81-0.94) 

Bell’s palsy 8.84 (5.4-14.49) 1.18 (0.97-1.44) 1.12 (0.97-1.3) 1.01 (0.92-1.11) 0.95 (0.92-0.99) 

Deep vein thrombosis 

12.19 (8.13-

18.29) 1.21 (1.07-1.36) 1.19 (1.09-1.3) 1.09 (1.04-1.15) 0.95 (0.89-1.01) 

Disseminated 

intravascular 

coagulation 6.36 (3.62-11.18) 1.79 (1.35-2.38) 1.73 (1.36-2.2) 1.71 (1.49-1.96) 1.4 (1.23-1.59) 

Encephalomyelitis 2.02 (0.7-5.83) 1.27 (0.96-1.67) 1.22 (0.99-1.51) 1.23 (1.03-1.47) 1.04 (0.89-1.21) 

Guillain-Barre 

syndrome 5.18 (1.85-14.47) 2.82 (2.07-3.86) 2.2 (1.59-3.04) 1.99 (1.54-2.56) 1.4 (1.17-1.66) 



Appendix to Chapter 4 

 

 

335 

Hemorrhagic stroke 4.5 (1.52-13.29) 1.38 (1.16-1.64) 1.32 (1.11-1.57) 1.26 (1.05-1.52) 1.04 (0.86-1.27) 

Immune 

thrombocytopenia 

16.21 (7.73-

33.99) 1.19 (1-1.43) 1.14 (0.99-1.31) 1.06 (0.96-1.18) 0.92 (0.84-1) 

Myocarditis and 

pericarditis 7.11 (3.54-14.3) 1.13 (0.93-1.38) 1.1 (0.92-1.32) 1.02 (0.94-1.11) 0.94 (0.9-0.99) 

Narcolepsy 

18.51 (9.64-

35.53) 1.05 (0.94-1.16) 1 (0.9-1.11) 0.97 (0.91-1.04) 0.92 (0.9-0.95) 

Non-hemorrhagic 

stroke 4.17 (1.6-10.85) 1.2 (1.07-1.35) 1.17 (1.05-1.3) 1.1 (0.98-1.23) 0.95 (0.81-1.11) 

Pulmonary embolism 

10.04 (6.56-

15.36) 1.11 (1.03-1.2) 1.09 (1.03-1.16) 1.05 (0.99-1.11) 0.93 (0.84-1.04) 

Transverse myelitis 8.7 (2.75-27.48) 1.08 (0.86-1.35) 1.05 (0.87-1.25) 0.98 (0.86-1.12) 0.93 (0.87-1) 

All 8.68 (6.74-11.17) 1.21 (1.12-1.32) 1.16 (1.08-1.24) 1.11 (1.04-1.18) 0.97 (0.94-1.01) 
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Appendix 4.9 Incidence rate ratio of incidence rate of outcomes when entering the cohort on an influenza vaccination versus entering 

on January 1st in patients with an influenza vaccination in the next year, time-at-risk 1-28 days, 1-42 days, 1-90 days and 1-365 days 

time-at-risk. 
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Appendix 4.10 Pooled age-adjusted incidence rate ratios (incidence rate of outcomes when entering the cohort on a well visit versus 

on January 1st in patients with a well visit in the next year) from meta-analyses, IRR and 95% CI. 

 

Outcome Time at risk 0-1 

day 

Time at risk 1-

28 days 

Time at risk 1-

42 days 

Time at risk 1-90 

days 

Time at risk 1-365 

days 

Acute myocardial infarction 1.14 (0.83-1.58) 1.24 (1.19-1.29) 1.19 (1.12-1.26) 1.18 (1.12-1.24) 1.13 (1.07-1.19) 

Anaphylaxis 18.08 (9.47-34.5) 1.37 (1.3-1.44) 1.33 (1.27-1.38) 1.2 (1.15-1.25) 0.95 (0.92-0.97) 

Appendicitis 3.44 (1.54-7.7) 1.11 (1.08-1.16) 1.11 (1.06-1.16) 1.06 (1.03-1.08) 1.01 (0.98-1.04) 

Bell’s palsy 16.71 (9.86-28.29) 0.98 (0.94-1.03) 0.96 (0.91-1.01) 0.93 (0.9-0.97) 0.93 (0.91-0.96) 

Deep vein thrombosis 15.5 (9.29-25.86) 1.16 (1.13-1.19) 1.13 (1.11-1.15) 1.09 (1.07-1.12) 1.01 (0.98-1.04) 

Disseminated intravascular 

coagulation 6.92 (3.19-14.97) 1.61 (1.2-2.17) 1.49 (1.18-1.86) 1.58 (1.34-1.86) 1.3 (1.23-1.38) 

Encephalomyelitis 1.55 (0.61-3.91) 1.27 (1.05-1.52) 1.31 (1.13-1.52) 1.31 (1.16-1.48) 1.14 (1.08-1.2) 

Guillain-Barre syndrome 2.68 (0.91-7.88) 1.2 (0.93-1.54) 1.18 (0.96-1.46) 1.14 (0.99-1.32) 1.13 (1.04-1.22) 

Hemorrhagic stroke 0.88 (0.57-1.37) 1.23 (1.08-1.41) 1.29 (1.11-1.5) 1.32 (1.16-1.5) 1.22 (1.15-1.3) 

Immune thrombocytopenia 30.81 (14.03-67.65) 1.22 (1.14-1.31) 1.16 (1.09-1.23) 0.97 (0.91-1.03) 0.86 (0.78-0.95) 

Myocarditis and pericarditis 10.03 (5.44-18.49) 1.08 (1.01-1.17) 1.05 (0.98-1.11) 0.99 (0.95-1.04) 1 (0.98-1.02) 

Narcolepsy 29.85 (16.28-54.72) 1.09 (1-1.19) 1.06 (0.97-1.15) 1 (0.95-1.05) 0.92 (0.88-0.96) 

Non-hemorrhagic stroke 1.2 (0.59-2.42) 1.25 (1.15-1.37) 1.27 (1.16-1.38) 1.25 (1.15-1.36) 1.13 (1.08-1.19) 

Pulmonary embolism 12.32 (7.35-20.65) 1.07 (1.01-1.13) 1.06 (1.02-1.1) 1.06 (1.04-1.09) 1.03 (0.98-1.1) 

Transverse myelitis 15.59 (6.81-35.66) 1.05 (0.87-1.25) 1.02 (0.88-1.18) 1.05 (0.95-1.17) 0.92 (0.87-0.97) 

All 6.32 (3.1-12.89) 1.17 (1.11-1.23) 1.15 (1.09-1.2) 1.11 (1.06-1.16) 1.04 (0.99-1.09) 
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Appendix 4.11 Incidence rate ratio of incidence rate of outcomes when entering the cohort on a well visit versus entering on January 

1st in patients with a well visit in the next year, time-at-risk 1-28 days, 1-42 days, 1-90 days and 1-365 days time-at-risk. 
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Appendix 4.12 Seasonal trends. Incidence rate ratios of incidence rates for quarter 2 (April - June), quarter 3 (July - September) and 

quarter 4 to quarter 1 (January – March) of 2017-2019 from meta-analysis, IRR and 95% CI. 

 

Outcome Quarter 2 versus 

Quarter 1 

Quarter 3 versus Quarter 

1 

Quarter 4 versus Quarter 1 

 

Acute myocardial infarction 1.1 (1.01-1.21) 0.95 (0.9-0.99) 0.95 (0.9-0.99) 

Anaphylaxis 1.11 (1.02-1.2) 1.32 (1.22-1.42) 1.32 (1.22-1.42) 

Appendicitis 1.11 (1.02-1.21) 1.04 (1-1.09) 1.04 (1-1.09) 

Bell’s palsy 1.09 (1.01-1.18) 0.99 (0.95-1.03) 0.99 (0.95-1.03) 

Deep vein thrombosis 1.07 (1-1.15) 1.06 (1.03-1.09) 1.06 (1.03-1.09) 

Disseminated intravascular coagulation 1.04 (0.96-1.12) 0.93 (0.87-1) 0.93 (0.87-1) 

Encephalomyelitis 1.13 (1-1.29) 1.01 (0.94-1.09) 1.01 (0.94-1.09) 

Guillain-Barre syndrome 1.08 (0.97-1.19) 0.95 (0.86-1.04) 0.95 (0.86-1.04) 

Hemorrhagic stroke 1.06 (1.01-1.11) 0.99 (0.95-1.03) 0.99 (0.95-1.03) 

Immune thrombocytopenia 1.08 (1-1.17) 0.97 (0.93-1.01) 0.97 (0.93-1.01) 

Myocarditis and pericarditis 1.09 (0.98-1.2) 0.91 (0.84-0.98) 0.91 (0.84-0.98) 

Narcolepsy 1.07 (1.02-1.12) 1.04 (1.01-1.07) 1.04 (1.01-1.07) 

Non-hemorrhagic stroke 1.07 (0.99-1.15) 1 (0.96-1.03) 1 (0.96-1.03) 

Pulmonary embolism 1.09 (1.01-1.17) 0.98 (0.95-1.01) 0.98 (0.95-1.01) 

Transverse myelitis 1.05 (0.92-1.19) 0.97 (0.91-1.02) 0.97 (0.91-1.02) 

All 1.08 (1.06-1.1) 1 (0.97-1.03) 1 (0.97-1.03) 
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Appendix 4.13 Comparison of incidence rates for quarter 2 (April - June), quarter 3 (July - September) and quarter 4 to quarter 1 

(January – March) of 2017-2019 from meta-analysis, IRR and 95% CI. 
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Appendix 4.14 Incidence rate ratios of incidence rates for Quarter 2 and 3 of 2020 versus Quarter 2 and 3 of 2017 – 2019 from meta-

analysis, IRR and 95% CI. 

