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INTRODUCTION 

 

An estimated one in ten babies, 15 million worldwide, are born prematurely each year — 

prematurity being a significant risk factor for the development of retinopathy of prematurity 

(ROP), a potentially-blinding disorder of the retinal vasculature.1–3 Despite the existence of known 

risk factors and many effective treatment options, ROP remains one of the world’s leading causes 

of childhood blindness. This is primarily due to a combination of the scarcity of ROP experts and 

advances in neonatal intensive care units, which have increased the survival rate of younger, 

smaller infants and, consequently, the incidence and prevalence of ROP.4,5 

To address the lack of ROP care in rural areas and developing countries, telemedicine pipelines 

and automated methods for the diagnosis of ROP have been proposed.6–9 However, there are two 

primary issues that reduce their practicality. First, both require high quality retinal fundus images 

for diagnosis.7,9 Imaging technicians are thoroughly trained, but image quality metrics must still 

be applied, as the cost of a missed diagnosis due to poor image quality or an incorrect field-of-

view could be a lifetime of blindness. Unfortunately, basic image quality metrics do not capture 

the nuances of what constitutes a diagnosable retinal fundus image for ROP and remains an open 

area of research. Second, to ensure near 100% sensitivity to TR-ROP, these exams are performed 

weekly.7,9 However, roughly 85–90% of those screened never develop TR-ROP, and weekly 

examinations not only increase the screening burden, but also the physiological stress placed on 

these extremely fragile infants. ROP risk models have been developed to reduce the screening 

burden, but often suffer from a lack of 100% sensitivity, or very low specificity.1,2,10,11 This also 

remains an active area of research. Finally, even if a risk model predicted that a child was not going 

https://paperpile.com/c/8elAWA/NnjX+KuXI+R4GR
https://paperpile.com/c/8elAWA/oZKv+DXLz
https://paperpile.com/c/8elAWA/9c5U+TpzB+O6zI+52va
https://paperpile.com/c/8elAWA/TpzB+52va
https://paperpile.com/c/8elAWA/52va+TpzB
https://paperpile.com/c/8elAWA/NnjX+KuXI+Lf7SU+yiCe
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to develop TR-ROP, they would still need to be screened once every two to three weeks. In areas 

without direct access to ROP experts, this could be accomplished by a pediatric ophthalmologist, 

so long as they knew what features of ROP were worrisome. Unfortunately, the current reference 

standard image for TR-ROP is highly-outdated — it is blurry and the field-of-view is no longer 

the standard.1,3 Therefore, personalized reference standard images of TR-ROP for individual eyes 

would be ideal. Herein, we address these issues via the following specific aims: 

Aim 1: Quality Control for Retinal Fundus Images — Ensure that retinal fundus images used 

for telemedicine and the automated diagnosis of ROP are of sufficient quality for an accurate and 

reliable diagnosis. This will be accomplished by training a convolutional neural network to detect 

which images are acceptable for the diagnosis of ROP and those which are not. 

Aim 2: Prediction of Treatment-Requiring ROP Patients — Develop a risk model that, with 

near-perfect sensitivity, can predict which infants will develop treatment-requiring ROP, while 

simultaneously reducing the screening burden by maintaining high specificity with a 100% 

negative predictive value. This will be accomplished by using a novel deep learning-based vascular 

severity score. 

Aim 3: Development of Personalized Reference Standard Images — Assist non-ROP experts 

with the identification of TR-ROP by synthesizing personalized reference standard retinal fundus 

images of TR-ROP. This will be accomplished using a series of generative adversarial networks 

that: (1) segment retinal fundus images into retinal vessel maps, (2) augment the vascular severity 

of said vessel maps to appear as TR-ROP, and then (3) convert augmented vessel maps back into 

retinal fundus images. 

https://paperpile.com/c/8elAWA/NnjX+R4GR
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It is our goal to solve some of the issues associated with the accurate and timely diagnosis of TR-

ROP. A robust image quality algorithm will be extremely useful for both telemedicine pipelines 

and the automated diagnosis of ROP. Such an algorithm could easily be implemented in retinal 

fundus cameras or the computers to which they are attached, so that imaging technicians could 

instantly be alerted as to whether captured images were of high enough quality. A risk model will 

theoretically predict all subjects who will develop TR-ROP, while correctly ruling out more than 

half of those who will not. Finally, those who are deemed low risk will still require follow-up 

examinations, albeit far less frequently. To reduce the screening burden further, these exams could 

be performed by non-experts using personalized reference standard images, which make it far 

easier for them to identify the features associated with TR-ROP.
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BACKGROUND 

 

RETINOPATHY OF PREMATURITY 

Retinopathy of prematurity (ROP) is a potentially-blinding disorder of the retinal vasculature that 

affects premature infants, particularly those born prior to 31 weeks of gestation that weigh less 

than 1251 grams at birth.1,3 For reference, a full-term pregnancy has a gestation period of 38 to 42 

weeks, and the average birth weight, in the United States, hovers around 3500 grams.12,13 Life-

saving techniques for prematurely-born children often include some form of oxygen therapy.12,14,15 

However, oxygen (or lack thereof) is the main catalyst behind normal fetal retinal development — 

the retina being the layer of tissue on the back of the eye that supports photoreceptor cells, which 

are responsible for vision. At around 16 weeks of gestation, the blood vessels of the retina begin 

to form at the optic nerve.  Because the womb is constantly in a hypoxic state, the retinal blood 

vessels slowly begin to grow outward in an attempt to supply oxygen and nutrients to the peripheral 

retina. Around 26 to 30 weeks of gestation, the eye begins to develop at an increased pace and, 

once born, the presence of oxygen signals to the retina to cease development. However, ROP 

patients, by definition, are born before or during this period of rapid vessel development. In order 

to preserve life, they are immediately placed in oxygen incubators upon birth; this completely 

inhibits the growth of the un- or under-developed retinal blood vessels. However, once these 

infants are deemed healthy enough to be removed from incubation, the lack of oxygen in the 

peripheral retina, due to the absence of peripheral retinal vasculature, signals vascular endothelial 

growth factor (VEGF) to promote the growth of new retinal blood vessels. In some cases, these 

vessels grow in an uncontrolled manner. These weak and fragile vessels eventually rupture and 

https://paperpile.com/c/8elAWA/R4GR+NnjX
https://paperpile.com/c/8elAWA/j8X8+0t60
https://paperpile.com/c/8elAWA/j8X8+J6YD+N8Ro
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bleed. The body naturally responds to stop the bleeding via scarring. When the scars shrink, they 

can pull on the retina and cause it to detach from the back of the eye, severing the neural 

connections that are required for vision, thus resulting in permanent visual impairment. 

Features of Retinopathy of Prematurity 

Fortunately, physicians have identified various clinical traits that are indicative of an eye that has, 

or is developing, moderate or severe ROP. There are three clinically defined features of ROP: 

zone, stage, and plus disease. 

Zone 

Zone describes where and to what extent ROP is occurring (Figure 1).1,3 This is accomplished by 

locating the ROP and its proximity to the optic nerve. There are three concentric zones in which 

ROP may occur. Zone I is described as a circle, centered on the optic nerve, that has a radius twice 

the distance of that from the optic nerve to the macula. Zone II is also centered on the optic nerve; 

however, its radius extends to the nasal-ora serrata (the 3-o’clock position in the right eye and the 

9-o’clock position in the left eye). Zone III is the residual crescent of retina unaccounted for by 

Zone I and Zone II. These zones are non-overlapping. For example, Zone II only includes portions 

of the retina not included in Zone I or Zone III. The extent of disease is recorded as the number 

30° sectors, or clock-hours, that contain disease, and the boundaries between sectors lie on the 

clock hour positions. In general, the closer ROP occurs to the optic nerve and the macula, the more 

worrisome it is. This is because its potential to disturb the macula — the cone photoreceptor-dense 

region responsible for keen eyesight and color vision — and the optic nerve — responsible for 

transmitting all light gathered by photoreceptor cells to the brain to form an image –– is far greater. 

Therefore, ROP found in Zone I is more alarming than ROP found in Zone II or Zone III. While 

https://paperpile.com/c/8elAWA/NnjX+R4GR
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Zone III ROP is not ideal, its potential to disturb the optic nerve and macula is far less, and typically 

only rod photoreceptor cells — those responsible for both night and peripheral vision — are 

disturbed. 

 

Figure 1: Scheme of retina of right eye (RE) and left eye (LE) showing zone borders and 

clock hours used to describe the location and extent of retinopathy of prematurity. Figure 

adapted from the The International Classification of Retinopathy of Prematurity Revisited 1. 

Stage 

While Zone describes where ROP is located, Stage describes to what extent it is occurring.1,3 ROP 

is a result of incomplete vascular development; the appearance of the junction between the 

vascularized and avascular retina can be described as fitting into one of five different stages 

(Figure 2). Stage 1 ROP is described as a thin, but definite line of demarcation that separates the 

vascularized and avascular retina (Figure 2A). Stage 2 ROP is defined as a ridge (Figure 2B). It 

arises in the region of the demarcation line, but unlike the thin, flat line in Stage 1, it now has 

https://paperpile.com/c/8elAWA/NnjX
https://paperpile.com/c/8elAWA/NnjX+R4GR
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height and width, and extends above the plane of the retina. Retinal blood vessels that meet the 

ridge may leave the plane of the retina posterior to the ridge to enter it. Small isolated tufts of 

neovascular tissue lying on the surface of the retina may be seen posterior to this ridge structure 

(see arrows in right image of Figure 2B). Stage 3 ROP begins to get more complicated. In stage 

3, extraretinal fibrovascular proliferation or neovascularization extends from the ridge into the 

vitreous, the area of the eye anterior to the retina (Figure 2C). Typically, the ridge appears more 

ragged as this proliferation becomes more severe. The severity of Stage 3 is subdivided into mild, 

moderate, and severe depending on the extent of extraretinal fibrovascular tissue infiltrating the 

vitreous. Stage 4 ROP is defined as partial retinal detachment (Figure 2D). It can be subdivided 

into extrafoveal (Stage 4A) and foveal (Stage 4B) detachments. The extent of these detachments 

depends on how many clock hours of the retina the detachment is occurring and to what degree 

the scarring is pulling on the retina. Stage 5 ROP is defined as total retinal detachment. As the 

name suggests, this means that the entire retina has been torn away from the choroid (the tissue 

layer behind the retina responsible for supplying nutrients), and all neural connections severed. 
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Figure 2: Examples of the various stages of retinopathy of prematurity. Arrows point to 

clinical features found in (A) Stage 1 ROP, (B) Stage 2 ROP, (C) Stage 3 ROP, (D) Stage 4A ROP, 

(E) Stage 4B ROP, and (F) Stage 5 ROP. Figure adapted from the The International Classification 

of Retinopathy of Prematurity Revisited.1 

Plus Disease 

Finally, the presence of plus disease, defined as venous dilation and arterial tortuosity,  also helps 

determine the severity of ROP (Figure 3C).1,3 Plus disease may later increase in severity to 

include iris vascular engorgement, poor pupillary dilatation, and/or vitreous haze. Plus disease 

need not be present in every portion of the retina for a diagnosis to be made — only two 

quadrants of the retina need to show plus disease for the entire eye to be diagnosed as such. As is 

common with many diseases, there is a spectrum of severity, and plus disease is no exception. 

Although physicians and researchers have attempted to binarize plus disease, there remains an 

in-between condition known as pre-plus disease (Figure 3B). This describes vessels that do not 

appear normal (Figure 3A), but do not have severe enough venous dilation and arterial tortuosity 

https://paperpile.com/c/8elAWA/NnjX
https://paperpile.com/c/8elAWA/NnjX+R4GR
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to warrant a plus disease diagnosis. Over time, the vessel abnormalities associated with pre-plus 

disease can progress to plus disease as the vessels dilate and become more tortuous. 

 

Figure 3: Examples worsening retinal vasculature. (A) Normal retinal blood vessels. They are 

relatively thin and straight. (B) Retinal blood vessels with pre-plus disease. These vessels are not 
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normal, but not severe enough to be diagnosed as plus. (C) Retinal blood vessels with plus disease. 

Note the extreme dilation and tortuosity. 

Diagnosis of Retinopathy of Prematurity 

Together, these features assist physicians in forming an ROP diagnosis.1,3,13,16 Possible diagnoses, 

in order of severity, are: none, mild, Type-2, or Type-1 ROP. Although “none” implies that no 

ROP was found, it does not mean that a retina is healthy. It simply means that there is no visible 

demarcation line between the vascularized and avascular retina. Type-1 ROP, also known as 

treatment-requiring (TR-) ROP, is diagnosed given the following retinal finding: 

● Zone I: any stage with plus disease 

● Zone I: stage 3 without plus disease 

● Zone II: stage 2 or 3 with plus disease 

Upon a diagnosis of TR-ROP, treatment is typically initiated within 48–72 hours, if not 

immediately. Type-2 ROP, also known as moderate ROP, is diagnosed given the following retinal 

findings: 

● Zone I: stage 1 or 2 without plus disease 

● Zone II: stage 3 without plus disease 

Conditions not described in Type-1 or Type-2 ROP where the appearance of the retinal 

vasculature can be diagnosed as pre-plus or plus are also typically diagnosed as moderate ROP. 

Infants diagnosed with Type-2 ROP are monitored very closely, with follow-up examinations 

occurring every one to two weeks. Mild ROP encompasses all other ROP-related retinal 

findings. 

https://paperpile.com/c/8elAWA/NnjX+R4GR+0t60+IPTJh
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Treatment of Retinopathy of Prematurity 

The presence of plus disease — abnormal dilation and tortuosity of the posterior retinal blood 

vessels in two or more quadrants of the retina — in Zones I or II suggests that treatment, rather 

than observation, is appropriate.16 There is only a single situation where treatment is warranted in 

the absence of plus disease (Zone I Stage 3 ROP without plus disease). The most effective 

treatments for Type-1 ROP, prior to retinal detachments, are laser therapy, cryotherapy, and anti-

VEGF therapy.1,2,16 Both laser therapy and cryotherapy operate by destroying the peripheral retinal 

vasculature, which slows or completely eliminates the abnormal growth of retinal blood vessels. 

However, the consequences of this treatment are that patients’ peripheral vision will inevitably be 

irreparably destroyed. Anti-VEGF therapy is a fairly new treatment option. In practice, anti-VEGF 

compounds are injected directly into the vitreous of the eye, where it acts upon the VEGF driving 

the abnormal retinal vessel growth. While there do not appear to be any immediate consequences 

of this treatment, future complications and consequences of the injection of an anti-growth factor 

into developing infant eyes have yet to be evaluated fully. 

In Stages 4 and 5 ROP, a scleral buckle may be implanted.1 This involves placing a tight silicone 

band around the eye. This method prevents the vitreous humor from pulling on the scar tissue and 

allows the retina to flatten and reattach to the choroid. For Stage 5 ROP only, a vitrectomy may be 

performed. This involves removing the vitreous humor, cutting away retinal scar tissue, reattaching 

the retina to the choroid, and then refilling the vitreous cavity with a saline solution. 

Challenges in Retinopathy of Prematurity 

While diagnosis of TR-ROP, and treatment thereof, appears straightforward, there are many 

underlying factors which have caused this disease to remain one of the world's leading causes of 

https://paperpile.com/c/8elAWA/IPTJh
https://paperpile.com/c/8elAWA/IPTJh+KuXI+NnjX
https://paperpile.com/c/8elAWA/NnjX
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childhood blindness. It should be noted that this is not just a disease found in developing countries. 

For instance, in the United States, approximately 30,000 children are born prematurely each year, 

and roughly half of them develop some form of ROP. As advances in neonatal care increase, 

allowing for the preservation of younger, smaller infants, so does the incidence of ROP. 

Screening 

To ensure that TR-ROP can be quickly and accurately diagnosed and treated, ROP screenings are 

performed frequently to ensure high sensitivity. Consequently, although the criteria that dictate 

which infants require screening, namely birthweight and gestational age, are sensitive, they are not 

very specific. Around 80% of those screened develop, at worst, mild ROP, which is self-regressing 

and does not affect long-term visual acuity.2 This significantly increases the screening burden and 

the physiological stress placed on these already-fragile premature infants.4,5 Additionally, these 

exams begin as early as 31 weeks PMA, and are carried out once every one to two weeks, until 

ROP is “unequivocally regressing.”16,17 However, in rural areas and developing countries, access 

to ROP experts is limited, and screenings are often not performed as often as recommended, if at 

all.4,5 To combat this issue, telemedicine pipelines for ROP have been implemented.7–9 However, 

examinations via telemedicine must be performed at least once per week. Thus, while telemedicine 

greatly expands the geographic area physicians can cover and increases the total number of infants 

screened, it increases the screening burden and frequency of exams, and fails to reduce the 

physiological stress placed on premature infants. 

In an attempt to reduce the screening burden, various ROP risk models have been 

developed.10,13,18,19 Many, in theory, have clinical relevance; in practice, they are not quite as 

practical. For instance, some infant risk factors, such as intraventricular hemorrhages or 

bronchopulmonary dysplasia, are associated with infants who develop TR-ROP. However, these 

https://paperpile.com/c/8elAWA/KuXI
https://paperpile.com/c/8elAWA/oZKv+DXLz
https://paperpile.com/c/8elAWA/rBTV+IPTJh
https://paperpile.com/c/8elAWA/oZKv+DXLz
https://paperpile.com/c/8elAWA/TpzB+O6zI+52va
https://paperpile.com/c/8elAWA/0Exa+rxhO+Lf7SU+0t60
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comorbidities are often rare, thereby rendering them difficult to associate definitively, or difficult 

to measure. Another risk model has attempted to use gestational age, birthweight, and weekly 

weight gain for TR-ROP.10 While this model was able to achieve 100% sensitivity and 53% 

specificity on a held-out test dataset acquired from a single hospital, when a larger North American 

cohort, obtained from 30 hospitals, was retrospectively evaluated, specificity dropped to just 6.8% 

when 100% sensitivity was desired/10,11 Unfortunately, this is not practical. While some may argue 

that reducing sensitivity slightly to increase specificity significantly, they fail to take into account 

the associated costs of a missed diagnosis — that is, a missed TR-ROP prediction will lead to life-

long visual impairment. In the opinion of most physicians, this is simply not acceptable. Risk 

models for ROP, specifically TR-ROP, remain an open area of research. 

In an effort to reduce physician burden, automated methods for the diagnosis of ROP have been 

implemented.6,20 These models typically use retinal fundus images as input to a convolutional 

neural network that can scan for features of ROP. While these models have shown excellent 

performance, even when compared to ROP experts, they still require weekly ROP exams. 

Therefore, although they reduce the screening burden placed on ROP experts, babies must still be 

sedated, weekly, to undergo exams. 

Finally, accurate and reliable image-based diagnosis, whether via telemedicine or automated 

methods, can suffer from poor image quality.7,9 This is particularly challenging in ROP, as vitreous 

haze can be a feature of the disease, which can occlude portions of an image, but not necessarily 

render them undiagnosable.1,9 Similarly, an image can appear free of haze or other obstructions, 

but an incorrect field-of-view can reduce the accuracy and reliability of an ROP diagnosis.9 

Unfortunately, this means that common image quality metrics, such as the peak signal to noise 

https://paperpile.com/c/8elAWA/Lf7SU
https://paperpile.com/c/8elAWA/Lf7SU+yiCe
https://paperpile.com/c/8elAWA/9c5U+VW2mC
https://paperpile.com/c/8elAWA/TpzB+52va
https://paperpile.com/c/8elAWA/52va+NnjX
https://paperpile.com/c/8elAWA/52va
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ratio and the structural similarity index measure, do not work well for this specific application, and 

thus it remains an open area of research.7,9,21 

Diagnosis

In-person and telemedical exams operate under two weak assumptions: (A) that there are enough 

ROP experts to screen all premature infants, and (B) that all experts agree on the clinical findings 

of ROP — specifically, on the diagnosis of plus disease. As previously mentioned, the diagnosis 

of plus disease was originally a binary decision.3 Experts later recognized that there is a spectrum 

of venous dilation and arterial tortuosity, but rather than creating a continuous scale, added a third 

potential diagnosis, pre-plus disease.1 Even with this addition, experts still have trouble agreeing 

on the level of vascular severity required to diagnose normal versus pre-plus versus plus disease 

vasculature.22,23 

Campbell et al. demonstrated that agreement of plus disease diagnosis between ROP experts was 

imperfect, however images that were graded as normal, pre-plus, or plus disease, by a group of 

experts, tended to group together (Figure 4). Kalpathy-Cramer et al. further investigated this 

finding and showed that although the cut points between plus disease categories differed, the 

relative ranking of plus disease severity between experts was highly correlated (mean correlation 

coefficient, 0.97; range, 0.95–0.98; Figure 5). Ultimately, these results, together, suggest that (A) 

experts have their own cut-offs between transitions for plus disease classification, but (B) that 

experts rank vascular severity similarly. Put simply, although two experts may not agree on the 

specific diagnosis for a retinal fundus image (e.g., pre-plus versus plus), they can almost always 

agree that one image displays worse vascular severity than another. This could have potential 

applications in reducing ROP experts’ screening burden by allowing pediatric ophthalmologists to 

perform ROP screenings, especially in developing countries, by comparing the severity of their 

https://paperpile.com/c/8elAWA/52va+TpzB+3cOP
https://paperpile.com/c/8elAWA/R4GR
https://paperpile.com/c/8elAWA/NnjX
https://paperpile.com/c/8elAWA/CH8N+WiUU
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patients’ retinal vasculature to reference standard images of plus disease. However, as mentioned, 

the current reference standard image of plus disease is outdated and extremely severe. Generation 

of personalized reference standard images, for this purpose, should be an active area of research. 

 

Figure 4: A representative range of images within each category of disease (plus, pre-plus, 

normal), and the range of expert diagnostic classifications for each image. This graphically 

depicts the continuous spectrum of severity of vascular abnormality within each discrete plus 

disease diagnosis (plus, pre-plus, or normal), from most severe (left) to least (right). In addition to 

demonstrating the spectrum of vascular abnormality within each ordinal classification, this shows 

that different experts appear to have different cut-offs for the transitions between diagnostic 

classifications. Figure adapted from Campbell et al., 2016.22 

https://paperpile.com/c/8elAWA/CH8N
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Figure 5: Scatterplot showing the comparison rankings of five expert graders. The relative 

vascular severity rankings between all five graders were highly consistent (mean correlation 

coefficient, 0.97; range, 0.95–0.98) between each expert and a consensus comparison ranking. 

Figure adapted from Kalpathy-Cramer et al., 2016.23 

In conclusion, although ROP is highly diagnosable and treatable, it remains one of the world’s 

leading causes of childhood blindness. The main challenges are: (1) a high screening burden, (2) 

a lack of quality assurance metrics for retinal fundus images that are used in telemedicine and 

automated diagnostic tools used to reduce said screening burden, and (3) a disagreement on the 

vascular severity required to diagnose plus disease and, subsequently, TR-ROP, which can lead to 

over- or under-treatment.  

https://paperpile.com/c/8elAWA/WiUU
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ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

Over the past decade, artificial intelligence (AI) and machine learning (ML) have become popular 

subjects both within and outside of the scientific community; an abundance of articles in 

technology and non-technology-based journals have covered the topics of machine learning, deep 

learning (DL), and AI.6,24–28 Although these terms are highly associated, they are not 

interchangeable, and are discussed further herein. 

In 1956, a group of computer scientists proposed that computers could be programmed to think 

and reason, “that every aspect of learning or any other feature of intelligence [could], in principle, 

be so precisely described that a machine [could] be made to simulate it.”29 They described this 

principle as “artificial intelligence.” Simply put, AI is a field focused on automating intellectual 

tasks normally performed by humans, and ML and DL are specific methods of achieving this goal. 

That is, they are within the realm of AI (Figure 1). However, AI includes approaches that do not 

involve any form of “learning.” For instance, the subfield known as symbolic AI focuses on 

hardcoding (i.e., explicitly writing) rules for every possible scenario in a particular domain of 

interest. These rules, written by humans, come from a priori knowledge of the particular subject 

and task to be completed. For example, if one were to program an algorithm to modulate room 

temperature of an office, he or she likely already knows what temperatures are comfortable for 

humans to work in and would program the room to cool if temperatures rise above a specific 

threshold and heat if they drop below a lower threshold. Although symbolic AI is proficient at 

solving clearly defined logical problems, it often fails for tasks that require higher-level pattern 

recognition, such as speech recognition or image classification. These more complicated tasks are 

where ML and DL methods perform well. 

https://paperpile.com/c/8elAWA/9c5U+Kr4v+V66A+Hka9+Jop2+XFbn
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Figure 1: Umbrella of select data science techniques. Artificial intelligence (AI) falls within the 

realm of data science and includes classical programming and machine learning (ML). ML 

contains many models and methods, including deep learning (DL) and artificial neural networks 

(ANN). 

ML is a field that focuses on the learning aspect of AI by developing algorithms that best represent 

a set of data. In contrast to classical programming (Figure 2A), in which an algorithm can be 

explicitly coded using known features, ML uses subsets of data to generate an algorithm that may 

use novel or different combinations of features and weights that can be derived from first principles 

(Figure 2B).29–31 In ML, there are four commonly used learning methods, each useful for solving 

different tasks: supervised, unsupervised, semi-supervised, and reinforcement learning.30–32 To 

https://paperpile.com/c/8elAWA/SIEy+hbWw+aQ3p
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better understand these methods, they will be defined via an example of a hypothetical real estate 

company that specializes in predicting housing prices and features associated with those houses. 

 

Figure 2: Classical programming versus machine learning paradigm. (A) In classical 

programming, a computer is supplied with a dataset and an algorithm. The algorithm informs the 

computer how to operate upon the dataset to create outputs. (B) In machine learning, a computer 

is supplied with a dataset and associated outputs. The computer learns and generates an algorithm 

that describes the relationship between the two. This algorithm can be used for inference on future 

datasets. 

Supervised Learning 

Suppose the real estate company would like to predict the price of a house based on specific 

features of the house. To begin, the company would first gather a dataset that contains many 

instances.30,31 Each instance represents a singular observation of a house and associated features. 

Features are the recorded properties of a house that might be useful for predicting prices (e.g., total 

square-footage, number of floors, the presence of a yard) The target is the feature to be predicted, 

in this case the housing price.30,31,33 Datasets are generally split into training, validation, and testing 

https://paperpile.com/c/8elAWA/hbWw+aQ3p
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datasets (models will always perform optimally on the data they are trained on).30,31 Supervised 

learning uses patterns in the training dataset to map features to the target so that an algorithm can 

make housing price predictions on future datasets. This approach is supervised because the model 

infers an algorithm from feature-target pairs and is informed, by the target, whether it has predicted 

correctly.30–32 That is, features, x, are mapped to the target, Y, by learning the mapping function, f, 

so that future housing prices may be approximated using the algorithm Y  =  f(x). The performance 

of the algorithm is evaluated on the test dataset, data that the algorithm has never seen before.30,31 

The basic steps of supervised machine learning are (1) acquire a dataset and split it into separate 

training, validation, and test datasets; (2) use the training and validation datasets to inform a model 

of the relationship between features and target; and (3) evaluate the model via the test dataset to 

determine how well it predicts housing prices for unseen instances. In each iteration, the 

performance of the algorithm on the training data is compared with the performance on the 

validation dataset. In this way, the algorithm is tuned by the validation set. Insofar as the validation 

set may differ from the test set, the performance of the algorithm may or may not generalize. This 

concept will be discussed further in the section on performance evaluation. 

The most common supervised learning tasks are regression and classification.30–32 Regression 

involves predicting numeric data, such as test scores, laboratory values, or prices of an item, much 

like the housing price example.30–32 Classification, on the other hand, entails predicting to which 

category an example belongs. Sticking with the previous example, imagine that rather than 

predicting exact housing prices in a fluctuating market, the real estate company would now like to 

predict a range of prices for which a house will likely sell, such as [0, 125K), [125K, 250K), [250K, 

375K), and [375K, ∞). To accomplish this, data scientists would transform the numeric target 

variable into a categorical variable by binning housing prices into separate classes. These classes 

https://paperpile.com/c/8elAWA/hbWw+aQ3p
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would be ordinal, meaning that there is a natural order associated with the categories.31 However, 

if their task was to determine whether houses had wood, plastic, or metal siding, classes would be 

nominal; they are independent of one another and have no natural order. 

Unsupervised Learning 

In contrast to supervised learning, unsupervised learning aims to detect patterns in a dataset and 

categorize individual instances in the dataset to said categories.30–32 These algorithms are 

unsupervised because the patterns that may or may not exist in a dataset are not informed by a 

target and are left to be determined by the algorithm. Some of the most common unsupervised 

learning tasks are clustering, association, and anomaly detection.30–32 Clustering, as the name 

suggests, groups instances in a dataset into separate clusters based upon specific combinations of 

their features.30–32 Say the real estate company now uses a clustering algorithm on its dataset and 

it finds three distinct clusters. Upon further investigation, it might find that the clusters represent 

the three separate architects responsible for designing the homes in their dataset, which is a feature 

that was not present in the training dataset. 

Semi-Supervised Learning 

Semi-supervised learning can be thought of as the “happy medium” between supervised and 

unsupervised learning and is particularly useful for datasets that contain both labeled and unlabeled 

data (i.e., all features are present, but not all features have associated targets)32 This situation 

typically arises when labeling images become time-intensive or cost-prohibitive. Semi-supervised 

learning is often used for medical images, where a physician might label a small subset of images 

and use them to train a model. This model is then used to classify the rest of the unlabeled images 

in the dataset. The resultant labeled dataset is then used to train a working model that should, in 

theory, outperform unsupervised models. 

https://paperpile.com/c/8elAWA/aQ3p
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Reinforcement Learning 

Finally, reinforcement learning is the technique of training an algorithm for a specific task where 

no single answer is correct, but an overall outcome is desired.31,32 It is arguably the closest attempt 

at modeling the human learning experience because it also learns from trial and error rather than 

data alone. Although reinforcement learning is a powerful technique, its applications in medicine 

are currently limited and thus will be presented with a new example. Imagine one would like to 

train an algorithm to play the video game Super Mario Bros, where the purpose of the game is to 

move the character Mario from the left side of the screen to the right side in order to reach the 

flagpole at the end of each level while avoiding hazards such as enemies and pits. There is no 

correct sequence of controller inputs; there are sequences that lead to a win and those that do not. 