 

Outcome Quarter 2 2020 versus Quarter 2 

2017-2019 

Quarter 3 2020 versus Quarter 3 

2017-2019 

Acute myocardial infarction 0.95 (0.9-0.99) 0.92 (0.77-1.09) 

Anaphylaxis 1.32 (1.22-1.42) 1.28 (0.93-1.76) 

Appendicitis 1.04 (1-1.09) 1.16 (0.91-1.49) 

Bell’s palsy 0.99 (0.95-1.03) 1.12 (0.9-1.41) 

Deep vein thrombosis 1.06 (1.03-1.09) 1.04 (0.86-1.24) 

Disseminated intravascular coagulation 0.93 (0.87-1) 0.81 (0.63-1.04) 

Encephalomyelitis 1.01 (0.94-1.09) 0.84 (0.63-1.11) 

Guillain-Barre syndrome 0.95 (0.86-1.04) 0.83 (0.55-1.26) 

Hemorrhagic stroke 0.99 (0.95-1.03) 0.85 (0.7-1.04) 

Immune thrombocytopenia 0.97 (0.93-1.01) 1.08 (0.89-1.3) 

Myocarditis and pericarditis 0.91 (0.84-0.98) 1.18 (0.86-1.62) 

Narcolepsy 1.04 (1.01-1.07) 1.15 (0.86-1.52) 

Non-hemorrhagic stroke 1 (0.96-1.03) 0.95 (0.77-1.17) 

Pulmonary embolism 0.98 (0.95-1.01) 1.25 (1.03-1.52) 

Transverse myelitis 0.97 (0.91-1.02) 1.09 (0.93-1.27) 

All 1 (0.97-1.03) 1.03 (0.96-1.1) 
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Appendix 4.15 Comparison of incidence rates in Q2, Q3 of 2017 – 2019 (pre-COVID-19 pandemic) versus corresponding quarters in 

2020 (COVID-19 pandemic), incidence rate ratios. 
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Appendix 4.16 Pooled age-adjusted incidence rate ratios for comparing clean windows and prior observation, from meta-analyses, 

IRR and 95% CI. 

 

Outcome First ever conditions in patient 

history versus first occurrence 

 in a given window 

Requirement to have a year of prior 

observation versus no prior observation 

requirement 

Acute myocardial infarction 0.91 (0.89-0.93) 1.01 (0.93-1.09) 

Anaphylaxis 0.7 (0.66-0.73) 1.14 (1.04-1.26) 

Appendicitis 0.98 (0.96-0.99) 0.99 (0.93-1.05) 

Bell’s palsy 0.77 (0.73-0.8) 0.96 (0.89-1.05) 

Deep vein thrombosis 0.82 (0.8-0.84) 0.96 (0.85-1.09) 

Disseminated intravascular coagulation 0.96 (0.95-0.98) 0.77 (0.7-0.85) 

Encephalomyelitis 0.93 (0.91-0.95) 0.99 (0.86-1.14) 

Guillain-Barre syndrome 0.59 (0.48-0.71) 0.98 (0.85-1.14) 

Hemorrhagic stroke 0.96 (0.96-0.97) 1 (0.92-1.1) 

Immune thrombocytopenia 0.7 (0.67-0.73) 0.96 (0.78-1.19) 

Myocarditis and pericarditis 0.89 (0.86-0.91) 0.95 (0.9-1) 

Narcolepsy 0.69 (0.65-0.74) 0.8 (0.68-0.94) 

Non-hemorrhagic stroke 0.88 (0.86-0.91) 1.04 (0.95-1.15) 

Pulmonary embolism 0.8 (0.78-0.82) 0.89 (0.77-1.04) 

Transverse myelitis 0.71 (0.67-0.75) 0.75 (0.62-0.91) 

All 0.82 (0.78-0.86) 0.95 (0.9-1) 
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Appendix 4.17 Comparison of prior observation (A) and clean windows (B) , from meta-analyses, IRR and 95% CI. 
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Appendix 4.18 Negative controls for COVID-19 vaccine effectiveness study. 

 

SNOMED concept id SNOMED concept name 

438945 Accidental poisoning by benzodiazepine-based tranquilizer 

434455 Acquired claw toes 

316211 Acquired spondylolisthesis 

201612 Alcoholic liver damage 

438730 Alkalosis 

441258 Anemia in neoplastic disease 

432513 Animal bite wound 

4171556 Ankle ulcer 

4098292 Antiphospholipid syndrome 

77650 Aseptic necrosis of bone 

4239873 Benign neoplasm of ciliary body 

23731 Benign neoplasm of larynx 

199764 Benign neoplasm of ovary 

195500 Benign neoplasm of uterus 

4145627 Biliary calculus 

4108471 Burn of digit of hand 

75121 Burn of lower leg 

4284982 Calculus of bile duct without obstruction 

434327 Cannabis abuse 

78497 Cellulitis and abscess of toe 

4001454 Cervical spine ankylosis 

4068241 Chronic instability of knee 

195596 Chronic pancreatitis 

4206338 Chronic salpingitis 

4058397 Claustrophobia 

74816 Contusion of toe 
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73302 Curvature of spine 

4151134 Cyst of pancreas 

77638 Displacement of intervertebral disc without myelopathy 

195864 Diverticulum of bladder 

201346 Edema of penis 

200461 Endometriosis of uterus 

377877 Esotropia 

193530 Follicular cyst of ovary 

4094822 Foreign body in respiratory tract 

443421 Gallbladder and bile duct calculi 

4299408 Gouty tophus 

135215 Hashimoto thyroiditis 

442190 Hemorrhage of colon 

43020475 High risk heterosexual behavior 

194149 Hirschsprung's disease 

443204 Human ehrlichiosis 

4226238 Hyperosmolar coma due to diabetes mellitus 

4032787 Hyperosmolarity 

197032 Hyperplasia of prostate 

140362 Hypoparathyroidism 

435371 Hypothermia 

138690 Infestation by Pediculus 

4152376 Intentional self poisoning 

192953 Intestinal adhesions with obstruction 

196347 Intestinal parasitism 

137977 Jaundice 

317510 Leukemia 

765053 Lump in right breast 

378165 Nystagmus 
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434085 Obstruction of duodenum 

4147016 Open wound of buttock 

4129404 Open wound of upper arm 

438120 Opioid dependence 

75924 Osteodystrophy 

432594 Osteomalacia 

30365 Panhypopituitarism 

4108371 Peripheral gangrene 

440367 Plasmacytosis 

439233 Poisoning by antidiabetic agent 

442149 Poisoning by bee sting 

4314086 Poisoning due to sting of ant 

4147660 Postural kyphosis 

434319 Premature ejaculation 

199754 Primary malignant neoplasm of pancreas 

4311499 Primary malignant neoplasm of respiratory tract 

436635 Primary malignant neoplasm of sigmoid colon 

196044 Primary malignant neoplasm of stomach 

433716 Primary malignant neoplasm of testis 

133424 Primary malignant neoplasm of thyroid gland 

194997 Prostatitis 

80286 Prosthetic joint loosening 

443274 Psychostimulant dependence 

314962 Raynaud's disease 

37018294 Residual osteitis 

4288241 Salmonella enterica subspecies arizonae infection 

45757269 Sclerosing mesenteritis 

74722 Secondary localized osteoarthrosis of pelvic region 

200348 Secondary malignant neoplasm of large intestine 
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43020446 Sedative withdrawal 

74194 Sprain of spinal ligament 

4194207 Tailor's bunion 

193521 Tropical sprue 

40482801 Type II diabetes mellitus uncontrolled 

74719 Ulcer of foot 

196625 Viral hepatitis A without hepatic coma 

197494 Viral hepatitis C 

4284533 Vitamin D-dependent rickets 
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Appendix 4.19 Diagnostics for the effectiveness study comparing the cohort vaccinated with at least one dose of Pfizer, Moderna or 

Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a visit: (A) covariate balance before and after 

propensity score matching, (B) preference score balance and (C) effect of negative control calibration displaying effect estimate and 

standard error. 