In reinforcement learning, an algorithm would be allowed to “play” on its own. It would attempt 

many different controller inputs and when it finally moves Mario forward (without receiving 

damage), the algorithm is “rewarded” (i.e., the behavior is reinforced). Through this process, the 

algorithm begins to learn what behavior is desired (e.g., moving forward is better than moving 

backward, jumping over enemies is better than running into them). Eventually, the algorithm learns 

how to move from start to finish. Although reinforcement has its place in the field of computer 

science and machine learning, it has yet to make a substantial impact in clinical medicine. 

Performance Evaluation 

To maximize the chance of generalizability to the performance of the algorithm on unseen data, 

the training dataset is usually split into a slightly smaller training dataset and a separate validation 

dataset.30,31 Metrics used for evaluation of a model depend upon the model itself and whether it is 

in the training or testing phase. The validation dataset is meant to mimic the test dataset and helps 

data scientists tune an algorithm by identifying when a model may generalize well and work in a 

https://paperpile.com/c/8elAWA/5qvl+aQ3p
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new population. Because the validation dataset is a small sample of the true (larger) population, it 

may not accurately represent the population itself due to an unknown sampling bias. Therefore, 

model performance and generalizability should not be assessed via validation set performance. It 

is conceivable that a data scientist could create a validation dataset with an unknown bias and use 

it to tune a model. Although the model might perform well on the validation dataset, it would likely 

not perform well on the much larger test dataset (i.e., it would not be a generalizable model). 

Typically, model performance is monitored via some form of accuracy on the training and 

validation datasets during this phase. So long as the accuracy of the model on the training set (X%) 

and validation set (Y%) are increasing and converging after each training iteration, the model is 

considered to be “learning.” If both converge, but do not increase (e.g., X converges on Y at 50%), 

the model is not learning and may be underfit to the data, that is, it may not have learned enough 

of the relationship between features and targets in a way that it would be expected to work in 

another population. Finally, if training performance increases far more than validation set 

performance (e.g., the model has an accuracy of 99% on the data it was trained on, but only 80% 

on the validation data), the model is overfit. That is, it has learned features specific to the training 

dataset population at the expense of generalizability to another population. Although the validation 

dataset is not specifically used to train the algorithm, it is used to iteratively tune the algorithm. 

Therefore, the validation dataset is not necessarily a reliable indicator of model performance on 

unseen data.30,31 

Upon completion of the training phase, a data scientist has, ideally, trained a highly generalizable 

model; however, this must be confirmed via a separate test dataset. In the case of supervised 

learning, which will be the focus of this review from here on, the performance of a learned model 

can be evaluated in a number of ways, but is most commonly evaluated based on prediction 
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accuracy (classification) or error and residuals (regression).30,31 As previously mentioned, the test 

dataset contains instances of the original dataset that have not been seen by the algorithm during 

the training phase. If the predictive power of a model is strong on the training dataset, but poor on 

the test dataset, then the model is too specific to the patterns from the training data and is 

considered to be overfit to the training dataset.30,31 That is, it has memorized patterns rather than 

learned a generalizable model. An underfit model, on the other hand, is one that performs poorly 

on both training and test datasets and has neither learned nor memorized the training dataset and 

still is not generalizable, An ideally fitted model is one that performs strongly on both datasets, 

suggesting it is generalizable (i.e., it will perform well on other similar datasets). 

With regression models, the average mean squared error (MSE) can be an indicator of model 

performance.30,31 MSE measures how close a predicted value is to the intended target value. MSE 

is calculated by summing the differences between predicted values and target values, squaring the 

results, and dividing by the total number of instances. There are many other measures of 

performance for regression models that are out of the scope of this review. 

For binary classification, the output of the model is a class. However, before the class designation, 

the probability of an instance belonging to class A or class B is determined.30,31 Normally, this 

probability threshold is set at 0.5. A receiver operating characteristic curve evaluates a model's 

true positive rate (TPR; i.e., sensitivity, recall), the number of samples correctly identified as 

positive divided by the total number of positive samples, versus its false-positive rate (FPR; i.e., 1 

- specificity), the number of samples incorrectly identified as positive divided by the total number 

of negative samples (Figure 3, Figure 4A). Similarly, the precision-recall curve evaluates a 

model's positive predictive value (PPV; i.e., precision), the number of samples correctly identified 

as positive divided by the total number of samples identified as positive, versus its recall Figure 
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3, Figure 4B). Each curve is evaluated across the range of model probability thresholds from 1 to 

0, left to right. A receiver operating characteristic curve starts at the point (FPR = 0, TPR = 0), 

which corresponds to a decision threshold of 1 (every sample is classified as negative, and thus 

there are no false or true positives). It ends at the point (FPR = 1, TPR = 1), which corresponds to 

a decision threshold of 0 (where every sample is classified as positive, and thus all points are either 

truly or falsely labeled positive). The points in between, which create the curve, are obtained by 

calculating the TPR and FPR for different decision thresholds between 1 and 0, trading off 

sensitivity (minimizing false negatives) with specificity (minimizing false positives). The area 

under the curve (AUC) of the receiver operating characteristics curve (AUROC) can be calculated 

and used as a metric for evaluating the overall performance of a classifier, assuming the classes of 

the dataset are balanced. If classes are not balanced, the area under the precision-recall curve 

(AUPR) may be a better metric of model performance because the threshold (set at 0.5 in Fig. 4B) 

may be adjusted. For example, if a dataset comprised 75% of class A and 25% of class B, the ratio 

between the two would be computed as the threshold (0.75). In practice, an AUROC value of 0.50 

indicates a model that performs no better than chance, and an AUC of 1.00 indicates that the model 

performs perfectly; the higher the value of the AUC, the stronger the performance of the ML 

model. Similarly, an AUPR value at the preset threshold indicates a model that performs no better 

than chance, and an AUPR value of 1.00 indicates a perfect model. 
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Figure 3: Sensitivity, specificity, positive predictive value, and negative predictive value. A 

population (dataset) is represented as circles colored blue if positive or orange if negative. The 

dataset is input to an algorithm that predicts each instance's class association. If an instance is 

correctly predicted as positive or negative, it is a true positive (TP) or true negative (TN), 

respectively. If an instance is incorrectly labeled positive or negative, it is a false positive (FP) or 

false negative (FN), respectively. (A) A model with perfect sensitivity (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) and specificity 

(
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
). (B) A model with perfect sensitivity (ability to correctly classify all positive cases), but 

poor specificity (ability to correctly classify all negative cases) and (C) a model with perfect 

specificity, but poor sensitivity. Although a model might have perfect sensitivity (B), it can have 

many false positives. Similarly, a model with perfect specificity (C) might have many false 

negatives. Therefore, it is also useful to evaluate the positive predictive value (PPV; 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) and 

the negative predictive value (NPV; 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
). PPV and NPV are also thus dependent on the 

prevalence of disease in a population. 
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Figure 4: Example receiver operating characteristics and precision-recall curves. Red line: a 

model that performs no better than chance has an area under the curve (AUC) of the receiver 

operating characteristics curve (AUROC) of 0.50 or area under the precision-recall curve (AUPR) 

at the class ratio (orange shaded area). Blue line: a model that performs better than chance, but 

not perfectly, will have an AUC between 0.50 and 1.00 (blue + orange shaded areas). Green line: 

a model that performs perfectly has an AUC of 1.00 (orange + blue + green shaded areas). 

Machine Learning Methods 

There are many machine learning algorithms used in medicine. Described next are some of the 

most popular to date. 

Linear Regression 

Linear regression is arguably the simplest ML algorithm. The main idea behind regression analysis 

is to specify a relationship between one or more numeric features and a single numeric target.30,31 

Linear regression is an analysis technique used to solve a regression problem by using a straight 

line to describe a dataset. Univariate linear regression, a regression problem where only a single 

feature is used for predicting a target value, can be represented in a slope-intercept form: y = ax + 

b. Here, a is a weight describing the slope, which describes how much a line increases on the y-
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axis for each increase in x. The intercept, b, describes the point where the line intercepts the y-

axis. Linear regression models a dataset using this slope-intercept form, where the machine's task 

is to identify values of a and b such that the determined line is best able to relate the supplied 

values of x values to the values of y. Multivariate linear regression is similar; however, there are 

multiple weights in the algorithm, each describing to what degree each feature influences the 

target. 

In practice, there is rarely a single function that fits a dataset perfectly. To measure the error 

associated with a fit, the residuals are measured. Conceptually, residuals are the vertical distances 

between predicted values, , and actual values, y. In machine learning, the cost function is a calculus 

derived term that aims to minimize errors associated with a model.30,31,34 The process of 

minimizing the cost function involves an iterative optimization algorithm known as gradient 

descent, of which the mathematical calculations involved are outside the scope of this article.30,31,35 

In linear regression, the cost function is the previously described MSE. Minimizing this function 

often obtains estimates of a and b that best model a dataset. All model-based learning algorithms 

have a cost function, and the goal is to minimize this function to find the best-fit model.30,31 

Logistic Regression 

Logistic regression is a classification algorithm where the goal is to find a relationship between 

features and the probability of a particular outcome. Rather than using the straight line produced 

by linear regression to estimate class probability, logistic regression uses a sigmoidal curve to 

estimate class probability (Figure 5). This curve is determined by the sigmoid function, which 

produces an S-shaped curve that converts discrete or continuous numeric features (x) into a single 

numerical value (y) between 0 and 1.30,31 The major advantage of this method is that probabilities 

are bounded between 0 and 1 (i.e., probabilities cannot be negative or greater than 1). It can be 
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either binomial, where there are only two possible outcomes, or multinomial, where there can be 

three or more possible outcomes. 

 

Figure 5: Example class probability prediction using linear and logistic regression. Presented 

are linear (blue line) and logistic (red line) regression models for predicting the probability of 

various samples (gray circles) as belonging to a particular class using a single variable, variable 

X, which ranges from -10 to 10. With logistic regression, variable X is transformed into class 

probabilities that are bounded between 0 and 1 using the sigmoid function. Simple linear regression 

attempts to estimate class probabilities, but is not bounded between 0 and 1; thus, it breaks a 

fundamental law of probability that does not allow for negative probabilities or those greater than 

1. 

Decision Trees and Random Forests 

A decision tree is a supervised learning technique, primarily used for classification tasks, but can 

also be used for regression.30,31 A decision tree begins with a root node, the first decision point for 

https://paperpile.com/c/8elAWA/hbWw+aQ3p


 

 

  
31 

splitting the dataset, and contains a single feature that best splits the data into their respective 

classes (Figure 6). Each split has an edge that connects either to a new decision node that contains 

another feature to further split the data into homogenous groups or to a terminal node that predicts 

the class. This process of separating data into two binary partitions is known as recursive 

partitioning. A random forest is an extension of this method, known as an ensemble method, that 

produces multiple decision trees. Rather than using every feature to create every decision tree in a 

random forest, a subsample of features are used to create each decision tree. Trees then predict a 

class outcome, and the majority vote among trees is used as the model's final class prediction. 

 

 

Figure 6: Structure of a decision tree. Splitting of the dataset begins at the root node. Each split 

connects to either another decision node, which results in further splitting of the data, or a terminal 

node that predicts the class of the data. 
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Feedforward Neural Networks 

An artificial neural network (ANN) is a machine learning algorithm inspired by biological neural 

networks.30,31,36 Each ANN contains nodes (analogous to cell bodies) that communicate with other 

nodes via connections (analogous to axons and dendrites). Much in the way synapses between 

neurons are strengthened when their neurons have correlated outputs in a biological neural network 

(the Hebbian theory postulates that “nerves that fire together, wire together”), connections between 

nodes in an ANN are weighted based upon their ability to provide a desired outcome. 

A perceptron is a machine learning algorithm that takes in a series of features and their targets as 

input and attempts to find a line, plane, or hyperplane that separates the classes in a two-, three-, 

or hyper-dimensional space, respectively.31,37,38 These features are transformed using the sigmoid 

function (Figure 7A). Thus, this method is similar to logistic regression; however, it only provides 

class associations, and not the probability of an instance belonging to a class. 
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Figure 7: Components of a neural network. (A) The basis of an artificial neural network, the 

perceptron. This algorithm uses the sigmoid function to scale and transform multiple inputs into a 

single output ranging from 0 to 1. (B) An artificial neural network connects multiple perceptron 

units, so that the output of one unit is used as input to another. Additionally, these units are not 

limited to using the sigmoid activation function. (C) Examples of four different activation 

functions: sigmoid, hyperbolic tangent, identity, and rectified linear unit. The sigmoid scales inputs 

between 0 and 1 using an S-shaped curved. Similarly, the hyperbolic tangent function uses an S-

shaped curve, but scales inputs between -1 and 1. The identity function can multiply its input by 

any number to produce a linear output. The rectified linear unit is similar to the identity function, 

however all inputs < 0 are given an output value of 0. There are other activation functions outside 

of these, but these are arguably. 

When multiple perceptrons are connected, the model is referred to as a multilayer perceptron 

algorithm or an ANN. Commonly, ANNs contain a layer of input nodes, a layer of output nodes, 
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and a number of “hidden layers” between the two.31,39 In simple ANNs, there exists an input layer 

between zero and three hidden layers and an output layer, whereas deep neural networks contain 

tens or even hundreds of hidden layers.31 For most tasks, ANNs feed information forward. This is 

known as a feedforward neural network, meaning information from each node in the previous layer 

is passed to each node in the next layer, transformed, and passed forward to each node in the next 

layer (Figure 7B). In recurrent neural networks, which are out of the scope of this paper, 

information can be passed between nodes within a layer or to previous layers, where their output 

is operated on and fed forward once again.31,38 

Each layer in an ANN can contain any number of nodes; however, the number of nodes in the 

output layer typically corresponds to the number of classes being predicted if the goal is multiclass 

classification, a single node with a sigmoidal activation for binary classification, or a linear 

activation function if the goal is regression.31,39 These activation functions simply transform a 

node's input into a desired output (Figure 7C). Each node in an ANN contains an activation 

function (not just the output layer; Figure 7B). These activation functions, although not always 

linear, do not have to be complex. For instance, the rectified linear unit applies a linear 

transformation to inputs ≥ 0, and sets inputs < 0 to 0.40 It follows that as inputs proceed through 

an ANN, they are progressively modified at each layer so that at the final layer they no longer 

resemble their original state. However, this final representation of the input is, in theory, more 

predictive of the specified outcome. 

Convolutional Neural Networks 

For image recognition tasks, each input into a feedforward ANN corresponds to a pixel in the 

image. However, this is not ideal because there are no connections between nodes in a layer. In 

practice, this means that the spatial context of features in the image are lost.39,41,42 In other words, 
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pixels that are close to one another in an image are likely more correlated than pixels on opposite 

sides of the image, but a feedforward ANN does not take this into account. 

A convolutional neural network (CNN) is a special case of the ANN that overcomes this issue by 

preserving the spatial relationship between pixels in an image.31,39,41,42 Rather than using single 

pixels as input, a CNN feeds patches of an image to specific nodes in the next layer of nodes (rather 

than all nodes), thereby preserving the spatial context from which a feature was extracted.39,41,42 

These patches of nodes learn to extract specific features and are known as convolutional filters. 