In (A), each dot represents the standardized difference of the means for a single covariate before and after stratification on the 

propensity score. In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with p<0.05 and the 

orange area indicates estimates with calibrated p<0.05. 
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Appendix 4.20 Summary of manual chart review of COVID-19 infection cases during week 1 after the index date, patients vaccinated 

with mRNA vaccines and unvaccinated patients. 

 

 Pfizer- BioNTech Moderna Pfizer- BioNTech 

and Moderna 

Unvaccinated 

patients 

Total 36 25 61 28 

Average age 65.0 67.8 65.8 58.0 

COVID-19 symptoms 

Severe 14 (39%) 7 (28 %) 21 (34%) 6 (21%) 

Mild 18 (50%) 11 (44%) 29 (48%) 11 (39%) 

Asymptomatic 4 (11%) 7 (28%) 11 (18%) 11 (39%) 

Reason for coming for initial healthcare encounter 

COVID-19 symptoms 18 (50%) 12 (48%) 30 (49%) 18 (64%) 

Exposure to COVID-19 3 (8%) 4 (16%) 7 (12%) 6 (21%) 

For other reason (co-morbidities, procedures etc.) 15 (42%) 9 (36%) 24 (39%) 4 (14%) 

Type of initial healthcare encounter 

Telehealth/phone 5 (14%) 6 (24%) 11 (18%) 3 (11%) 

Test only 3 (8%) 2 (8%) 5 (8%) 6 (21%) 

Outpatient visit 4 (11%) 3 (12%) 7 (12%) 1 (4%) 

Emergency room or inpatient visit 24 (67%) 14 (56%) 38 (62%) 18 (64%) 
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Appendix 4.21 Kaplan-Meier curves for effectiveness of COVID-19 Pfizer-BioNTech vaccine for time-at-risk of 1 day – 365 days 

after the first dose compared to the unvaccinated patients residing in New York City. 

 

 

Appendix 4.22 Kaplan-Meier curves for effectiveness of COVID-19 Moderna vaccine for time-at-risk of 1 day – 365 days after the 

first dose compared to the unvaccinated patients residing in New York City. 
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Appendix 4.23 Kaplan-Meier curves for effectiveness of COVID-19 Janssen vaccine for time-at-risk of 1 day – 365 days after the 

first dose compared to the unvaccinated patients residing in New York City. 

 

 
 

Appendix 4.24 Estimates for long-term effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in 

the vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC. VE – vaccine 

effectiveness. 

 

 COVID-19 infection COVID-19 

hospitalization 

COVID-19 positive 

test only 

COVID-19 positive test 

only hospitalization 

 VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value 

Pfizer-BioNTech  42 (37 – 47) <0.01 63 (56 – 70) <0.01 71 (66 – 75) <0.01 69 (62 – 75) <0.01 

Moderna  54 (48 – 60) <0.01 76 (69 – 82) <0.01 78 (73 – 83) <0.01 81 (74 – 87) <0.01 

Janssen  24 (0 – 55) 0.31 64 (0.1 – 1.06) 0.09 53 (0 – 82) 0.1 70 (2 – 93) 0.08 
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Appendix 4.25 Estimates for effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after full vaccination in fully 

vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC. VE – vaccine 

effectiveness. 

 

 COVID-19 

positive test only 

COVID-19 positive test 

only hospitalization 

COVID-19 infection COVID-19 

hospitalization 

 VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value 

Pfizer-BioNTech  94 (91 – 95) <0.01 95 (92 – 97) <0.01 70 (66 – 74) <0.01 88 (84 – 92) <0.01 

Moderna  97 (94 – 98) <0.01 96 (92 – 99) <0.01 72 (66 – 77) <0.01 92 (87 – 95) <0.01 

Janssen  81 (50 – 94) <0.01 92 (58 – 100) 0.03 55 (23 – 75) 0.01 87 (56 – 98) 0.01 
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Appendix 4.26 Comparison of the effectiveness estimates in fully vaccinated patients obtained in our study and those from the 

randomized clinical trials of the corresponding vaccines. 
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Appendix 4.27 Estimates for effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in the 

vaccinated patients with or without prior COVID-19 infection compared to unvaccinated patients residing in NYC. VE – vaccine 

effectiveness. 

 

 COVID-19 infection COVID-19 

hospitalization 

COVID-19 positive test 

only 

COVID-19 positive test 

only hospitalization 

 VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value VE, %  

(95% CI) 

P-value 

Pfizer- BioNTech  43 (38 – 48) <0.01 64 (57 – 70) <0.01 71 (66 – 75) <0.01 71 (64 – 76) <0.01 

Moderna 51 (45 – 57) <0.01 71 (63 – 78) <0.01 76 (71 – 81) <0.01 81 (73 – 86) <0.01 

Janssen 15 (0 – 49) 0.52 60 (2 – 86) 0.06 45 (0 – 75) 0.12 63 (0 – 90) 0.09 
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Appendix for Chapter 5 
 

 

 

 

Appendix 5.1 Distribution of primary source of evidence, number of questions and types of questions depending on primary working 

settings, specialization and academic rank.  

 

 Primary setting Specialization Academic rank 

Inpatient Outpatien

t 

Primary Specialt

y 

1* 2 3 

Primary 

source of 

evidence 

Commercial tool 8 (38%) 6 (86%) 7 (70%) 7 (39%) 5 (71%) 5 (41.7%) 4 (44.4%) 

Guidelines 2 (9.6%) 1 (14%) 2 (20%) 1 (5.5%) 1 (14.5%) 1 (8.3%) 1 (11.2%) 

PubMed 9 (42.9%) 0 (0%) 0 (0%) 9 (50%) 0 (0%) 5 (41.7%) 4 (44.4%) 

Other literature 1 (4.8%) 0 (0%) 0 (0%) 1 (5.5%) 1 (14.5%) 0 (0%) 0 (0%) 

None 1 (4.8%) 0 (0%) 1 (10%) 0 (0%) 0 (0%) 1 (8.3%) 0 (0%) 

Average number of questions 4.92.2 2.71.1 3.41.6 4.82.3 2.91.1 4.21.8 5.72.6 

Average 

number 

of 

questions 

per type 

Diagnosis 0.40.6 0.90.7 0.70.7 0.40.6 0.50.5 0.30.5 0.80.8 

Treatment 4.22.0 1.40.9 2.31.8 4.22.0 2.30.9 3.71.8 4.22.9 

Quality of care 0.30.6 0.40.8 0.40.7 0.30.5 0.10.4 0.20.4 0.70.8 
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* 1 – none , 2 – Assistant Professor, 3 – Associate Professor 

 

 

Appendix 5.2 Examples of questions within the identified themes, thematic analysis of clinicians’ immediate information needs. 

 

Category Example Details 

Safety & 

Adverse Events 

 

What are the risk factors for vancomycin-induced 

kidney injury? 

 

How implantable defibrillator impacts the risk of 

sudden cardiac death in patients with tetralogy of 

Fallot? 

 

Comparative 

Effectiveness 

 

For an elderly woman with a drug-eluting stent, 

atrial fibrillation and a pacemaker, what should 

we prescribe: clopidogrel, aspirin, warfarin or 

some combinations? 

 

How well does metoprolol control heart rate in 

patients with atrial fibrillation versus carvedilol? 

 

Necessity of 

Treatment 

What are the rules of prescribing antibiotics in 

patients with peritoneal dialysis catheter? 

“A patient on peritoneal dialysis with catheter for a year 

asked if she needs an antibiotic prophylaxis for a dental 

procedure. I wasn’t sure what to answer” 

Should we prescribe vitamin D in children 

knowing that compliance may be low? 

“We know that patients do not take vitamin D tablets as 

they need to take them once a week. They just forget. 

Knowing that, do we even need to prescribe it if they won’t 

take it?” 

Indication/ 

Contraindication  

Can Lovenox be prescribed in patients with low 

kidney function? 
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Should a diabetic patient on ACE inhibitors, 

diuretics and SGLT2 inhibitors be taken off 

diuretics as SGLT2 inhibitors act as diuretics? 

 

Dose Ranges 

 

When guidelines state dose range, which dose 

from the range should we pick? 

 

What is the minimal dosage of desmopressin in 

sick children, so that this dose does not cause 

harmful adverse effects but still has therapeutic 

effects? 

  

 

“Giving all the confounding factors [that he is tiny, that he 

is sick, that his absorption is not reliable] what is the tiniest 

dose that we can give and with that dose what is the 

maximum duration of action of dose in this child?” 

Dose 

Adjustment 

 

How do we adjust the dose of Lovenox in obese 

patients to avoid drug toxicity? 

“We see patients coming to us with a prescription of 100 

milligrams. It is a lot, you know, and we would never 

suggest that.” 

Duration of 

Therapy 

In patients on steroids for acute or chronic 

adrenal insufficiency, asthma or other chronic 

conditions, what is the optimal dose, how long 

should a patient stay on steroids and when to 

cancel?  

 

How long should we continue antibiotic therapy 

for complicated UTI for? 

 

Test 

Comparative 

Effectiveness 

PPD versus QuantiFERON: what is better? 

 

 

Test Choice How do we properly diagnose ovarian tumors in 

children? 

“I think, there is a differential [diagnosis] for ovarian 

tumors of childhood: granulomas, cell cysts, bad 

granulomas. And the tumor markers are often non-

informative: alpha-fetoprotein, beta-HCG is not 

informative. Sometimes hormones are informative, but not 

always.” 
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What diagnostic workup is indicated for a patient 

with duodenal villus atrophy but negative celiac 

disease antibodies? 

 

Test 

Interpretation  

 

How do we interpret Synachten test in patients on 

long-term steroid therapy? 

“We have patients that have been on steroids for months or 

even years, and we don’t really know if they need them. 

Then they stop the medications themselves and live just 

fine. We perform ACTH [adrenocorticotropic hormone] 

test, but different doctors have different opinions on the 

results: one says it should drop 10 points, another - 10 

points but not less than 18 and so on.” 

Test Frequency 

 

In child with hyperthyroidism treated with 

methimazole and dexamethasone, how frequently 

should we measure T3 and T4? 

 

  

“We got a patient with hypothyroidism due to maternal 

Graves’ disease, we put him on  

methimazole and steroids. Baby’s T3 and T4 initially 

improved, we cut back dexamethasone. Then they went up. 

We increased the dose of methimazole, baby was stable, but 

the labs still went up. 

How frequently should the labs be checked for such a 

patient? In this case, the daily checks might have fooled us.” 

Symptoms and 

Syndromes  

Can obesity inflammation alone get erythrocyte 

sedimentation rate up to a very high level?   

 

“There have been cases where a high BMI [body mass 

index] patient has a persistent white blood cell count of 12-

13 or those who have ESRs [erythrocyte sedimentation rate] 

over 70, cases where we may feel obligated to do a major 

workup and still to be left with no answers. I asked my 

colleague last month, and he feels he doesn't seen values 

this high just from plain obesity.” 

Figure out the patterns and patient trajectories for 

somatic disorder. 

“We have these patients [with somatic disorder] all the time. 

They come and go, and it takes years for them to be 

diagnosed. They complain about back pain, headaches, 

heart problems and we can’t let them go without a workup 
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or just say that it’s nothing. And physicians don’t want to 

deal with them because they are scared by the disorder and 

don’t know what to do.” 

Screening 

 

How should patients be screened for dementia? “It [dementia] often is confused with depression especially 

if a person has a history of depression. We need this 

information to properly educate primary physicians on how 

to take care of such patients.” 

Prognosis 

 

What is the risk of epilepsy after a mild brain 

injury and how can this risk be reduced? 

“A patient was skiing and had a concussion, so he called me 

and asked if he should stay in bed or if he could take bath. 

We advised him not to take it as it might provoke seizures. 

But we might have sent him to the hospital if we knew that 

the risk was substantial.” 

Social 

Work/Ancillary 

Services 

What is the evidence on the impact of home care 

on patient outcomes in patients receiving 

mechanical ventilation? 

 

 

 

 

Appendix 5.3 Search strategy for scoping review of clinical decision support tools that generate new evidence 

1. PubMed 

 ("evidence-based medicine"[All Fields] OR "evidence-based practice"[All Fields] OR "evidence” [All Fields] OR EBM[All Fields] 

OR evidence[All Fields]) AND ("health services"[Title/Abstract] OR "decision support systems”[Title/Abstract] OR 

"prototype"[Title/Abstract] or "medical information systems"[Title/Abstract] OR "computer-assisted decision making"[Title/Abstract] 

OR "clinical decision support"[Title/Abstract] OR software[Title/Abstract] OR "decision support systems, clinical"[MeSH Terms] OR 

"Decision Making, Computer-Assisted"[Mesh:noexp]) AND ("comorbidity"[tiab] OR "personalized"[tiab] OR "precision"[tiab] OR 

"complicated"[tiab] OR "multiple conditions"[tiab] OR "complex"[tiab] OR "similar patient"[tiab] OR “patient like mine”[tiab] OR 
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“patient-like-mine”[tiab] OR "patient-related question"[tiab] OR "patient-related questions"[tiab] OR bedside[tiab] OR “point-of-

care”[tiab] OR “point of care”[tiab] OR “real-time”[tiab] OR “real time”[tiab] OR just-in-time[tiab]).   

 

2. IEEE Xplore 

("electronic health record" OR EMR OR "electronic medical record" OR EHR OR “health record systems”) AND ("evidence-based 

medicine" OR "evidence-based practice" OR "evidence" OR EBM OR evidence) AND ("health services" OR "decision support 

systems” OR "prototype" or "medical information systems" OR "computer-assisted decision making" OR "clinical decision support" 

OR software) AND ("comorbidity" OR "personalized" OR "precision" OR "complicated" OR "multiple conditions" OR "complex" 

OR "similar patient" OR “patient like mine” OR “patient-like-mine” OR "patient-related question" OR "patient-related questions" OR 

bedside OR “point-of-care” OR “point of care” OR “real-time” OR “real time” OR just-in-time). 

 

3. Embase 

 (‘electronic health records’:ti,ab,kw OR EHR:ti,ab,kw) AND (‘evidence-based medicine’:ti,ab,kw OR ‘evidence-based 

practice’:ti,ab,kw OR ‘evidence’:ti,ab,kw OR EBM:ti,ab,kw) AND (‘health services’:ti,ab,kw OR ‘decision support systems’:ti,ab,kw 

OR ‘prototype’:ti,ab,kw or ‘medical information systems’:ti,ab,kw OR ‘clinical decision support’:ti,ab,kw OR ‘medical information 

systems’:ti,ab,kw OR ‘computer-assisted decision making’:ti,ab,kw) AND (‘comorbidity’:ti,ab,kw OR ‘personalized’:ti,ab,kw OR 

‘precision’:ti,ab,kw OR ‘complicated’:ti,ab,kw OR ‘multiple conditions’:ti,ab,kw OR ‘complex’:ti,ab,kw OR ‘similar patient’:ti,ab,kw 

OR “patient like mine”:ti,ab,kw OR “patient-like-mine”:ti,ab,kw OR "patient-related question":ti,ab,kw OR "patient-related 

questions":ti,ab,kw OR bedside:ti,ab,kw OR “point-of-care”:ti,ab,kw OR “point of care”:ti,ab,kw OR “real-time”:ti,ab,kw OR “real 

time”:ti,ab,kw OR just-in-time:ti,ab,kw) 

4. Proquest 

Anywhere except full text: ("electronic health record" OR EMR OR "electronic medical record" OR EHR OR “health record 

systems”) AND ("evidence-based medicine" OR "evidence-based practice" OR "evidence" OR EBM OR evidence) AND ("health 
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services" OR "decision support systems” OR "prototype" or "medical information systems" OR "computer-assisted decision making" 

OR "clinical decision support" OR software) AND ("comorbidity" OR "personalized" OR "precision" OR "complicated" OR "multiple 

conditions" OR "complex" OR "similar patient" OR “patient like mine” OR “patient-like-mine” OR "patient-related question" OR 

"patient-related questions" OR bedside OR “point-of-care” OR “point of care” OR “real-time” OR “real time” OR just-in-time). 

Document type restricted to : Article, Dissertation/Thesis, Conference Proceeding,  Evidence Based Healthcare 

 

 

Appendix 5.4 The main characteristics of the tools selected for this study. 

 

Name Site of 

implementation 

Primary 

Focus 

Area Stage Evidence 

Mediator 

Evaluation Evaluation details 

Visual non-analytics-based data-driven tools  

Plaisant et al. 

(“PatternFinder”

), 2006  

One site 

(Washington 

Hospital Center, 

USA) 

Clinical 

care, 

research 

Unrestricted Prototype 

 

None Functional 

testing 

Case studies: contrast 

nephropathy, thrombocytopenia 

Methods: interview  

Participants: three emergency 

room clinicians 

Perer et al. 

(“CareFlow”), 

2013  

One site (Watson 

Research Center, 

USA) 

Clinical 

care  

Potentially 

unrestricted 

Prototype None Not reported Case study: congestive heart 

failure 

Li et al. 