Convolutions are widely used in the realm of image processing, and are often used to blur or 

sharpen images, or for other tasks such as edge detection.39,43 A visible-light digital image is simply 

a single matrix if the image is grayscale or three stacked matrices if the image is color (red, green, 

and blue color channels).39,41,43 These matrices contain values, typically between 0 and 255, that 

represent pixels in the image and the intensity of each color channel at each pixel.39,41–43 A 

convolutional filter is a much smaller matrix that is typically square and range in size from 2×2 to 

9×9.39,41–44 This filter is passed over the original image and, at each position, element-wise matrix 

multiplication is performed (Figure 8).43 The output of this convolution is mapped to a new matrix 

(a feature map) that contains values corresponding to whether or not the convolutional filter 

detected a feature of interest 43. 
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Figure 8: Example of a digital image convolved with a filter. The image (left) is transformed 

into the feature map (right) via a convolutional filter (center). The convolutional filter is designed 

to locate diagonal lines running from top left to bottom right of the image. The filter passes over 

the image in a specified manner and each element in the image (red) is multiplied by the 

corresponding element in the convolutional filter (blue). The summation of these elements 

(orange) is output into a new matrix that reports the presence of a diagonal line. The feature map 

indicates 2 when the specified diagonal line is found, 1 if a portion of it is found, and 0 if none of 

it is found. 

In CNNs, filters are trained to extract specific features from images (e.g., vertical lines, U-shaped 

objects), and mark their location on the feature map.39,41,42 A deep CNN then uses the feature map 

as input for the next layer, which uses new filters to create another new feature map. This can 

continue for many layers and, as it continues, the extracted features become abstract, but highly 

useful for prediction. The final features maps are then compressed from their square 

representations and input to a feedforward ANN, where classification of the image based on the 

extracted features and textures can occur.41,42 This process is referred to as “deep learning” (DL).39 

https://paperpile.com/c/8elAWA/3bvp+p0D1+LNTt
https://paperpile.com/c/8elAWA/3bvp+p0D1
https://paperpile.com/c/8elAWA/LNTt
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Aside from image classification tasks, DL has shown promise for image segmentation tasks.6,45,46 

Rather than classifying images as a whole, this method aims to identify objects within an image. 

To accomplish this task, DL classifies individual pixels given surrounding pixel information. For 

example, in diabetic retinopathy, a segmentation algorithm might segment (outline) the retinal 

vasculature by assigning probabilities to individual pixels as belonging to a retinal blood vessel or 

not belonging to a retinal blood vessel. A similar method for breast cancer detection could mark 

pixels as belonging to a mass or not belonging to a mass, and the output image could be provided 

to a radiologist for further review. 

Generative Adversarial Networks 

As opposed to discriminative algorithms, such as those previously discussed, generative 

algorithms aim to create new data instances that resemble the training data.47 For instance, a 

generative model might attempt to produce images of dogs and cats, and a discriminative model 

could be trained to learn the difference between those images. To train a generative model, it must 

be pitted against a discriminative model. The generator output is connected directly to the 

discriminator input (Figure 9). The discriminator's classification of generated images provides a 

signal that the generator uses to update its weights and improve the images it synthesizes. When 

training begins, the generator produces data that is clearly not real, and the discriminator quickly 

learns to identify it. However, as training progresses and the generator begins to learn which 

features the discriminator uses to identify fake images, the generator begins producing images that 

appear real. The eventual goal is to train a generator that fools the discriminator into classifying 

generated images as real images. Because of the competing networks used to train the generator, 

the model is known as a generative adversarial network (GAN). 

https://paperpile.com/c/8elAWA/9c5U+ATDp+Aij9
https://paperpile.com/c/8elAWA/f4Hf
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Figure 9: Overview of GAN structure.48 A random input is provided to the generator, which 

attempts to create an output that is similar to the training data. The discriminator is provided with 

generated examples and real examples from the training data, and attempts to discern between real 

and fake images. The loss values associated with the discriminators outputs of generated images 

are recycled and used to update the weights of the generator so that it may begin to learn what it 

is doing correctly and what it is not. 

Typically, neural networks need some form of input. A basic GAN takes random noise as its input 

and attempts to transform this noise into a meaningful output. This noise can get the GAN to 

produce a wide variety of data, sampling from different places in the target distribution. However, 

it is possible to provide non-random noise to guide the generated outputs. CycleGAN and pix2pix 

are two networks that have demonstrated this.49,50 The combined goal of pix2pix and CycleGAN 

is image-to-image translation — to learn the mapping between an input image and an output image. 

pix2pix was proposed as a general-purpose solution to image-to-image translation problems.49 The 

GAN would not only learn the mapping from input image to output image, but also learn a loss 

function to train said mapping. The major implication of this is that it makes it possible to apply 

https://paperpile.com/c/8elAWA/VNug
https://paperpile.com/c/8elAWA/BFOm+JNg0
https://paperpile.com/c/8elAWA/BFOm
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the same generic approach to problems that traditionally would require very different loss 

formulations (i.e. the same GAN structure can be applied for many different tasks). Typically, 

image-to-image translation is accomplished using a training set of aligned image pairs, but for 

many tasks paired training data is not available. CycleGAN is a GAN that learns to translate images 

from a source domain, X, to a target domain, Y, in the absence of paired examples.50 

Machine Learning and Deep Learning in Ophthalmology 

Although DL has become a highly popular technique in ophthalmology, there are a multitude of 

examples of classic ML algorithms being used in the field. Simple linear models have been used 

to predict patients who would develop advanced age-related macular degeneration and to discern 

which factors separate patients into who will respond to anti-vascular endothelial growth factor 

treatment versus those who will not.34,51–53 Random forest algorithms have been used to discover 

features that are most predictive of progression to geographic atrophy in age-related macular 

degeneration and find prognostic features for visual acuity outcomes of intravitreal anti-vascular 

endothelial growth factor treatment.54,55 Random forest classifiers have also been applied to 

diagnose and grade cataracts from ultrasound images, as well as identify patients with glaucoma 

based on retinal nerve fiber layer and visual field data.56,57 

The popularity of DL has especially risen in the field of ophthalmology for image-based diagnostic 

systems. Gulshan et al. demonstrated that DL could classify diabetic retinopathy, in agreement 

with the Early Treatment for Diabetic Retinopathy Study scale, using only retinal fundus images 

as input and the consensus diagnoses of multiple clinicians as the “class labels.” The presence of 

features such as microaneurysms, intraretinal hemorrhages, or neovascularization were not 

supplied to the DL method as signs of diabetic retinopathy. Rather, the DL model either learned 

https://paperpile.com/c/8elAWA/JNg0
https://paperpile.com/c/8elAWA/MbD6+cbmL+nbqr+U51C
https://paperpile.com/c/8elAWA/GVu9+Kyxh
https://paperpile.com/c/8elAWA/ZXn1+BBTD
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these features or learned novel features that aid in the diagnosis of diabetic retinopathy. Further, 

Brown et al. trained a similar DL network for the diagnosis of plus disease in retinopathy of 

prematurity.6 First, an algorithm was trained to segment retinal vasculature into binary vessel 

maps. Then another DL algorithm was trained to examine the vessel maps and conclude whether 

the vasculature appeared normal or abnormal.6 This network, too, performs on par or better than 

most experts in the field. One of the most impressive examples of DL in ophthalmology was 

conducted by De Fauw et al. Using three-dimensional optical coherence tomography images, a DL 

framework was trained to not only detect a single disease, but more than 50 common retinal 

diseases.28 

Challenges with Deep Learning 

In recent years, DL has become a hot topic within the field of medicine given the digital availability 

of information; however, many challenges still exist. DL is limited by the quantity and quality of 

data used to train the model. It is difficult to estimate how much data are necessary to sufficiently 

and reliably train DL systems because it depends both on the quality of the input training data as 

well as the complexity of the task. Typically, thousands of training examples are required to create 

a model that is both accurate and generalizable. Thus, developing models for identification of rare 

diseases, where large datasets may not be readily available, is especially challenging. On the other 

hand, although one might assume that more data will always lead to better models, if the quality 

of the training data is imprecise, mislabeled, or somehow systematically different than the test 

population, training on very large datasets may result in models that do not perform well in real-

world scenarios. Furthermore, there is an implicit assumption that datasets are accurately labeled 

by human graders. Unfortunately, this is often not the case, and noisy and/or missing labels are 

often a bane for data scientists. 

https://paperpile.com/c/8elAWA/9c5U
https://paperpile.com/c/8elAWA/9c5U
https://paperpile.com/c/8elAWA/XFbn
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DL methods also suffer from the “black box” problem: input is supplied to the algorithm and an 

output emerges, but it is not exactly clear what features were identified or how they informed the 

model output.28,58,59 In contrast, simple linear algorithms, although not always as powerful as DL, 

are easily interpretable. The computed weights for each feature are supplied upon completion of 

the training process, which allow for one to interrogate exactly how the model works and possibly 

discover important predictors that may be useful for prevention of a disease. With deep learning, 

a complex series of matrix multiplication and abstract filters makes interpretability significantly 

more challenging.28,58,59 Activation maps, or heatmaps, are methods that attempt to address the 

“black box” issue by highlighting areas of images that highlight regions of an image that “fire 

together” with the output classification label. Unfortunately, these methods still require human 

interpretation, as they are often not examined critically (examples are cherry picked for 

publication, highly subject to confirmation bias, etc.), and thus this remains an active area of 

research. For instance, if a DL model classifies a fundus image as having proliferative diabetic 

retinopathy, a heatmap will highlight feature areas on that fundus image that contributed to the 

decision of being classified as having proliferative diabetic retinopathy. It is up to the physician to 

interpret whether these DL model identified features are the same features the physician would use 

to diagnose the disease, and the implications of such findings. 

AI methods have shown to be a promising tool in the field of medicine. Recent work has 

demonstrated that these methods can develop effective diagnostic and predictive tools to identify 

various diseases. In the future, AI-based programs may become an integral part of patients’ clinic 

visits with their ability to assist in diagnosis and management of various diseases.

https://paperpile.com/c/8elAWA/XFbn+WAtF+E71C
https://paperpile.com/c/8elAWA/XFbn+WAtF+E71C
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AIM 1: QUALITY CONTROL FOR RETINAL FUNDUS IMAGES 

 

ABSTRACT 

Accurate image-based ophthalmic diagnosis relies on fundus image clarity. This has important 

implications for the quality of ophthalmic diagnoses and for emerging methods such as 

telemedicine and computer-based image analysis. The purpose of this study was to implement a 

deep convolutional neural network (CNN) for automated assessment of fundus image quality in 

retinopathy of prematurity (ROP). 

During routine ROP screenings, 6139 retinal fundus images were collected from preterm infants 

from nine academic institutions. Each image was graded for quality (acceptable quality [AQ], 

possibly acceptable quality [PAQ], or not acceptable quality [NAQ]) by three independent experts. 

Quality was defined as the ability to assess an image confidently for the presence of ROP. Of the 

6139 images, NAQ, PAQ, and AQ images represented 5.6%, 43.6%, and 50.8% of the image set, 

respectively. Because of low representation of NAQ images in the data set, images labeled NAQ 

were grouped into the PAQ category, and a binary CNN classifier was trained using 5-fold cross-

validation on 4000 images. A test set of 2109 images was held out for final model evaluation. 

Additionally, 30 images were ranked from worst to best quality by six experts via pairwise 

comparisons, and the CNN's ability to rank quality, regardless of quality classification, was 

assessed. CNN performance was evaluated using area under the receiver operating characteristic 

curve (AUC). A Spearman's rank correlation was calculated to evaluate the overall ability of the 

CNN to rank images from worst to best quality as compared with experts. 
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The mean AUC for 5-fold cross-validation was 0.958 (standard deviation, 0.005) for the diagnosis 

of AQ versus PAQ images. The AUC was 0.965 for the test set. The Spearman's rank correlation 

coefficient on the set of 30 images was 0.90 as compared with the overall expert consensus ranking. 

This model accurately assessed retinal fundus image quality in a comparable manner with that of 

experts. This fully automated model has potential for application in clinical settings, telemedicine, 

and computer-based image analysis in ROP and for generalizability to other ophthalmic diseases. 

 

INTRODUCTION 

Technologies such as digital imaging, telemedicine, and artificial intelligence for image analysis 

are beginning to revolutionize the practice of ophthalmology.6–8,60–66 A critical issue that plagues 

nearly all medical imaging applications is poor image quality.9,21,67–81 In the best case scenario, 

poor image quality renders images useless for diagnosis and wastes time and resources due to 

required follow-up imaging sessions. In the worst case, it leads to incorrect diagnoses, resulting in 

either over- or under-treatment and the potential for life-altering consequences. To address this 

issue, we have focused on retinopathy of prematurity (ROP), a potentially-blinding childhood 

disease. 

Advances in medical technology have also been witnessed in the neonatal intensive care unit 

(NICU).14,15 The survival rate of premature infants has dramatically increased over the last few 

decades.14,15 Unfortunately, this has not come without consequences. ROP, a vasoproliferative 

retinal disease, affects approximately two-thirds of premature infants weighing <1251 grams at 

birth.16,18,82 While ROP has the potential to cause permanent blindness, it is treatable via laser 

https://paperpile.com/c/8elAWA/Cmlt+mIgw+ieBQ+IN5A+lbr6+iVtG+TpzB+wXGV+9c5U+O6zI
https://paperpile.com/c/8elAWA/E9CG+U1lQ+3cOP+52va+OrbK+7BiW+R6sD+gTWO+xwUn+SldY+2NMA+SLka+yaFj+9llU+Dtub+mybG+eYuC
https://paperpile.com/c/8elAWA/J6YD+N8Ro
https://paperpile.com/c/8elAWA/N8Ro+J6YD
https://paperpile.com/c/8elAWA/0Exa+QV2w+IPTJh
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photocoagulation or intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF), 

if diagnosed promptly.16 Treatment is initiated for the following retinal findings: Zone I ROP, 

stages 1, 2 or 3, plus disease present; Zone I ROP, stage 3, plus disease not present, and Zone II 

ROP, stages 2 or 3, plus disease present.16 It is obvious that plus disease, defined as “abnormal 

dilation and tortuosity of the posterior retinal blood vessels in two or more quadrants of the retina,” 

is a significant indicator of the need for treatment. It is therefore absolutely necessary to diagnose 

plus disease in an accurate and timely manner. The presence of plus disease in at least two 

quadrants of the retina is easier to diagnose when image quality is high (Figure 1A). However, as 

image quality begins to deteriorate, visualization of the retina becomes difficult, if not impossible 

(Figure 1B,C). 

 

Figure 1: Varying qualities of retinal fundus images. Representative images from the (A) 

Acceptable Quality (AQ), (B) Possibly Acceptable Quality (PAQ), and (C) Not Acceptable 

Quality (NAQ) classes. Note that as image quality degrades, visualization of retinal vasculature 

becomes more complex, if not impossible. Because NAQ images were not highly represented in 

our data set (5.6%), they were grouped with the PAQ images into a single category. The final 

representation of AQ and PAQ images in our data set was 50.8% and 49.2%, respectively. 

A major barrier to timely ROP treatment is a lack of access to ROP experts in both developed and 

developing countries.7,9,18,82 Therefore, the implementation of telemedicine and other computer-

https://paperpile.com/c/8elAWA/IPTJh
https://paperpile.com/c/8elAWA/IPTJh
https://paperpile.com/c/8elAWA/0Exa+QV2w+TpzB+52va
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based image analysis applications that make use of high-quality fundus images is crucial.8 

Recently, we have developed DeepROP, a deep learning model for automated assessment of plus 

disease in ROP patients.6 When this model is provided with high-quality images, it returns highly 

accurate diagnoses. However, it is reasonable to assume that images of lower quality will tend to 

be misclassified more often than images of higher quality. Herein we describe an extension of 

preliminary work that attempts to address this pitfall – a deep convolutional neural network (CNN) 

to automatically assess the quality of retinal fundus images.83 A CNN is an artificial neural network 

trained to extract features from images. A deep CNN is an extension of this model, which creates 

new images using the extracted features. Essentially, a deep CNN extracts features from features 

from features and so on. In the early layers of the network, the extracted features are typically 

straight lines of various rotations. In the deeper layers of a CNN, features become more abstract. 

Because there are typically tens of millions of parameters to train (e.g. weights of the edges 

connecting nodes), we take advantage of a method known as transfer learning. Here, we implement 

a pretrained CNN architecture, specifically Inception-V3, which has been trained to identify 

everyday objects, such as cats, cars, trees, dishwashers, etc., and we fine-tune its learned filters for 

this specific use case.84,85 This has numerous potential applications, such as a pre-screening method 

for our ROP diagnostic tool, a quality metric for imaging technicians, or a workflow component 

for telemedicine-based applications. 

 

https://paperpile.com/c/8elAWA/O6zI
https://paperpile.com/c/8elAWA/9c5U
https://paperpile.com/c/8elAWA/ahf9
https://paperpile.com/c/8elAWA/f2E4+TQ67
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METHODS 

Institutional Review Board 

All data for this study were obtained through the multi-center, NIH-funded, Imaging and 

Informatics in ROP (i-ROP) study centered at Oregon Health & Science University (OHSU). This 

study was approved by the institutional review board at the coordinating center (OHSU, Portland, 

Oregon) and at each of 8 study centers (Columbia University, University of Illinois at Chicago, 

William Beaumont Hospital, Children’s Hospital Los Angeles, Cedars-Sinai Medical Center, 

University of Miami, Weill Cornell Medical Center, Asociación para Evitar la Ceguera en México) 

and was conducted in accordance with the Declaration of Helsinki. Written informed consent was 

obtained from parents of all infants enrolled. 

Retinal Fundus Image Data Sets 

Using a RetCam (Natus; Pleasanton, CA), 6,139 wide-angle fundus images were collected from 

preterm infants during routine ROP screening examinations. Three masked graders evaluated 

images for ROP stage, zone, plus disease, and image quality (based upon acceptability for 

diagnosis of ROP). Labels for image quality were: Acceptable Quality (AQ), Possibly Acceptable 

Quality (PAQ), or Not Acceptable Quality (NAQ). Graders were not told what defined AQ versus 

PAQ versus NAQ images. The final classification represents a majority vote of the 3 independent 

assessments of the suitability of an image for the task of ROP classification (zone, stage, and plus). 

AQ, PAQ, and NAQ images represented 50.8%, 43.6%, and 5.6% of the final data set, respectively 

(Figure 1). Due to low representation of NAQ images in this data set, NAQ images were combined 

with images from the PAQ category. The final distribution of the data set was 50.8% AQ images 

and 49.2% PAQ images. It should be noted, however, that the PAQ label does not necessarily 
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imply that an image is useless for diagnosis, but that a higher-quality image would increase the 

confidence of the diagnosis being made. For example, it is possible that a diagnosis could be made 

from an image with half of the retinal image occluded, but that an image grader’s confidence might 

be higher if the entire image were easily visualized. 

To assemble the training set, 2,000 AQ images and 2,000 PAQ images were selected at random. 

These 4,000 images were randomly decomposed into five separate, equally-stratified sets to be 

used for 5-fold cross-validation. An independent test set was formed using 2,109 randomly 

selected images that represented the true underlying distribution of AQ to PAQ images. The 

remaining 30 images were used to create a ranked data set. Briefly, the six experts ranked the 

smaller set of 30 images from worst quality to best quality. A web-based interface was 

implemented, which presented each expert with two images and the prompt “Select the higher 

quality image for the diagnosis of plus disease.” After multiple pairwise comparisons, individual 

expert rankings of worst to best quality images were developed. Using an Elo rating system, all 

expert rankings were aggregated to form an overall expert consensus ranking of the images. 

Model Architecture 

This model was built and trained using Keras, a deep learning library for the programming 

language Python, with the TensorFlow backend (an open source software library for numerical 

computation using data flow graphs). The convolutional portion of the model made use of a 

pretrained CNN, specifically Inception-V3.84 The weights of the CNN were initialized using the 

values obtained after training the CNN on the ImageNet database, a collection of over 14 million 

hand-annotated images containing more than 20,000 classes.85 This reduced training time, as it 

allowed the CNN to learn basic features of everyday objects by developing filters to extract 

https://paperpile.com/c/8elAWA/f2E4
https://paperpile.com/c/8elAWA/TQ67
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specific shapes and textures prior to fine-tuning on medical images. Two fully-connected layers 

were built on top of the convolutional layers. The first layer consisted of 4,096 nodes using a 

rectified linear unit (ReLU) activation function. Because we sought to discriminate between AQ 

and PAQ images, the second layer consisted only of a single binary output node. This final layer 

made use of the sigmoid activation function; images were not only assigned a classification of AQ 

or PAQ, but the associated probability of belonging to said class was reported. To prevent 

overfitting, a dropout function with a probability of 0.5 was inserted between the two layers. Inputs 

to the model were RetCam images of size 640×480×3 or 1024×768×3 scaled down to 150×150×3. 

All training and test set image pixel values were rescaled into the [0, 1] range. Training set images 

also had random zoom (± 20%), horizontal flips, and vertical flips applied to them to synthetically 

increase the size of the training data set and reduce the chance of overfitting. 

Model Training and Evaluation 

The five subsets of the training set were used to perform 5-fold cross-validation. Briefly, five 

versions of the CNN were trained and evaluated using unique validation sets and slightly different 

training sets. Each CNN was evaluated on subset 1, 2, 3, 4, or 5, and trained on the remaining four 

subsets. This method allows for close approximation of the test error and reduces the probability 

of overfitting. Training occurred for 100 epochs (iterations). However, the epoch with the lowest 

validation set error was selected for each of the five CNNs. Training was executed using the 

following hyperparameters: optimizer: mini-batch gradient descent, batch size: 20, learning rate: 

0.001, momentum: 0.9, loss: binary cross-entropy, and validation metric: accuracy. All layers of 

the model were adjustable (i.e. the convolutional layers were not frozen). 
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Data Analysis 

Following 5-fold cross-validation, the area under the receiver operating characteristics curve 

(AUC) was computed for each model. The CNN with the highest AUC was selected as the final 

model, on which test and ranked set predictions were made. Images were input to the CNN, which 

calculated the probability of an image belonging to the AQ category using the softmax function of 

the final layer. A score less than 0.5 placed the image into the PAQ category, and a score greater 

than or equal to 0.5 placed the image into the AQ category. The AUC of the model was evaluated. 

As mentioned above, the output of the CNN for any given image was a probability from 0 to 1. 

These values were used to rank the set of 30 images from worst to best quality for diagnosis of 

ROP. The Spearman’s rank correlation test was used to assess the similarity between the CNN and 

the consensus ranking of the images by the six experts, as well as the correlation between 

individual experts. 

 

RESULTS 

Classification Performance 

The AUCs resulting from 5-fold cross-validation ranged from 0.953 to 0.965, with a mean (SD) 

of 0.958 (0.005) (Figure 2A). Model 1 was selected as the final model. On the test set, the AUC 

was 0.965 (Figure 2B), in line with the estimated test set AUC predicted by 5-fold cross-validation 

(Figure 2A), and the sensitivity and specificity were 93.9% and 83.6%, respectively. Depending 

upon the application for which the model was implemented, the classification cutoff probability 
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could be increased or decreased to favor sensitivity or specificity (i.e. to avoid false negatives or 

avoid false positives). 

 

Figure 2: Areas under the receiver operating characteristics curves (AUC). (A) The AUCs 

for each convolutional neural network (CNN) produced by 5-fold cross-validation are shown, with 

mean (SD) equal to 0.958 (0.005). Model 1 demonstrated the highest level of discriminatory power 

between acceptable quality images and possibly acceptable quality images, as was indicated by 

the AUC. Therefore, it was selected for final evaluation on the independent test set (B), where it 

performed with an AUC equal to 0.965, a sensitivity of 93.9% and a specificity of 83.6%. 

Ranked Set Performance 

Figure 3 describes the Spearman’s rank correlation coefficients for each individual expert grader’s 

rank, the consensus rank, and the CNN rank. The Spearman’s rank correlation test coefficients 

between experts ranged from 0.89 to 0.97, suggesting a very high correlation of agreement on 

relative image quality. Unsurprisingly, all experts were highly correlated to the consensus rank 

(0.94 - 0.97). The correlations between the CNN and individual experts ranged from 0.86 to 0.93, 

and the correlation between the CNN and the consensus ranking was 0.90, suggesting that the 
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CNN not only has high inter-group discrimination, but high intra-group discrimination. In essence, 

given two images from the same class, the CNN can recognize which of the two images is of higher 

quality despite originating from the same class. This suggests that the model has not only learned 

the difference between an AQ image or a PAQ image, but that it has learned what features make 

any retinal fundus image of higher quality than another. 

 

Figure 3. Correlation heatmap of expert image rankings versus the convolutional neural 

network (CNN). The correlation matrix shows Spearman’s correlation coefficient values between 

the CNN image ranking, individual expert grader’s image ranking, and the expert graders’ 

consensus ranking. Experts were highly correlated with one another and the consensus ranking. 

The CNN performed nearly as well as individual experts on the ranked data set, as is demonstrated 

by the high correlation value to the expert consensus ranking. 
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DISCUSSION 

We developed a model for the automated assessment of retinal fundus images in retinopathy of 

prematurity using a deep convolutional neural network. There are two key findings in this study: 

(1) with a high degree of confidence, the model can distinguish between images of acceptable 

quality and images of low or questionable quality, and (2) the model ranks image quality similarly 

to ROP experts, regardless of image quality classification, suggesting that the threshold at which 

images are classified as AQ or PAQ could be adjusted based upon the model’s application. 

The use of 5-fold cross-validation allowed us to train multiple models using all available training 

data while limiting the risk of overfitting. This finding is illustrated in Figure 2A, which shows 

that all models perform similarly to one another. The aim of cross-validation is to estimate test set 

performance. The mean (SD) of the five models was 0.958 (0.005). We used the best performing 

model to assess the independent test set (Figure 2B). The AUC was 0.965, similar to the mean 

(SD) predicted by 5-fold cross-validation. Taken together, we believe that this model has not 

overfit the data and that it is highly generalizable to RetCam-acquired ROP images. 

An interesting result presented during model assessment on the ranked image data set. When 

training the CNNs, we cast our problem as a classification task. That is, we only cared to classify 

images as AQ or PAQ, and were never concerned about the intra-class ordering of images. 

However, to ensure applicability in use cases where the threshold at which AQ versus PAQ images 

may be different, it is important for the algorithm to be able rank image quality from worst to best, 

regardless to which quality class our experts believe an image belongs. In essence, we were testing 

the ability of the CNN to perform regression, even though it was only trained for classification. 

On a smaller data set of 30 images, six experts ranked images from worst to best quality for the 
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diagnosis of plus disease via an exhaustive pairwise comparisons process. This provided us with 

the individual rankings for the image set for each expert, which we were able to combine into an 

expert consensus ranking. All experts were highly correlated with one another (0.89-0.97) and, 

unsurprisingly, with the consensus ranking (0.94-0.97; Figure 3). Rather than have the CNN 

output class labels for each of the 30 images, we collected the probabilities of each image 

belonging to the AQ class and ordered them from smallest to largest, thereby establishing the 

CNN’s ranking of the 30 images. The CNN was highly correlated to each individual expert (0.86-

0.93) and to the consensus ranking (0.90; Figure 3). These results show that our model has a 

striking ability to rank images, further suggesting that the threshold at which our model classifies 

images as AQ or PAQ could be adjusted depending upon application. 

Overall, these findings demonstrate the robustness of our model: it correctly identifies what our 

experts consider to be acceptable quality images vs. low and questionable quality images. This 

study also demonstrates that the threshold at which the model classifies images could be adjusted 

for other experts or applications. For example, in a telemedicine application where physicians 

manually review images, the model would likely remain unchanged since it was trained using the 

opinions of ROP experts. However, implementation as a prescreening method for a computer-

based image analysis tool, such as DeepROP, may warrant some modifications. It is possible that 

a computer-based image analysis tool could still provide a reliable ROP diagnosis on a subset of 

PAQ images. Therefore, the threshold at which images were binned into the AQ versus PAQ 

category could be lowered until all images placed into the PAQ category could not be assessed via 

the computer-based method.6,7,60,61,63,65,86 

While we are confident in the model we have trained, there are some limitations. First, only 

RetCam images were used for training and testing. We did not evaluate model performance on 

https://paperpile.com/c/8elAWA/Cmlt+mIgw+IN5A+iVtG+xvrK+TpzB+9c5U
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images from other cameras. Differences in field-of-view and lighting could potentially affect the 

reliability of the model. Recently, ophthalmic lenses for smartphones have been created.87,88 An 

interesting area of potential research involves training our model to accurately assess the quality 

of images acquired from these devices, thereby greatly enhancing the reliability of telemedicine 

applications. Second, the model was trained using images acquired from premature infants during 

routine ROP screenings. It is unclear whether this model can accurately classify images acquired 

from adults or older children with other ocular conditions, and further training of this model with 

images from those demographics would be beneficial. Third, the model was trained and validated 

on posterior pole images. In practice, nasal, temporal, superior, and inferior images may be used 

in addition to posterior pole images for diagnosis of ROP.16 Further training of this model will 

include images from various regions of the retina to increase reliability and applicability in true 

clinical applications. The final limitation of this model is the lack of ability to distinguish a retinal 

fundus image from images of other items (i.e., non-ophthalmic images). This model was trained 

as a retinal fundus image quality classifier, not as a general image quality classifier. One could 

argue that users of this model will only be acquiring and assessing retinal fundus images. But to 

ensure conformity, a future direction of this work could involve training a CNN to classify images 

as retinal fundus images or not prior to images being assessed for quality. 

We are not the first group to produce a retinal image quality classifier; however, many other 

classifiers have severe limitations. To the best of our knowledge, Saha et al. have produced the 

only other retinal image classifier that takes advantage of a CNN.89 They used AlexNet, an award-

winning but older CNN, for assessing the quality of diabetic retinopathy images. Their model 

performed with an accuracy of 100% on a data set of 3,572 images. However, their image set only 

included images on which all graders agreed upon the quality of the images (i.e. images without 

https://paperpile.com/c/8elAWA/5p2I+N9Nd
https://paperpile.com/c/8elAWA/IPTJh
https://paperpile.com/c/8elAWA/hYsx
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complete agreement were excluded from the test set) which could leave the data with a very 

bimodal distribution. Furthermore, their data set was severely imbalanced, as only 143 of the 3,572 

images were of unacceptable quality. In theory, a naive model (one that only predicts AQ for every 

image) would be correct 96% of the time. Consequently, it is possible that their CNN would not 

generalize well in practice. Other groups have implemented linear algorithms for image quality 

assessment of retinal fundus photos, which have performed well, but all training and test data sets 

were small in comparison to the data set we used to train, validate, and test our CNN.68,72,80,81 We 

believe that, because our CNN was rigorously trained on 4,000 images using cross-validation and 

tested on two separate test sets consisting of 2,109 images and 30 ranked images, it will better 

generalize and be more robust in practice. 

 

CONCLUSION 

In this study, we implemented a convolutional neural network for the assessment of retinal fundus 

image quality in retinopathy of prematurity. We have shown that a convolutional neural network 

is sufficient for providing a high degree of discrimination between acceptable quality and possibly 

acceptable quality images, and can rank a set of retinal fundus images from worst to best quality. 