(“Patient-like-

mine”), 2015  

One site (Mayo 

clinic, USA) 

Clinical 

care 

Surgery Prototype None Not reported  
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 Zhang et al. 

(“CaVa”), 2015  

One site (Watson 

Research Center, 

USA) 

Research Potentially 

unrestricted 

Prototype 

 

Research 

team 

Functional 

testing 

Case study: cardiology. 

Methods: interview 

Participants: one emergency 

room clinician  

Happe et al. 

(“ePEPS”) , 

2018  

Multiple sites ( 

France, 

nationwide) 

Clinical 

care, 

quality 

Unrestricted Prototype None Not 

reported 

 

Rogers et al. 

(“Composer”), 

2019  

One site 

(University of 

Utah, USA) 

Clinical 

care, 

research 

 

Surgery 

(orthopedic) 

Prototype None Functional 

testing 

Details not reported 

Analytics-based data-driven tools  

Bernard et al., 

2014  

One site 

(University 

Hamburg-

Eppendorf, 

Germany) 

Research Oncology 

(prostate 

cancer) 

Implemented, 

actual use is 

not reported 

None Functional 

testing 

Methods: interview  

Participants: six physicians 

Bernard et al., 

2019  

One site 

(University of 

Leeds, UK) 

Clinical 

care, 

research 

 

Oncology 

(prostate 

cancer) 

Prototype  None Functional 

testing 

Methods: Interview  

Participants: 14 (non-expert, 

visualization experts and medical 

experts) 

Nan Cao et al., 

2011  

One site 

(University 

Hospital of North 

Norway, 

Norway) 

Research Unrestricted Prototype None Functional 

and user 

acceptance 

testing 

Case studies: disease 

distribution, similar patients 

Methods: Interview, performance 

metrics (task response time, task 

success rate) 
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Participants: 30 students 

Malik et al. 

(“CoCo”), 2015  

One site 

(University of 

Maryland, USA) 

Research Unrestricted Prototype None Functional 

testing 

Case study: adherence to 

Advanced Trauma 

Life Support Protocol 

Methods: Multi-dimensional, 

long-term in-depth case study 

Participants: clinicians 

Gallego et al. 

(“Green 

Button”), 2018 

One site 

(Stanford 

Medical Center, 

USA) 

Clinical 

care 

Unrestricted Implemented, 

pilot study in 

Stanford 

Medical 

Center 

Research 

team 

Feasibility 

study 

Ongoing 

Yu et al. ("Care 

Pathway 

Workbench"), 

2014 

One site (Watson 

Research Center, 

USA) 

 

Clinical 

care 

 

Potentially 

unrestricted 

Prototype None Not 

reported 

 

Case study: congestive heart 

failure 

Mane et al. 

("VisualDecisio

nLinc"), 2011 

One site (Duke 

Medical Center, 

USA) 

 

Clinical 

care, 

research 

 

Psychiatry 

 

Prototype None Not 

reported 

 

Case study: major depressive 

disorder 

Xia et al., 2017 One site (the First 

Affiliated 

Hospital, Xiamen 

University, 

China) 

Clinical 
care 

 

Internal 
medicine 

 

Prototype, 

acute 

coronary 

syndrome 

None, but 

depends 

on the 

study 

team 

Not reported   
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Xia et al., 2019 One site (IBM 

research, China) 

 

Clinical 

care 

 

Internal 

medicine 

 

Prototype, 

type II 

diabetes 

mellitus 

None, but 

depends 

on the 

study 

team 

Not reported   

Morrison et al., 

2015 

One site 

(University of 

Maryland, USA) 

 

Clinical 

care 

 

Oncology 

(lung 

cancer) 

Prototype None Not reported  

Finlayson et 

al.("Melanoma 

Rapid Learning 

Utility"), 2016 

Two cites 

(Vanderbilt-

Ingram Cancer 

Center and 

Stanford 

Hospital, USA ) 

 

Clinical 

care, 

research 

 

Oncology 

(melanoma) 

 

Implemented, 

actual use is 

not reported 

None 

 

User 

acceptance 

testing 

Methods: Interview, survey 

Participants: 13 clinicians 

 

Expert-based (knowledge-aggregative) tools  

Ellis et al. 

(“ViaOncology”

), 2013  

Multiple sites  

(40 University of 

Pittsburgh 

Medical Center 

affiliated sites) 

Clinical 

care, 

quality 

Oncology 

 

Implemented, 

150 

specialists at 

the UPMC 

Cancer 

Center at the 

time of 

publication  

None, but 

data 

supplied 

quarterly 

Quality and 

patient 

outcomes 

Methods: retrospective pretest–

post-test study 

Participants: 172 patients with 

metastatic colorectal cancer 

Pathway adoption and cost of 

care 

Hoverman et al. 

(“Level I 

Multiple sites 

(USA Oncology 

Clinical 

care, 

quality 

Oncology 

(evaluated 

colorectal, 

Implemented, 

in use up to 

now in 

None, but 

depends 

on the 

Quality and 

patient 

outcomes  

Methods: multiple prospective 

cohort studies 
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Pathways”), 

2008  

network 

practices) 

lung, breast 

cancer) 

affiliated 

centers 

study 

team 

 

 

Pathway adoption, cost of care, 

hospitalization rates 

a) prospective, nonrandomized 

cohort study 

Target group (on-pathway) – 168 

and comparison - 53 patients 

with breast, lung cancer 

Outcomes: hospitalization rates 

and length of stay 

b) retrospective cohort study 

Target group (on-pathway) – 756 

and comparison – 154 patients 

with colon cancer 

Outcomes: hospitalization rates, 

length of therapy, cost of care 

c) retrospective cohort study 

Target group (on-pathway) – 

1,095 and comparison – 304 

patients with colon cancer 

Outcomes: survival rate, cost of 

care 

Feinberg et al. 

(“P4 

Pathways”), 

2012  

Multiple sites  

(136 USA 

practices) 

Clinical 

care, 

quality 

Oncology 

(evaluated 

colorectal, 

Implemented, 

in use up to 

now in 

None, but 

depends 

on the 

Quality and 

patient 

outcomes 

 

Methods: retrospective pretest–

post-test study 

Participants: 4,713 patients with 

breast, lung, or colorectal cancer 
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lung, breast 

cancer) 

affiliated 

centers 

study 

team 

Pathway adoption and cost of 

care 

Simon et al. 

("Oncology 

Expert 

Advisor”), 2019  

One site (MD 

Anderson Cancer 

Center, USA) 

Clinical 

care, 

quality 

Oncology 

(lung 

cancer) 

 

Implemented, 

actual use is 

not reported 

None, but 

depends 

on the 

study 

team 

User 

acceptance 

testing 

Details not reported 

Karamlou et al., 

(“ROAD2H”), 

2019  

2 sites (China 

National Health 

Development 

Research Center, 

University of 

Belgrade, Serbia)  

Clinical 

care, 

quality 

COPD, 

CKD, 

potentially 

unrestricted 

Implemented, 

actual use is 

not reported 

None, but 

depends 

on the 

study 

team 

User 

acceptance 

testing 

Details not reported 

Henry et al. (“e-

bipolar”), 2010  

Multiple sites 

(France, 

nationwide) 

Clinical 

care, 

quality 

Psychiatry 

(bipolar 

disorder) 

Implemented, 

actual use is 

not reported 

None, but 

depends 

on the 

study 

team 

Not reported  

Cook et al. 

("MayoExpert"), 

2017  

Multiple sites 

(Mayo Clinic 

sites, USA) 

 

Clinical 

care 

 

Unrestricted 

 

Implemented, 

at least for 

2014-2015 

 

None, but 

depends 

on the 

study 

team 

Usage Methods: retrospective 

longitudinal study 

Participants: data logs from 6700 

clinicians with the access to the 

tool 

Tool adoption and use 
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* Evidence mediator – a person, team or organization that plays the primary role in evidence generation or synthesis. 

 

Figure 5.5 Factors influencing the quality of decision-making through a causal-loop diagram. 

 
 

 

Appendix 5.6 Clinical questions supplied to the Data Consult Service.  

Characteristics include (a) if question was answered or not, (b) type of question, namely incidence rates, patient characterization or 

comparative effectiveness, (c) source of question (email, clinical round, in person communication) and (d) question application 

(current patient, group of patient or research). 

 

 Original question Reformatted question Characteristics Additional comments 

from users  

1 Does ceftriaxone 

impacts bilirubin levels 

How many patients under 2 months old got 

ceftriaxone and what their bilirubin and 

albumin within a week before and after 

a) Answered Clinicians reported that the 

findings aligned with the 

baseline expectation that 
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in kids under 2 months 

old? 