Potential applications of this algorithm range from inclusion in computer-based image analysis 

pipelines to implementation in fundus cameras, where imaging technicians could be alerted as to 

whether their captured images were of acceptable quality for diagnosis of disease. More broadly, 

it should be noted that this methodology is not limited to retinopathy of prematurity or retinal 

fundus imaging, as it has potential application in different ocular diseases or for different imaging 

modalities altogether. 

https://paperpile.com/c/8elAWA/U1lQ+gTWO+mybG+eYuC
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AIM 2: A RISK MODEL FOR TREATMENT-REQUIRING ROP 

 

ABSTRACT 

Retinopathy of prematurity (ROP) is a leading cause of blindness in children, although it is often 

preventable with accurate and timely diagnosis and treatment. ROP screening guidelines are 

designed to be highly sensitive to avoid missing cases of treatment-requiring (TR-) ROP; 

consequently, approximately 80% of exams in a screening population have no or mild disease. 

Current ROP risk models require multiple predictors and/or exams, and performance often 

decreases significantly when applied to more diverse populations. We aimed to develop a risk 

model that could reduce the screening burden without missing cases of TR-ROP by using 

demographic risk factors and a deep learning-derived vascular severity score (VSS, all of which 

can be evaluated during a single exam) using a large cohort of North American infants. 

A multi-institutional ROP dataset consisting of retinal fundus images and clinical factors for 852 

subjects was collected as part of the Imaging and Informatics in ROP (i-ROP) study. A reference 

standard ROP diagnosis was provided for each exam. Posterior pole images were assigned a 

vascular severity score ranging from 1.0 to 9.0. Considering that infants who develop TR-ROP 

often have increasing VSS prior to the diagnosis of TR-ROP, we developed a risk model based on 

demographic risk factors and the VSS at 32-33 weeks post-menstrual age. Using all combinations 

of birth weight, gestational age (GA), and VSS, seven ElasticNet logistic regression models were 

tuned via five-fold cross-validation. The best-performing model was evaluated using the held-out 
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i-ROP test dataset consisting of 121 infants, and an independent dataset of 30 infants screened as 

part of a telemedicine program in Salem, OR. 

The best performing model used GA and VSS, based on the area under the precision-recall curve. 

On each independent test set, the model achieved sensitivity of 100% with a positive predictive 

value ranging from 12% to 18%, and specificity ranging from 55% to 68% with a negative 

predictive value of 100% (NPV). 

This model, with just two predictors which can be collected during a single exam, can identify all 

subjects who will eventually develop TR-ROP, while correctly ruling out, with 100% NPV, more 

than half of those who will not. 

 

INTRODUCTION 

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness, despite the fact that 

visual impairment is often preventable with appropriate screening and treatment.1,3 In the United 

States, screening is indicated for any infant born prior to 31 weeks of gestation or with a 

birthweight less than 1501 grams; it is performed via dilated retinal examination, either in-person 

or by telemedicine.1,2,16,18,82 Current screening guidelines are highly sensitive in order to identify 

all cases of treatment-requiring (TR-) ROP; however, they are not specific, with  approximately 

80% of examinations revealing no or mild ROP.2,16,18,82,90 Since these exams can occupy a 

significant portion of physicians’ schedules and can be physiologically stressful to infants, risk 

models that can reduce the screening burden without missing severe disease are desirable. Several 

approaches have demonstrated efficacy for improving the efficiency of physician time without 

https://paperpile.com/c/8elAWA/NnjX+R4GR
https://paperpile.com/c/8elAWA/NnjX+KuXI+IPTJh+0Exa+QV2w
https://paperpile.com/c/8elAWA/KuXI+IPTJh+0Exa+QV2w+6MPy
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misclassifying babies that develop severe disease. For instance, telemedicine for ROP screening 

has been used for over a decade.7–9,16,91,92 Typically, telemedical exams are performed weekly, 

whereas in-person ophthalmic exams can often be performed bi-weekly.7–9,16 Thus, while 

telemedicine expands the geographic area physicians can cover, with less time, it does not lower 

the overall number of exams, nor does it reduce the physiological stress placed on already fragile 

premature infants. 

Although birth weight (BW) and gestational age (GA) are the two most indicative predictors of 

those who might develop TR-ROP, they are not specific.1–3 In fact, roughly 90% of children born 

prior to 31 weeks of gestation and those that weight less than 1501 grams at birth do not develop 

TR-ROP.13 Other risk factors, such as necrotizing enterocolitis (NEC) and intraventricular 

hemorrhages (IVH), have been associated with incident TR-ROP, but, due to their rarity and the 

confounding risk of gestational age and birthweight, they are of limited predictive value for TR-

ROP.13,19 

The goal of developing risk models is to improve specificity without sacrificing sensitivity since 

the risk of a false negative is potentially a blind infant. Various ROP risk models have been 

developed with this goal in mind.1,3,10,93 However, concerns around performance and practicality 

have often hindered their implementation. Previous work has suggested that there may be added 

value in using an artificial intelligence-derived vascular severity score (VSS) in a predictive model.  

Specifically, Bellsmith et al. and Taylor et al. demonstrated that eyes that eventually developed 

TR-ROP had, on average, increasingly worse vascular severity beginning as early as 32 weeks 

postmenstrual age (PMA).94,95 This is consistent with previous clinical studies that have suggested 

that the presence of pre-plus disease is predictive of incident TR-ROP, with roughly 40% of infants 

who develop pre-plus disease eventually developing plus disease.1,3,90 However, the clinical 

https://paperpile.com/c/8elAWA/O6zI+TpzB+52va+bZ6G+jvSo+IPTJh
https://paperpile.com/c/8elAWA/O6zI+TpzB+52va+IPTJh
https://paperpile.com/c/8elAWA/NnjX+R4GR+KuXI
https://paperpile.com/c/8elAWA/0t60
https://paperpile.com/c/8elAWA/0t60+rxhO
https://paperpile.com/c/8elAWA/NnjX+R4GR+Lf7SU+rVg0i
https://paperpile.com/c/8elAWA/odEef+dXO28
https://paperpile.com/c/8elAWA/NnjX+R4GR+6MPy
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variability of the subjective diagnosis of pre-plus disease limits the effectiveness of this clinical 

observation. 

Thus, there remains a gap in knowledge as to whether objective evaluation of vascular features 

might add specificity to current risk models. We hypothesize that a risk model that takes advantage 

of vascular severity can have relatively high specificity while maintaining extremely high 

sensitivity. In addition, a model such as this would, theoretically, only require a single examination 

to occur at 32–33 weeks PMA, thereby reducing the screening burden placed on physicians and 

the associated physiological stress on infants. Herein, we describe the development of such a 

model. We aimed to achieve 100% sensitivity and at least 50% specificity using easy-to-obtain 

clinical factors and VSS in a highly interpretable logistic regression model. 

 

METHODS 

i-ROP Study Details 

As part of a multicenter ROP cohort study, 835 unique subjects weighing less than 1501 grams at 

birth that were born prior to 31 weeks of gestation were screened for ROP between January 2012 

and Present. This study was approved by the Institutional Review Board at the coordinating center 

(Oregon Health & Science University) and at each of seven study centers (Columbia University, 

University of Illinois at Chicago, William Beaumont Hospital, Children’s Hospital Los Angeles, 

Cedars-Sinai Medical Center, University of Miami, Weill Cornell Medical Center). This study was 

conducted in accordance with the Declaration of Helsinki. Written, informed consent for the study 

was obtained from parents of all enrolled infants. 
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For every exam, subjects were examined clinically at the bedside, while also receiving image-

based ROP diagnoses (None, Mild, Type-II ROP, or Type-I ROP) by a consensus of three ROP 

experts using the full International Classification of ROP (ICROP) criteria. Clinical comorbidities 

and demographics were recorded for every subjects’ exam, such as BW, GA, the presence of IVH, 

sepsis, periventricular leukomalacia (PVL), and NEC. During each screening exam, at least five 

different retinal fundus image views (nasal, temporal, inferior, superior, and posterior-pole) were 

captured via a RetCam (Natus; Pleasanton, CA). 

Vascular Severity Score and Dataset Preparation 

To be included in this study, subjects’ posterior-pole images were required to have consensus 

agreement by experts that the quality of said images were acceptable for the diagnosis of ROP. 

Posterior-pole images were analyzed by i-ROP DL, an automated plus disease classifier currently 

under approval review by the Food and Drug Administration.6 i-ROP DL provided a softmax 

probability for each image as having normal, pre-plus, or plus disease vasculature. A softmax 

probability is used for multi-class classification. It outputs the probability of each class being the 

correct label; however, all three values must sum to 1.0. From these values, a VSS, ranging from 

1.0 to 9.0, was developed: 

𝑉𝑎𝑠𝑐𝑢𝑙𝑎𝑟  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  𝑃(𝑛𝑜𝑟𝑚𝑎𝑙)  +  5 ∗  𝑃(𝑝𝑟𝑒𝑝𝑙𝑢𝑠)  +  9 ∗  𝑃(𝑝𝑙𝑢𝑠). 

Based on prior work, we believed that the window in the 32–33 week PMA range could be 

predictive of future TR-ROP, and thus used the first eye examination to occur for each subject in 

this window.94,95 Because our goal was to develop a model that predicted future TR-ROP, we 

excluded infants who were diagnosed with TR-ROP within this window from the training dataset 

— specifically, if they developed TR-ROP within seven days of the first exam to occur within the 

https://paperpile.com/c/8elAWA/9c5U
https://paperpile.com/c/8elAWA/dXO28+odEef
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32–33 week PMA window — since that would be less predictive and more diagnostic of TR-ROP, 

the efficacy of which has previously been documented.6 However, the test dataset contained all 

infants who would be eligible for ROP screening, (e.g., those born prior to 31 weeks of gestation 

that weighed less than 1501 grams at birth), regardless of if and when they developed TR-ROP 

following prediction, as this better mimics real-world usage. There were 376 and 444 unique 

subjects in the training and test datasets, respectively. Eyes were considered independently, and 

were mutually exclusive to the train or test datasets. Thus, the training dataset contained 58 eyes 

that eventually developed TR-ROP and 660 eyes that did not; the test dataset contained 133 eyes 

that eventually developed TR-ROP and 729 eyes that did not. Some eyes did not have acceptable 

quality images for diagnosis via i-ROP DL, hence the slight discrepancy between the number of 

subjects and the number of eyes. 

Risk Model Development 

Correlations between all collected clinical factors (VSS included) and TR-ROP were evaluated. 

Clinical factors with low correlation coefficients or low representation in the dataset were 

eliminated as possible model features. The remaining features were evaluated via recursive feature 

elimination in multiple ElasticNet models, a type of logistic regression that uses a mixture of L1 

and L2 regularization to reduce the potential for overfitting.31 These models were trained using the 

Sci-Kit Learn package developed for the Python programming language.96 The ElasticNet mixing 

parameter was tuned via five-fold cross-validation using the following values [0.0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. Values of 1.0 and 0.0 are equal to L1 and L2 regularization, 

respectively. Due to the significant class imbalance (i.e., those who eventually developed TR-ROP 

versus those who did not), area under the precision-recall curve (AUPRC) was the primary 

https://paperpile.com/c/8elAWA/9c5U
https://paperpile.com/c/8elAWA/aQ3p
https://paperpile.com/c/8elAWA/VJBZq
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measure of overall model performance; however, area under the receiver operating characteristics 

curve (AUROC) was also evaluated. 

The performance of the model with the highest AUPRC was assessed via the F𝛽 score (also known 

as the F-score or F-measure) using five-fold cross-validation across 101 evenly distributed 

decision thresholds from 0.00 to 1.00. Whereas the F1 score (𝛽 = 1) attempts to balance the 

proportion of false negatives to false positives, increasing 𝛽 (e.g., F2, F3, etc.) prioritizes 

minimizing false negatives over minimizing false positives. The F2 score is commonly used to 

slightly prioritize minimization of false negatives. To be sure that minimization of false negatives 

was the top priority, 𝛽 was set equal to 4. The average decision threshold minus the standard 

deviation that maximized the F4 score was selected and used to evaluate both test datasets. 

The final tuned and thresholded model was evaluated on the held-out i-ROP test dataset. It was 

also evaluated on an independent dataset, collected between September 2015 and June 2018, from 

30 unique subjects born at a hospital in Salem, OR. Data collection and exclusion criteria were 

similar to that of the i-ROP dataset. Retrospective evaluation of these data was performed under a 

waiver of consent from the Oregon Health & Science University Institutional Review Board. In 

total, there were four eyes that developed TR-ROP, and 56 eyes that did not. The main outcome 

measures were sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV). 
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RESULTS 

Either due to low correlation (𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 < 0.25) or lack of sufficient data to 

develop a well-powered model, IVH, PVL, NEC, and sepsis were eliminated as possible features. 

ElasticNet was tuned via five-fold cross-validation for all possible combinations of the remaining 

features: BW, GA, and VSS. An ElasticNet model with an L1 ratio of 0.4 with the predictors GA 

and VSS evaluated at 32–33 weeks PMA had the highest AUPRC (0.35 ± 0.11, Table 1, Figure 

1). It was, therefore, evaluated on both test datasets. 

Table 1: Five-fold cross-validation results for every combination of birth weight, gestational 

age, and vascular severity score.  

Variables AUPRC AUROC L1 Ratio 

BW 0.21 ± 0.14 0.77 ± 0.12 0.0 

GA 0.23 ± 0.20 0.79 ± 0.09 1.0 

VSS 0.29 ± 0.05 0.76 ± 0.03 0.0 

BW + GA 0.23 ± 0.20 0.78 ± 0.10 0.0 

BW + VSS 0.32 ± 0.13 0.82 ± 0.11 0.0 

GA + VSS 0.35 ± 0.11 0.82 ± 0.07 0.4 

BW + GA + VSS 0.31 ± 0.11 0.81 ± 0.11 0.0 
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Figure 1: Areas under the precision-recall and receiver operating characteristics curves for 

the GA + VSS model. For the variables gestational age and vascular severity score, the mean ± 

standard deviation of the (A) AUPR and (B) AUROC, respectively, were 0.35 ± 0.11 and 0.82 ± 

0.07. 

The maximum F4 score and corresponding decision threshold was 0.74 ± 0.12 and 0.33 ± 0.08, 

respectively. To be sure that all cases of TR-ROP were correctly predicted, the average threshold 

(0.33) was lowered to 0.25, which was the lowest bound suggested by the standard deviation 

(0.08). Although this threshold has the consequence of increasing false positives, it significantly 

minimizes false negatives, which is essential for any actionable ROP screening model. This model 

and decision threshold were then evaluated on the held-out test dataset from the i-ROP database 

(Table 2). It correctly identified all eyes that would eventually require treatment (sensitivity: 

100.0%, PPV: 27.0%) while correctly ruling out more than half of the eyes that would never would 

(specificity: 51.0%, NPV: 100.0%). For children who developed TR-ROP after the prediction (i.e., 

they were not identified as having TR-ROP at the time of exam), the average number of weeks ± 

standard deviation to TR-ROP diagnosis was 3.6 ± 2.6 weeks, range [0.14, 11.0] weeks. This 

model and decision threshold were then evaluated on an independent test dataset collected from a 
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hospital located in Salem, OR (Table 2). Again, the model correctly identified all eyes that would 

eventually require treatment (sensitivity: 100.0%), however PPV dropped to 15.5%. On the other 

hand, specificity increased to 59.2%, with NPV still 100.0%. The average time to TR-ROP 

diagnosis following prediction, for this dataset, was 4.5 ± 0.6 weeks, range [4.0, 5.0] weeks. 