 

were? Characterize patients by age, days of 

ceftriaxone use,  gender and conditions 

(primary diagnosis) since birth. 

 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 

d) Current patient 

ceftriaxone does not cause 

bilirubin increase. Missing 

bilirubin measurements 

after ceftriaxone 

administration was 

interpreted as neonates 

having no symptoms of 

jaundice. This finding was 

said to be used in future 

decision-making. 

 

2 How often Kocuria 

Marina can be seen in 

the culture and who are 

those patients?  

 

How often Kocuria Marina can be seen in the 

microbal culture? Characterize patients by 

age, gender, prior disorders, type of culture 

done (e.g. blood, peritoneal fluid). 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 

d) Current patient 

 

Clinicians reported that the 

findings aligned with the 

baseline expectation that 

Kocuria Marina did not 

cause endocarditis and 

provided more confidence  

in future clinical decisions. 

  

3 In patients after stenting 

is there any difference in 

incidence of in-stent 

thrombosis after 3, 6, 9 

and 12 months of 

DAPT?  

 

What is the relative risk of in-stent 

thrombosis within a year after the 

discontinuation of dual antiplatelet therapy 

(ticagrelor, prasugrel or clopidogrel in 

combination with aspirin) in patients 

received 3-months DAPT compared to those 

who received it for 6, 9 and 12 months? 

a) Answered 

b) Comparative 

effectiveness 

c) In-person 

d) Group of patients 

Clinicians reported that the 

findings did not align with 

the baseline expectation as 

we observed lower risk of 

in-stent thrombosis in 

patients receiving 3-months 

DAPT. 

As the clinician attributed 

such a result to the fact that 

those patients could have 

been healthier than the 
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others, the findings were 

unlikely to be used in 

future decision-making. 

 

4 Patients with a-fib and 

left atrial appendage 

closure during cardiac 

surgery, how many were 

anticoagulated (and how 

did they do)? 

 

What is the relative risk of major 

cardiovascular events within two years after 

left atrial appendage closure during cardiac 

surgery in patients with atrial fibrillation who 

were on anticoagulants (direct anticoagulants 

or warfarin) after the surgery compared to 

the patient who discontinued anticoagulants? 

 

a) Answered 

b) Comparative 

effectiveness 

c) In-person 

d) Group of patients 

Clinician found that the 

results obtained on CUMC 

database were more useful 

than on the other data 

sources as we achieved 

balance in studied groups 

on CUMC. The results 

aligned with prior believes,  

are likely to be 

disseminated and used in 

future decision-making. 

 

5 What anticoagulants 

were used for patients 

with advanced CKD or 

ESRD (and how did 

they do)? 

What is the relative risk of major 

cardiovascular events and bleeding within 

two years after start of anticoagulation 

therapy in patients with end stage renal 

disorder treated with warfarin compared to 

patient treated with apixaban, rivaroxaban or 

dabigatran? 

 

a) Answered 

b) Comparative 

effectiveness 

c) In-person 

d) Group of patients 

As we could not achieve 

balance between studied 

groups, the clinician 

perceived provided results 

as inconclusive and would 

not use them for decision 

making. 

6 How many patients 

under 18 years old have 

developed hemolysis 

within a week after 

ceftriaxone 

administration? 

How many patients under 18 years old have 

developed hemolysis (laboratory test or an 

allergy description of hemolysis) within a 

week after ceftriaxone administration? 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 

d) Current patient 

Clinician was satisfied with 

the results but said that 

capture of hemolysis in 

EHR might be insufficient. 

Further studies may be 
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 needed to reach final 

conclusion. 

   

7 Do kids develop allergy 

to levofloxacin if they 

are allergic to 

cephalosporins? 

How many patients under 18 years old have 

a recorded allergic reaction to a 

cephalosporin (cefazolin, ceftriaxone 

ceftazidime or cefepime) and levofloxacin 

within a week? Characterize patients by age, 

gender, conditions, type of allergy, and 

concomitant medication use a year prior to 

the allergic event. 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 

d) Current patient 

Clinician was satisfied with 

the findings but stated that 

further study on patient 

notes may be needed to 

better capture allergy 

events. 

8 Does metformin impact 

the risk of atrial 

fibrillation or other 

arrythmias in diabetic 

patients? 

What is the relative risk of cardiac 

arrythmias (supraventricular and ventricular) 

in patients with diabetes who took different 

first-line antidiabetic drugs monotherapy 

(metformin, thiazolidinediones, DPP4 

inhibitors, GLP-1 agonists) for at least a 

year? 

 

a) Answered 

b) Comparative 

effectiveness 

c) In-person 

d) Research 

Clinician was surprised by 

the high variation in first-

line therapy for diabetes 

was found. Initially the 

sample size in CUMC was 

dissatisfying, but an 

expected number of studied 

patients was obtained in 

IBM Marketscan Medicare 

database. 

 

9 In patients who had 

baseline indications for 

anticoagulation and are 

continued on therapeutic 

anticoagulation during 

their stay, do we observe 

a lesser frequency of 

What is the relative risk of thrombotic 

complications (increased d-dimer, acute 

kidney injury, stroke, acute myocardial 

infarction, deep venous thrombosis or 

pulmonary embolism) in patients with 

baseline indications for anticoagulation on 

therapeutic anticoagulation regimen during 

a) Answered 

b) Comparative 

effectiveness 

c) Email  

d) Group of patients 

Clinicians considered 

findings for d-dimer to be 

more trustworthy compared 

to findings for deep venous 

thrombosis due to 

underreporting of the latter. 
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thrombotic 

complications or 

thromboembolism 

biomarkers? 

 

hospitalization compared to those on 

prophylactic anticoagulation regimen? 

 

10 Do patients with 

COVID-19 develop 

acute kidney injury 

more often? 

What is the incidence rate of acute kidney 

injury during hospitalization in patients with 

no prior end stage renal disorder hospitalized 

with COVID-19 diagnosis? Characterize the 

patients who developed acute kidney 

disorder. 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email  

d) Research 

 

The findings aligned with 

clinicians’ experience and 

were said to be likely to be 

used in practice. 

11 Does famotidine have a 

protective effect for 

COVID patients? 

What is the relative risk of COVID-19 

infection in patients on famotidine for at 

least 3 months prior to COVID test 

compared to those on proton pomp 

inhibitors? 

 

a) Answered 

b) Comparative 

effectiveness 

c) Email 

d) Group of patients 

 

The findings supported the 

baseline expectation that 

famotidine is not associated 

with decreased risk of 

COVID-19 and therefore 

provided more confidence 

in the decision not to 

prescribe it to prevent 

COVID-19.  

 

12 How often does Zosyn 

cause 

immunosuppression? 

What is the incidence rate of 

immunosuppression (WBC<4x103/ml) 

within a week after Zosyn administration in 

patients with no prior cancer, leukemia, 

lymphoma and systemic disorders? 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 

d) Current patient 

 

The findings supported the 

baseline expectation and 

are likely to be 

disseminated and used in 

future decision-making. 
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13 How patients with 

epilepsy and drug 

resistant epilepsy are 

treated at CUMC? 

Characterize treatment pathways and patient 

features in patients diagnosed with epilepsy 

who received anti-epileptic treatment for at 

least a year at CUMC (at least one exposure 

every four months). 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

d) Group of patients 

 

Clinician found the 

pathways patterns aligning 

with the baseline 

expectations. Specifically, 

we found that most of the 

patients with resistant 

epilepsy are not recorder as 

such in structured data but 

can be identified based on 

their drug exposures. 

14 Do different groups of 

drugs for breast cancer 

have a protective effect 

for COVID infection? 

 

What is the relative risk of COVID-19 

infection in patients with breast cancer on 

different types of treatment (estrogen 

receptor blocker or aromatase inhibitors) 

prior to COVID test? 

a) Answered 

b) Comparative 

effectiveness 

c) Email 

d) Research 

 

We found no difference in 

risk of COVID-19 infection 

between studied groups, 

but sample size is 

insufficient to produce 

reliable estimates. 

 

15 Does glucosamine have 

a protective effect for 

COVID infection in 

patients with 

osteoarthritis? 

What is the relative risk of COVID-19 

infection in patients with osteoarthritis on 

glucosamine compared to patients on 

diclofenac or oxicams prescribed within 3 

months prior to COVID test? 

 

a) Answered 

Comparative 

effectiveness 

c) Email 

d) Research 

 

We found no difference in 

risk of COVID-19 infection 

between studied groups, 

but glucosamine capture is 

insufficient to produce 

reliable estimates. 

 

16 Does doxycycline help 

to prevent COVID? 

What is the relative risk of COVID-19 

infection in patients with acne on 

doxycycline compared to those on 

macrolides? 