Table 2: Confusion matrix of the GA + VSS model evaluated on both the i-ROP and Salem 

test datasets at the statistically optimized decision threshold of 0.25. 

  True Label 

  i-ROP Test Dataset Salem Test Dataset 

  Not 

Treated 

Treated Not 

Treated 

Treated 

Predicted 

Label 

Not Treated 372 0 71 0 

Treated 357 133 49 9 

 

A post-hoc analysis was performed to examine the VSS at the first exam to occur at 34–35, 36–

37, and 38–39 weeks PMA for all children who were predicted (whether correctly or incorrectly) 

to develop TR-ROP. It was found that VSS was significantly more severe (𝑃 < 0.05) at 34–35, 

36–37, and 38–39 weeks PMA for children who required treatment versus those who did not 

(Figure 2). 
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Figure 2: Post-hoc analysis of VSS from subjects predicted to develop TR-ROP. The VSS for 

subjects who developed TR-ROP trends up and away from those who did not. Asterisks indicate 

significantly different groups (𝑃 < 0.05). 
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DISCUSSION 

These results demonstrate that our risk model, which uses just two features, can identify all infants 

that will require treatment for ROP more than one month prior to a TR-ROP diagnosis, while 

correctly reducing the screening pool by more than half. Using five-fold cross-validation, we 

trained and tuned multiple ElasticNet logistic regression models on all possible combinations of 

BW, GA, and a deep learning-derived VSS, which was evaluated at 32–33 weeks PMA. We found 

that a combination of GA and VSS produced the model with the highest AUPRC (Table 1). We 

tuned this model’s decision threshold, via five-fold cross-validation, using the F4 score. On a held-

out test dataset and on an independent test dataset, the model had 100.0% sensitivity, and 

specificity greater than or equal to 51.0% (Table 2). There were two key findings: (1) a VSS, 

evaluated at 32–33 weeks PMA, when coupled with GA, can predict all subjects who will 

eventually develop TR-ROP while  maintaining a high degree of specificity, and (2) following the 

VSS of those predicted to develop TR-ROP beyond 32–33 weeks PMA may provide further 

specificity. 

We hypothesize that VSS captures subtle vascular abnormalities that are not normally cause for 

concern, nor warrant weekly screenings. This was evidenced by the univariate VSS model, which 

had an AUPRC 0.07 points higher than the BW or GA univariate models, or the combination 

thereof (Table 1). Furthermore, of those who developed TR-ROP, all had a VSS less than 4 at 32–

33 weeks PMA, which equates to a clinical plus disease diagnosis of “normal.”6,20 However, of 

those predicted to develop TR-ROP, those who actually developed TR-ROP appeared to have an 

increased, albeit not statistically increased, VSS at 32–33 weeks PMA as compared to those who 

did not (Figure 2). Therefore, we believe that the minute differences between VSS 1, 2, and 3, 

https://paperpile.com/c/8elAWA/VW2mC+9c5U
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when evaluated at 32–33 weeks PMA, have significant power for the prediction of future 

development TR-ROP. 

Performance-wise, the GA + VSS model is comparable to that of the initial performance 

calculations achieved by the CHOP ROP model, which uses a combination of BW + GA + weight 

gain to predict future occurrences of Type-II and Type-I (TR-) ROP.10,11 Both models achieved a 

sensitivity of 100.0% in predicting TR-ROP. PPVs were comparable (CHOP ROP: 17%, GA + 

VSS: 27.0% and 16.0% for i-ROP and Salem test datasets, respectively). The CHOP ROP model 

had a specificity of 53%, whereas the GA + VSS model had specificities equal to 51.0% and 62.5% 

on the held-out i-ROP test set and the independent Salem, OR test set, respectively. NPV was 

100.0% for both models. However, when the CHOP ROP model was applied to a larger and more 

diverse cohort collected from infants admitted to 30 hospitals spread across North America — 

similar to the i-ROP dataset — the decision threshold had to be significantly lowered to achieve 

100.0% sensitivity, which resulted in a specificity of just 6.8%.11 This finding suggests that the 

CHOP ROP model does not generalize well, which is likely due to the fact that the CHOP ROP 

model was only  trained on infants that were admitted to a single Philadelphia, PA hospital.10 In 

contrast, the GA + VSS model was trained using the i-ROP database, which contains exam-level 

information for infants admitted to eight different hospitals spread across the United States. It is, 

therefore, more likely to better generalize, as was evidenced by both test datasets. 

Furthermore, the GA + VSS model requires data that can be collected during a single ROP 

screening to make an accurate prediction. GA, even in developing countries, is generally trivial to 

calculate, and a VSS can be easily provided by uploading a digital retinal fundus image to a secure 

web server.97 Admittedly, acquiring retinal fundus images during routine ROP screenings is not 

part of the current standard of care in many neonatal care units, whether in developed or developing 

https://paperpile.com/c/8elAWA/Lf7SU+yiCe
https://paperpile.com/c/8elAWA/yiCe
https://paperpile.com/c/8elAWA/Lf7SU
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countries.16 Furthermore, expensive retinal fundus cameras are, presumably, not commonplace in 

most developing countries. However, as neonatal care and documentation advance, and retinal 

fundus camera attachments for smartphones become more prevalent, this may soon become a 

nonissue.98–100 Regardless, we maintain that the simplicity of this model is an advantage over other 

risk models, which often require multiple examinations and  detailed records of weight gain, 

comorbidities, etc., and will become more practical as digital fundus photography becomes more 

widespread.10,19 

Still, there is one major limitation regarding generalization. Although this model appears robust 

and able to generalize well to the North American populace, it will likely need to be retrained for 

populations in other regions of the world. The GA (and BW) of children who develop TR-ROP in 

developing countries is often higher than those in developed countries.101,102 Therefore, if this 

model were to be used to screen for future TR-ROP patients in these regions, it would need to be 

retrained on a sizable dataset collected from subjects in those regions. However, the VSS is 

determined by first segmenting the retinal vasculature of retinal fundus images into grayscale 

retinal vessel maps so that race and pigmentation do not affect the overall diagnosis and has been 

shown to perform well on infants from other countries and regions. Therefore, retraining the model 

would be trivial assuming a sizable training dataset could be acquired. 

In the future, we plan to further validate this model on a larger cohort of ROP patients. We would 

also like to incorporate other features to further increase specificity of subjects who are predicted 

to develop TR-ROP. Although our model outperformed the CHOP ROP validation study on a large 

North American cohort, and has some advantages over it regarding implementation, there are 

potential performance increases to be had if elements of the two models were combined. We also 

plan to investigate the role of oxygen exposure and saturation, and how it pertains to TR-ROP. 

https://paperpile.com/c/8elAWA/IPTJh
https://paperpile.com/c/8elAWA/EKlh2+JGy9d+lbj7q
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CONCLUSION 

In conclusion, we have trained, tuned, and thresholded a highly interpretable, parsimonious model 

for the prediction of infants who will eventually develop treatment-requiring retinopathy of 

prematurity. With prospective validation, we have demonstrated that this model can identify all 

infant eyes that will develop TR-ROP and reduce the screening burden by more than 50%, thereby 

prioritizing care to those who are most at-risk of developing TR-ROP, while simultaneously 

reducing the physiological stress placed on those who will never require treatment.
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AIM 3A: CONVERTING RETINAL VESSEL MAPS INTO RETINAL FUNDUS 

IMAGES 

 

ABSTRACT 

Advances in generative adversarial networks have allowed for engineering of highly realistic 

images. Many studies have applied these techniques to medical images. However, evaluation of 

generated medical images often relies upon image quality and reconstruction metrics, and 

subjective evaluation by laypersons. This is acceptable for generation of images depicting 

everyday objects, but not for medical images, where there may be subtle features experts rely upon 

for diagnosis. 

We implemented the pix2pix generative adversarial network for retinal fundus image generation 

and evaluated the ability of experts to identify generated images as such and to form accurate 

diagnoses of plus disease in retinopathy of prematurity. We later implemented pix2pixHD, and 

also evaluated whether experts could identify generated images from real images. 

We found that, while experts could discern between real and generated images produced by 

pix2pix, the diagnoses between image sets were similar. Images generated by pix2pixHD could 

not be identified by experts. By directly evaluating and confirming physicians’ abilities to diagnose 

generated retinal fundus images, this work supports conclusions that generated images may be 

viable for dataset augmentation and physician training.  



 

 

  
74 

INTRODUCTION 

Advances in graphics processing units have allowed for development of complex models, such as 

deep neural networks and variants thereof.39,103 Generative adversarial networks (GAN) are one 

such variant. These models contain both discriminative and generative networks that are trained 

to deceive one another.47,49,50 A discriminative network attempts to estimate an output, y, given a 

set of inputs, x.47,49,50 In contrast, a generative network attempts to model the distribution of x 

given y. To train these networks, data are supplied in pairs – inputs and their corresponding 

output(s). These two models are pitted against one another, and as training progresses, the ability 

of each model improves (i.e., as the discriminator better learns to discern between real and 

generated images, the generator must also learn how to better simulate generated data). Ideally, 

this results in a generator that consistently fools a well-trained discriminator into classifying its 

outputs as real. These models can be used for many types of data, but are primarily used for image 

synthesis. For images, both the discriminative and generative networks attempt to learn the overall 

style and pattern of output images (i.e., the relevant features of output images). However, the 

generative network also tries to learn how to map the original input image to the style of the output 

image. These models have begun to gain traction for synthesis of medical images.104–107 

The model presented in Image-to-Image Translation with Conditional Adversarial Networks, 

pix2pix, allows for one to employ style transfer without having to hardcode the style mapping 

(Figure 1, 2).49,50 pix2pix has been used to map real images to labels, labels to images, convert 

black-and-white images to color, and convert images captured during the day to representations of 

the same images at night. A few studies have even used this method to map retinal blood vessel 

maps to retinal fundus images for research in diabetic retinopathy.104,105,107 However, while these 

generated images have been evaluated using subjective visual quality inspections and various 

https://paperpile.com/c/8elAWA/JeDP+LNTt
https://paperpile.com/c/8elAWA/f4Hf+BFOm+JNg0
https://paperpile.com/c/8elAWA/f4Hf+BFOm+JNg0
https://paperpile.com/c/8elAWA/sen6+GlY8+EES6+56Jy
https://paperpile.com/c/8elAWA/JNg0+BFOm
https://paperpile.com/c/8elAWA/sen6+GlY8+56Jy
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image quality/reconstruction metrics, the diagnosability of said images — arguably the most 

important factor — has never formally been evaluated. 

 
Figure 1: Example implementations of the pix2pix generative adversarial network. This 

model demonstrates excellent ability to convert feature maps to real images (Labels to Street 

Scene, Labels to Facade, Edges to Photo), and real images to feature maps (Aerial to Map). The 

results are realistic and of relatively high resolution. Figure adapted from Image-to-Image 

Translation with Conditional Adversarial Networks.49 

In this study, we have deployed the pix2pix and pix2pixHD pipelines for retinal fundus image 

synthesis from retinal vessel maps.49,108 The application of this work is in retinopathy of 

prematurity (ROP), a potentially-blinding disorder that affects premature infants 1,49. A significant 

predictor of treatment-requiring ROP is the presence of plus disease, described as venous dilation 

and arterial tortuosity (Figure 2).1 It stands to reason that, according to the definition of plus 

disease, the only information required to diagnose plus disease is the appearance of the major 

retinal blood vessels.1 To generate synthetic ROP retinal fundus images, we first generate retinal 

vessel maps from retinal fundus images using a previously-reported U-Net model, then create new 

retinal fundus images of varying pigmentations from original images using the raw retinal vessel 

maps, and also create new retinal fundus images of varying pigmentations that lack choroidal blood 

https://paperpile.com/c/8elAWA/BFOm
https://paperpile.com/c/8elAWA/BFOm+Jmv8
https://paperpile.com/c/8elAWA/BFOm+NnjX
https://paperpile.com/c/8elAWA/NnjX
https://paperpile.com/c/8elAWA/NnjX
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vessel patterns and/or any unique/abnormal features of the retina (e.g., haemorrhages, 

discolorations, etc.) using filtered retinal vessel maps.6,45 Data for this study were obtained through 

the multi-center, NIH-funded, Imaging and Informatics in ROP (i-ROP) study centered at Oregon 

Health & Science University (OHSU). 

 
Figure 2: Example retinal fundus images. From left to right, retinal fundus images of an eye that 

was originally diagnosed normal, developed pre-plus disease, and then plus disease. In plus disease 

images, retinal blood vessels are dilated and tortuous as compared to normal images. The degree 

of dilation and tortuosity of pre-plus blood vessels is less than that of plus disease blood vessels, 

but greater than normal. 

 

METHODS 

Institutional Review Board 

This study was approved by the Institutional Review Board at the coordinating center (OHSU) and 

at each of 8 study centers (Columbia University, University of Illinois at Chicago, William 

Beaumont Hospital, Children’s Hospital Los Angeles, Cedars-Sinai Medical Center, University of 

Miami, Weill Cornell Medical Center, Asociación para Evitar la Ceguera en México [APEC]). 

https://paperpile.com/c/8elAWA/9c5U+ATDp


 

 

  
77 

This study was conducted in accordance with the Declaration of Helsinki. Written informed 

consent for the study was obtained from parents of all infants enrolled. 

Retinal Fundus Image Dataset 

As part of the multicenter ROP cohort study, i-ROP, over 30,000 nasal, temporal, inferior, 

superior, and posterior-pole retinal fundus images were collected from 970 preterm infants during 

routine ROP screening examinations. Between three and eight independent experts labeled each 

image set as normal, pre-plus, or plus, and an expert consensus diagnosis was formed and 

established as the ground truth diagnosis. Experts were all ophthalmologists with extensive 

experience in both ophthalmoscopic and image-based diagnosis of ROP. A subset of fundus 

images were selected; exclusion criteria were: images not centered on the posterior pole, images 

of stage 4 ROP (partial retinal detachment), and images of stage 5 ROP (total retinal detachment). 

The remaining images were downsampled to create a final dataset consisting of 6058 wide-angle 

fundus images centered on the posterior pole. This dataset was randomly split (retaining the even 

distribution), 80/10/10, into train, validation, and test datasets, respectively. Because a subject may 

be represented in the dataset more than once (multiple imaging sessions), it was ensured that 

subjects were unique to each dataset. 

Model Setup and Training 

Models were built and trained in Python using PyTorch on an Nvidia V100 GPU (Santa Clara, 

CA).109 For each image in the training, validation, and test datasets, vessel maps were generated 

using a previously-trained U-Net.6,45 The open-source pix2pix and pix2pixHD codes were forked 

from Github repositories hosted by their respective authors.108,110 We applied a modified pix2pix 

GAN, using ResNet9 blocks, to the i-ROP training dataset (Figure 3). The value of λ was set at 

https://paperpile.com/c/8elAWA/k6vu
https://paperpile.com/c/8elAWA/ATDp+9c5U
https://paperpile.com/c/8elAWA/Jmv8+Dg1m
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10; this weights the L1 loss 10 times greater than the adversarial loss of the generator during 

training, resulting in objectively higher fidelity images. Additionally, the original model was 

designed to generate color images of size 256x256x3, but retinal fundus images are generally color 

images of size 640x480x3. Rather than upsampling generated 256x256x3 images, which resulted 

in slightly blurred images that could (A) affect diagnosability and/or (B) be more easily discerned 

as a generated image, the model was modified to produce images of size 640x480x3. During 

training, each image in an image set (vessel map and corresponding retinal image) was scaled to 

size 572x572x3, and a random 512x512x3 crop was acquired from the same location for each 

image in the set. When images were generated, the 512x512x3 output image was resized to 

640x480x3 to match the size of retinal fundus images. Finally, a black, circular mask was applied 

around the outside of the image to better mimic the appearance of images captured by retinal 

fundus cameras. pix2pixHD was trained using the default settings, as they are already optimized 

to generate large, high-quality images. However, just as with pix2pix, a black, circular mask was 

applied around the outside of the image. 