 

a) Answered 

b) Comparative 

effectiveness 

c) Email 

d) Research 

 

We found no difference in 

risk of COVID-19 infection 

between studied groups, 

but sample size is 

insufficient to produce 

reliable estimates. 
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17 What is the risk of 

transverse myelitis in 

patients who received 

influenza vaccine? 

 

What is the relative risk of transverse 

myelitis and other common vaccine adverse 

events in patients who received influenza 

vaccination? 

 

a) Answered 

b) Comparative 

effectiveness 

c) Email 

d) Research 

 

Preliminary data analysis 

revealed substantial 

number of transverse 

myelitis cases within 6 

months after vaccination.  

18 What proportion of our 

patients who get 

evaluated for 

kidney transplant end up 

having a cardiac 

catheterization and 

coronary intervention 

(stenting) before being 

waitlisted?  

What is the incidence rate of cardiac 

catheterization and stenting in patients 

evaluated for kidney transplant prior to 

placing on the waitlist? Characterize patients 

who got cardiac intervention and who did not 

by age, gender, comorbidities and time from 

entering the cohort to an outcome 

(intervention or placement in the waitlist). 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

d) Group of patients 

 

Clinicians reported that the 

findings aligned with the 

baseline expectation that 

only a small portion of 

evaluated patients receive 

coronary intervention. 

19 What proportion of our 

waitlisted patients who 

get re-tested end up 

having to undergo 

cardiac catheterization 

and coronary 

intervention based on 

results of re-testing? 

 

What is the incidence rate of cardiac 

catheterization and stenting in patients 

placed on waitlist for kidney transplant and 

received second testing? 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

d) Group of patients 

 

Clinicians reported that the 

findings aligned with the 

baseline expectation that 

secondary testing did not 

result in sufficient number 

of coronary interventions. 

20 How likely are the 

patients who receive 

high doses of steroids 

and insulin for kidney 

In patients with new kidney transplant who 

have no prior diabetes, are administered high 

doses of steroids and require insulin 

injections during their stay, what is the 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

Initial data exploration 

revealed that use of steroids 

increased risk of incident 

diabetes after renal 

transplant. Further studies 
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transplant to develop 

diabetes? 

likelihood of developing incident diabetes 

within 2 years after insulin administration? 

 

d) Group of patients 

 

with appropriate 

comparator groups are 

needed. 

 

21 

 

Is a combination of 

tacrolimus and 

belatacept superior to 

monotherapy in 

preventing kidney 

transplant rejection? 

What is the risk of kidney transplant 

rejection in patients with new kidney 

transplant on belatacept with tacrolimus 

compared to those drugs alone within a year 

after transplant? 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

d) Group of patients 

 

Clinicians were satisfied 

with the report and 

indicated that they would 

share the findings and use 

them in the decision-

making.  

22 How likely are patients 

who gain more than 10 

pounds after kidney 

transplant to develop 

diabetes? 

 

In patients with kidney transplant, is weight 

gain (more than 10 pounds) associated with 

new onset of diabetes within two years? 

 

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

d) Group of patients 

 

Clinicians were satisfied 

with the report, although it 

did not align with their 

prior belief. 

23 Is dupilumab associated 

with reduced risk of 

atrial fibrillation 

exacerbation in patients 

with pacemaker? 

 

What is the relative risk of atrial fibrillation 

exacerbation in patients with pacemaker on 

duplimab compared to patients who do not 

receive this drug?  

a) Answered 

b) Comparative 

effectiveness 

c) Email 

d) Group of patients 

 

Initial data exploration 

revealed no difference in 

atrial fibrillation 

exacerbation risk, but 

further studies with a larger 

sample size are needed. 

 

24 Does measurement of 

beta hydroxybutyrate 

level lead to 

overdiagnosis of 

diabetic ketoacidosis? 

What is the incidence of diabetic 

ketoacidosis in patients with hydroxybutyrate 

level measured compared to those who did 

not receive the test?  

a) Answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

We found increased 

incidence of diabetic 

ketoacidosis in diabetic 

patients after beta 

hydroxybutyrate blood 



Chapter 7. Bibliography 

 

 

 

376 

d) Group of patients 

 

level measurement was 

introduced into clinical 

practice. We have not 

received the feedback from 

clinicians yet. 

25 In ICU and CCU, does 

high amount of 

vasopressors correlates 

with survival rate? 

 

What is the relative risk of death in patients 

hospitalized to intensive or critical care unit 

and prescribed high doses of vasopressors 

(>30 mcg/min of epinephrine) compared to 

patients on regular doses of vasopressors? 

 

a) Not answered 

b) Comparative 

effectiveness 

c) In-person 

d) Group of patients 

 

26 Are there specific 

circumstances or patient 

populations that you 

prefer to use 

carbapenems over 

cefepime for 

Enterobacter spp? 

What are the characteristics of patients with 

detected Enterobacter (MIC =/<2) who had 

prior documented in vitro susceptibility to 

cefepime and got prescribed carbapenems? 

a) Not answered 

b) Patient 

characterization and 

incidence rates 

c) Email 

d) Current patient 

 

27 How patients with 

endocarditis and 

negative blood culture 

are treated? 

What were the treatment pathways in 

patients with endocarditis and negative blood 

cultures (whenever blood culture was 

performed prior to the start of antibiotic 

therapy)? 

 

a) Not answered 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 

d) Group of patients 

 

 

28 How often patients 

positive for methicillin-

sensitive 

Staphylococcus aureus 

(MSSA) also get 

How many patients with surveillance culture 

positive for MSSA (tested through either 

MRSA screening culture or MSSA/MRSA 

PCR screen)  have any positive culture for 

MRSA within a year of surveillance culture 

a) Not answered 

b) Patient 

characterization and 

incidence rates 

c) Clinical rounds 
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infected with 

methicillin-resistant 

Staphylococcus aureus 

(MRSA)? 

 

from any site?  Characterize patients by age, 

gender, prior disorders and type of MRSA 

culture (either wound, blood etc).  

 

d) Group of patients 

29 How often do we see 

cardiac complications 

after the initiation of 

immunotherapy? 

 

How often do we see cardiac complications 

(diagnosis of myocarditis, troponin > 100 

ng/ml, decreased ejection fraction) within 3 

months after the initiation of 

immunotherapy? 

a) Not answered 

b) Patient 

characterization and 

incidence rates 

c) In-person 

d) Group of patients 

 

 

 

 

 

 

Appendix 5.7 Examples of reports provided by the Data Consult Service 

 

5.7.1 Example of report №1 

 

Original question: 

How many patients under 2 months old got ceftriaxone and  what their bilirubin and albumin within a week before and after were? 

Characterize patients by age, days of ceftriaxone use,  gender, conditions and procedures since birth. 

 

Our findings: 

 

We found 434 patients under 2 months old with 541 ceftriaxone administrations. 405 patients did not have bilirubin measurements. 

We observed 11 patients (2.5%) with increased bilirubin: 5 patients who had bilirubin<1.2 mg/dL before ceftriaxone administration 

and bilirubin>1.2 mg/dL within a week after ceftriaxone administration and 6 patients who had initial abnormal bilirubin measurement 

and an increased bilirubin within a week after ceftriaxone administration. Other 18 patients had the same or decreased bilirubin 

measurement. 

 

Table 1. Patient characteristics 
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 All patients Patients with increased bilirubin 

# of identified patients 434 11 

Age 4113.7 days 3016.7 days 

Gender Male  254 (58.5%) 7 (64%) 

Female 180 (41.5%) 4 (36%) 

Abnormal body temperature or fever 90% 100% 

Sepsis 21.4% 63% 

Respiratory condition of fetus OR newborn 12.2% 63% 

Urinary tract infectious disease 12% 36% 

Acute upper respiratory infection 11.5% 9% 

Neonatal jaundice 9.9% 36% 

Fetal or neonatal effect of maternal infection 8.8% 27% 

Prematurity of fetus 6.7% 45% 

Viral disease 5.8% 9% 

Diarrhea 5% 0% 

 

 

Figure 2. Distribution of days of ceftriaxone use 

 

 
 

Figure 3. Distribution of bilirubin values, mg/dL before (y-axis) and after (x-axis) an exposure, a dot represents one patient 
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Figure 4. Distribution of maximum albumin values, g/dL before (y-axis) and after (x-axis) an exposure, a dot represents one patient. 
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Additional Information 

 

1. Concept set definition 

1.1. Patients who took Ceftriaxone (RxNorm 2193) and all drugs that contain it. 

The list of drugs included following strength: 

Ceftriaxone 250 MG Injection – 140 patients 

Ceftriaxone 500 MG Injection – 342 patients 

Ceftriaxone 1000 MG Injection – 58 patients 

 

1.2. Bilirubin and albumin measurements 

•  

Medical Entity Dictionary codes: 

4134, 11468, 33673 Direct Bilirubin 

5844, 40017 Neonatal bilirubin 

27697, 9286, 40945, 36800, 15942, 33694 Total Bilirubin 
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37546, 36085, 13735, 9820, 27699, 15944 Indirect bilirubin 

13153, 13160, 13162, 11303, 36080, 3716, 3829, 4132, 25432, 37541, 17220, 36799, 9821 Albumin serum or plasma 

 

5.7.2. Example of report №2 

 

Original question: Patients with a-fib and left atrial appendage closure during cardiac surgery, how many were anticoagulated (and 

how did they do)? 

 

Our interpretation: What is the relative risk of major cardiovascular events within two years after left atrial appendage closure 

during cardiac surgery in patients with atrial fibrillation who were on anticoagulants (DOAC or warfarin) after the surgery compared 

to the patient who discontinued anticoagulants? 

 

 

Our findings: 

 

We ran a comparative effectiveness study with propensity score matching on Truven MarketScan Medicaid, Medicare and 

Columbia University Irving Medical Center data. 

We found statistically significant lower risk of stroke within 2 years after left atrial appendage closure during surgery in 

patients on anticoagulants compared to patients off anticoagulants (odds ratio 0.34, CI 95% 0.14 – 0.88, P-value 0.02) on CUIMC 

data.  

We observed no difference in risk of stroke or MI on neither Medicaid nor Medicaid data, but we did not achieve full balance 

between cohorts on these two data sources. After propensity score matching, patients were still appreciably different. For example, 

patients on anticoagulants had fewer cases of bleeding before the surgery, fewer cases of respiratory failure, pneumonia or other 

respiratory disorders, chronic liver disease (supplementary materials 3.3).  

For reference, an unadjusted comparison (Tables 1 and 2) showed that anticoagulants were more frequently used in patients 

with rheumatic heart disease, mitral valve disorders, combined valve disorders, pulmonary hypertension, but these results are subject 

to confounding bias and are less trustworthy than the adjusted ones. Overall, anticoagulants were used less frequently when patients 

had bypass surgery and more frequently when the surgery was related to valve procedures. Anticoagulants were used more frequently 

in cases of any re-operation. We also observed that history of stroke did not seem to influence anticoagulants prescription. 

 

 

Methods: 

 

This was a retrospective cohort study using Cox proportional hazard model to assess the hazard ratios (HRs) between the target 

cohort (patients on anticoagulants) and comparator cohorts (patients off anticoagulants). We used clinical concepts from 
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Supplementary materials №1 to identify patients based on the cohort definitions in Supplementary materials №2. Once this base 

cohort was established, patients were evaluated to determine if they had an outcome of interest (AMI, stroke or VTE) during a 2-year 

follow-up period. Adjustment for baseline confounders was performed by fitting a propensity model and using the resultant propensity 

scores to match the target and comparator cohorts using variable ratio matching (Supplementary materials №3). To identify potential 

residual bias in HR estimates, we used negative control outcomes (i.e., not believed to be caused by anticoagulants). HRs were 

computed for these negative controls and used to compute calibrated p‐values for outcomes.  

We also characterized patients in the target and comparator cohorts before propensity score matching (Table 1 and Table 2). 

 

 

Table 1. Type of surgery associated with left atrial appendage closure, on anticoagulants/off anticoagulants, red – higher in the group 

on anticoagulants, green – higher in group off anticoagulants. 

 

Type of surgery Medicaid data Medicare data CUIMC data 

Coronary Artery 

Bypass, 1 artery 

21/34% 29/37% 5/23% 

Coronary Artery 

Bypass, 2 arteries 

7/16% 12/13% 6/6% 

Coronary Artery 

Bypass, 3 arteries 

5/11% 6/6% 2/4% 

Replacement, mitral 

valve 

45/20% 22/14% 28/26% 

Replacement, aortic 

valve 

19/11% 32/29% 26/36% 

Repair atrial septal 

defect, secundum 

8/3% 5/2% 7/6% 

Reoperation, bypass or 

valve procedure 

7/2% 3.2/2.4% 7/3% 

 

 

Table 2. Patient characteristics (unadjusted), Medicaid/Medicare/CUIMC data; green represents relatively low values, red – relatively 

high. Colors do not imply statistical significance and we did not test if the difference between groups is significant. 

 

 On anticoagulants Off anticoagulants 

# of identified patients 122/389/350 277/337/91 
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% of patients who experienced stroke within 2 

years 

11/7/11.2% 10/5/15.6% 

Mean age 60 ± 11/74 ± 6/67 ± 12 60 ± 13/75 ± 6/68 ± 11 

Race Black 21/-/2% 22/-/2% 

White 52/-/53% 60/-/50% 

Other 27/-/45% 18/-/48% 

Ethnicity Hispanic or Latino 2/-/37% 1/-/13% 

Not Hispanic or Latino 98/-/45% 99/-/47% 

Gender Male  49/58/60% 53/69/60% 

Female 52/42/40% 47/31/40% 

Comorbidities Hyperlipidemia 72/88/41% 73/92/53% 

Anemia 74/71/13% 74/73/14% 

Heart failure 75/64/46% 78/65/44% 

Peripheral vascular disease 60/77/49% 60/78/64% 

Pulmonary hypertension 51/32/31% 31/27/26% 

Rheumatic heart disease 68/50/28% 44/43/23% 

Diabetes mellitus II 40/42/21% 50/47/27% 

Non-rheumatic mitral valve disease 75/68/52% 56/56/35% 

Rheumatic disease of mitral valve 49/33/22% 30/24/15% 

Non-rheumatic tricuspid valve disease  45/33/14% 27/33/10% 

Rheumatic disease of tricuspid valve 25/15/8% 14/13/5% 

Disorders of both mitral and tricuspid valves 40/22/-% 19/22/-% 

Combined disorders of mitral, aortic and 

tricuspid valves 

14/14/-% 8/11/-% 

H/o stroke 14/11/7% 17/14/9% 

CHADS2VASc 3.5 ±1.6/4.7±1.6/4±1.3 4 ±1.7/4.9±1.6/4.2±1.5 

 

 

 

 

 

 

Supplementary materials 
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1 Concept set definition 

 

1.1 Anticoagulants 

All drugs that contain apixaban, dabigatran, rivaroxaban or warfarin. 

 

1.2 For VTE, AMI and stroke we used definitions from the LEGEND hypertension study (published here: 

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)32317-7/fulltext#sec1) 

1.3 For left atrial appendage closure, we used the following codes with their descendants: 

 02L70ZK Occlusion of Left Atrial Appendage, Open Approach  

 02L70DK Occlusion of Left Atrial Appendage with Intraluminal Device, Open Approach  

 02L70CK Occlusion of Left Atrial Appendage with Extraluminal Device, Open Approach  

 02B70ZK Excision of Left Atrial Appendage, Open Approach     

 02570ZK Destruction of Left Atrial Appendage, Open Approach 

 

2 Cohort definition 

•  

We defined patients with atrial fibrillation on anticoagulant therapy after LAAC during surgery as those who had had a diagnosis 

of atrial fibrillation prior to LAAC and were administered anticoagulants within 7 days after a LAAC procedure. The latter should 

occur on the same day with any cardiac surgery. 

We defined patients with stroke, AMI or VTE as those who had corresponding codes associated with an inpatient or emergency 

room visit. 

 

 

3 Additional study-related information 

 

3.1 Kaplan-Meier survival plots 

 

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)32317-7/fulltext#sec1
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. 

Figure 1. KMP showing the probability of stroke on     Figure 2. KMP showing the probability of stroke  

Medicaid data                            CUIMC data 

 

 
Figure 3. KMP showing the probability of stroke 

on Medicare data .                  

 

 

 

3.2 Propensity score matching 
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Figure 4. PS matching on CUIMC data                        Figure 5. PS matching on Medicaid data 

 

 

 

  
Figure 6. PS matching on Medicare data                         

 

 

 

Percent of patients in equipoise indicates the percent of patients who had the preference score (probability of receiving target 

treatment) within 0.25 – 0.75 range. We estimated patients’ propensity scores based on their drug, condition, procedure and 
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measurement records as well as CHA2DS2-VASc and Charlson comorbidity index, assuming that this percent of patients from the 

target and comparator groups are comparable. We identified more than 10,000 covariates for each analysis. 

Top covariates for which we did not achieve good balance between the target and the comparator groups include: 

respiratory failure and insufficiency, pneumonia and other respiratory disorders, history of bleeding and chronic liver disease. 

 

3.3 Covariate balance before and after propensity score matching 

 

 
Figure 7. Covariate balance for stroke, CUIMC data 
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Figure 8. Covariate balance for stroke, Medicaid data 
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Figure 9. Covariate balance for stroke, Medicare data 
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