 
Figure 3: Retinal image generation process.  Blood vessels of real images (left) are segmented 

and converted into retinal vessel maps (center). Pix2pix is used on raw or filtered retinal vessel 

maps (no discernible difference in image appearance) to generate images with similar vascular 

patterns (right). 



 

 

  
79 

For pix2pix, two separate models were trained: one on raw, grayscale vessel maps produced by 

the U-Net model (pix2pix-raw), and the other on the same vessel maps thresholded at pixel values 

greater than 25 (pix2pix-filtered). After the first training session, it was noted that although the U-

Net was only trained to segment major retinal blood vessels, the reconstructed images contained 

similar choroidal blood vessel patterns. Upon further investigation, it was found that choroidal 

blood vessels were segmented, but at pixel intensities indistinguishable from the background to 

the human eye (pixel intensity < 26). Therefore, for the second training iteration, pixel values less 

than or equal to 25 were set to 0 to remove information about choroidal blood vessel patterns. The 

pix2pix models were trained for 1,000 epochs using the Adam optimizer with a β value of 0.5. 

During the first 500 epochs, the learning rate was constant at 2x10-4, and was linearly decayed to 

0 over the remaining 500 epochs. pix2pixHD was trained for 200 epochs using the Adam optimizer 

with a β value of 0.5. During the first 100 epochs, the learning rate was constant at 2x10-4, and was 

linearly decayed to 0 over the remaining 100 epochs. Discriminator and generator loss functions 

on both the training and validation test sets were monitored to ensure learning was occurring at an 

equal rate between objective functions, and that overfitting was not occurring. The quality of image 

reconstructions were evaluated using the structural similarity index (SSIM) and the peak signal to 

noise ratio (PSNR), metrics often used to describe the quality of image reconstruction.111,112 

pix2pixHD was trained on thresholded images only at a constant learning rate of 3x10-4 for 100 

epochs, and linearly decayed to 0.0 over another 100 epochs. 

pix2pix Image Grading 

Of the 880 true retinal fundus images in the test dataset, 30 images were randomly selected for 

grading. Raw vessel maps and thresholded vessel maps were generated for each real image and 

used to generate reconstructions from their respective models. In total, there were three image sets 

https://paperpile.com/c/8elAWA/JCkf+e904
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(90 images) to be graded: 30 ground truth retinal fundus images, 30 reconstructions from pix2pix-

raw, and 30 reconstructions from pix2pix-filtered. Using a custom, online grading system, a set of 

three independent ROP experts graded each image as normal, pre-plus, or plus, and also assessed 

whether they believed the image was real or generated.23 All images were presented at a resolution 

of 640x480x3. In the event of a three-way tie for normal, pre-plus, or plus, the image was classified 

as pre-plus. The majority diagnoses of real images were used to compare agreement of diagnoses 

to generated image sets. 

pix2pixHD Image Grading 

Of the 880 true retinal fundus images in the test dataset, 50 images were randomly selected for 

grading. Thresholded vessel maps were generated for each real image and synthetic images were 

generated by pix2pixHD to create a total dataset size of 100 images, 50 real and 50 synthetic. 

Using the same custom, online grading system, a set of four separate ROP experts assessed whether 

they believed each image was real or generated.23 All images were presented at a resolution of 

640x480x3. Individual expert predictions were compared to ground truth, as well as the expert 

majority. In the event of a tie, the expert majority was deemed “fake.” 

Data Analysis 

All analyses were performed in R. Majority diagnoses were determined for all images in a set, in 

addition to a majority vote on whether images were real or generated. Fisher’s Exact Test for Count 

Data was used to determine if experts were statistically able to identify generated images from real 

images. In order to determine if expert diagnoses were affected by generated images, the Cochran-

Mantel-Haenszel test was used to compare the pix2pix-raw and pix2pix-filtered contingency tables 

https://paperpile.com/c/8elAWA/WiUU
https://paperpile.com/c/8elAWA/WiUU
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to the real image contingency table. Further, Cohen’s kappa (κ) was used to measure agreement of 

diagnoses between generated images and real images. 

 

RESULTS 

The [discriminator, generator] losses on the training dataset for pix2pix-raw and pix2pix-filtered 

were [0.315, 0.224] and [0.170, 0.078], respectively. The [train, validation] PSNR values for 

pix2pix-raw and pix2pix-filtered were [16.882, 16.584] and [12.563, 12.014], respectively. The 

[train, validation] SSIM for pix2pix-raw and pix2pix-filtered were [0.617, 0.559] and [0.505, 

0.448], respectively. A generator loss function value that is lower than a discriminator loss function 

value indicates that the generator can trick the discriminator into classifying its images as real more 

often than not. This occurred for all three models and suggested that each can generate realistic 

images. This was further confirmed by the SSIM and PSNR values of pix2pix models. The higher 

SSIM and PSNR value of pix2pix-raw images, as compared to pix2pix-filtered images, suggested 

that its generated images were more similar to true retinal fundus images; this was likely due to 

the presence of choroidal blood vessels (Figure 3). pix2pixHD was a small followup experiment 

to the original pix2pix experiments, which determined that SSIM and PSNR roughly tracked the 

loss statistics of the generator and discriminator, so these metrics were not explicitly monitored 

during pix2pixHD training. Rather, loss was evaluated. 
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Figure 4: Examples of real and generated retinal fundus images. From left to right: a real 

retinal fundus image, a generated retinal fundus image from pix2pix-raw that uses raw vessel maps 

to create images with choroidal blood vessels patterns, and a generated retinal fundus image from 

pix2pix-filtered that uses filtered vessel maps to generate images without choroidal blood vessel 

patterns. 

In general, experts were able to discern between real and generated images produced by pix2pix-

raw and pix2pix-filtered (Accuracy: 92.2%, Table 1). Images without choroidal blood vessel 

patterns (pix2pix-filtered) were identified as generated in 100% of cases. Some (16.7%) generated 

images that contained choroidal blood vessel patterns (pix2pix-raw) were classified as real images. 

This corroborates the difference in test set PSNR values between the two models. Nearly all 

(93.3%) of real images were identified as such. The χ2 test statistically confirmed that, overall, 

experts could identify real versus generated images (χ2 ≅ 64.019; p ≅ 1.254x10-14). The Fisher’s 

Exact Test confirmed this finding (p < 2.2x10-16). Generated images with choroidal blood vessel 

patterns were, statistically, not more likely to be identified as real than those without (χ2: p ≅ 

0.062; Fisher: p ≅ 0.052). 
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Table 1: Expert majority determination of pix2pix images 

  Expert Majority 

Determination 

  Real Generated 

 

Image 

Type 

Real Images 28 2 

pix2pix-raw 5 25 

pix2pix-filtered 0 30 

 

Expert majority diagnoses for each image set are presented in Table 2. The majority diagnoses for 

real images were used as the ground truth. For normal images, experts diagnosed with accuracies 

of 92.3% and 100% on images generated by pix2pix-raw and pix2pix-filtered, respectively. For 

pre-plus images, experts had 91.7% accuracy on both pix2pix-raw and pix2pix-filtered images. 

Plus disease was diagnosed with 80% accuracy on both pix2pix-raw and pix2pix-filtered images. 

A Cochran-Mantel-Haenszel test confirmed that real, pix2pix-raw, and pix2pix-filtered images 

were not graded dissimilarly (p ≅ 0.501). This suggests that generated images, even those without 

choroidal blood vessel patterns, have the same diagnostic power as real images. 

Table 2: Expert majority diagnoses of real images versus expert majority diagnoses of 

generated images 

 

  Real Images pix2pix-raw pix2pix-filtered 

  Normal Pre-Plus Plus Normal Pre-Plus Plus Normal Pre-Plus Plus 

Real 

Image 

Majority 

Diagnosis 

Normal 13 0 0 12 1 0 13 0 0 

Pre-Plus 0 12 0 0 11 1 1 11 0 

Plus 0 0 5 0 1 4 0 1 4 
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To further investigate and confirm this finding, intergrader agreement of diagnoses and overall 

agreement of diagnoses between image sets were determined using weighted κ statistics for 

chance-adjusted agreement in ordinal diagnosis, using a well-known scale: [0, 0.20] = slight 

agreement, [0.21, 0.40] = fair agreement, [0.41, 0.60] = moderate agreement, [0.61, 0.80] = 

substantial agreement, and [0.81, 1.00] = near-perfect agreement (Table 3). For images generated 

by pix2pix-raw, individual expert diagnoses had substantial to near-perfect agreement (κ = [0.680, 

0.880]) to real images, and the majority diagnoses had near-perfect agreement (κ = 0.880). For 

images generated by pix2pix-filtered, individual expert diagnoses had moderate to near-perfect 

agreement (κ = [0.498, 0.980]) to real images, and the expert majority diagnoses had near-perfect 

agreement (κ = 0.902). 

Table 3: Expert agreement of diagnoses between generated images and real images 

 

 Majority 

Diagnosis 

Expert 1 Expert 2 Expert 3 

pix2pix-raw 0.880 0.743 0.680 0.880 

pix2pix-filtered 0.902 0.663 0.498 0.980 

 

For pix2pixHD, Fisher’s Exact Test p-values for the Expert Majority and Experts 1–4, 

respectively, were: 0.100, 0.505, 0.158, 1.000, and 0.043. This suggests that the majority of experts 

could not discern between real and synthetic images (Table 4). An example of a real image and 

one generated by pix2pixHD is presented in Figure 5. 
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Table 4: Expert majority determination pix2pixHD images 

  Expert Majority Expert 1 Expert 2 Expert 3 Expert 4 

  Real Fake Real Fake Real Fake Real Fake Real Fake 

Actual 

Image 

Type 

Real 35 15 38 12 32 18 43 7 34 16 

Fake 26 24 34 16 24 26 44 6 23 27 

 

 

Figure 5: Example pix2pixHD image. A real retinal fundus image (left) and its corresponding 

generated image produced by pix2pixHD from a retinal vessel map (right). 

 

DISCUSSION 

This study aimed to generate and evaluate synthetic retinal fundus images, for the diagnosis of 

plus disease in retinopathy of prematurity, by segmenting the vasculature of real retinal fundus 

images into grayscale vessel maps using a U-Net, and generating realistic color retinal fundus 

images from said vessel maps using pix2pix and pix2pixHD. There are three key findings: (1) 

images generated by pix2pix, regardless of whether choroidal blood vessel patterns were present, 

were easily identified by experts as generated, (2) images generated by pix2pixHD, with synthetic 
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choroidal blood vessel patterns, were not easily identified by experts as generated, and (3) 

generated images retained information relevant for the detection of plus disease in retinopathy of 

prematurity. The Chi-squared test suggested that pix2pix images were not realistic enough to 

deceive experts into believing they were real images (𝑝 ≈ 1.254 × 10−14, Table 1). This was 

confirmed using a Fisher’s Exact test (𝑝 < 2.2 × 10−16). However, a Cochran-Mantel-Haenszel 

test showed that images were realistic enough to be diagnosed similarly to real images (𝑝 ≈ 0.501, 

Table 2). This was further confirmed by measuring the agreement of individual and majority 

expert diagnoses across image sets using Cohen’s kappa (Table 3). For real images, experts had 

near-perfect agreement with the diagnoses of the same images reconstructed by pix2pix-raw and 

pix2pix-filtered (𝜅 = 0.880, 𝜅 = 0.902). The Fisher’s Exact test suggested that pix2pixHD 

images were realistic enough to deceive experts into believing they were real images (𝑝 ≈ 0.100, 

Table 4). These results suggest that, although pix2pix images may be recognized as generated, 

these models retain relevant information that is required to reconstruct retinal fundus images for 

the diagnosis of plus disease in retinopathy of prematurity. Further, pix2pixHD creates highly 

realistic images that contain the same major retinal vascular information, but with greater detail in 

non-vascularized areas. 

This work has many important implications. First, it confirms that, at least for plus disease 

diagnosis in ROP, pix2pix- and pix2pixHD-generated images are of high enough quality and 

fidelity for expert physicians to form accurate diagnoses. This is important, as numeric metrics 

and subjective layperson evaluations are often used to evaluate the quality and realism of generated 

images.104,106,113,114 However, because the goals of such systems are often to generate images for 

synthetic datasets, training physicians, or diagnosis from image reconstructions, the ability of 

physicians to form diagnoses from generated images should be evaluated prior to implementation. 

https://paperpile.com/c/8elAWA/sen6+EES6+Phtu+pk37
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It should also be noted that clinical findings unrelated to plus disease diagnosis that were present 

in original retinal fundus images, such as hemorrhages, were not present in reconstructions. This 

is likely because the U-Net was not trained to segment retinal hemorrhages, so pix2pix and 

pix2pixHD were unaware of their existence. While not detrimental for the diagnosis of plus 

disease, it serves as a warning to those looking to generate images of highly complex diseases 

where rare clinical findings may be highly-relevant for a given diagnosis. In essence, although an 

image may appear real or diagnosable, it may be lacking pertinent information that was present in 

the original image. 

Second, retinal scans are listed as protected health information (PHI) according to the Health 

Insurance Portability and Accountability Act (HIPAA) Privacy Rule; however, they are de-

identified via the Expert Determination method (§ 164.514(b)(2)).115,116 This method essentially 

states that the risk of re-identification using retinal fundus images is negligible; however, the 

European Union’s General Data Protection Regulation (GDPR) currently informs that this method 

is not sufficient for de-identification. It is conceivable that the pix2pix methods we have trained 

could be used to further de-identify retinal fundus images. From a purely observational standpoint, 

it was found that generated images were often pigmented differently than original images (Figure 

3, 4). Second, generated images without choroidal blood vessel patterns were just as diagnosable 

as real images. Finally, other clinical findings present in retinal fundus images, such as 

hemorrhages, may be specific to unique diagnoses and increase the identifiability of images. As 

mentioned, in the i-ROP dataset, there were a limited number of images with these features; 

therefore, the few retinal fundus images that did have these highly identifiable features were 

reconstructed without them. Although this method would not fully de-identify images, it could 

further reduce the risk of re-identification by removing highly identifiable features while still 

https://paperpile.com/c/8elAWA/BWHZ+6Nxu
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providing physicians with the information required to form accurate diagnoses. One could argue 

that the retinal vessel maps used to generate retinal fundus images are computationally easier to 

generate and modify and might be considered further de-identified. However, physicians are not 

formally trained to form diagnoses from these types of images, and the accuracy and reliability of 

said diagnoses could suffer. Nonetheless, it is one of a few interesting future directions for this 

work. 

 

CONCLUSION 

We have implemented the pix2pix and pix2pixHD generative adversarial networks for the 

generation of retinal fundus images in retinopathy of prematurity and can successfully generate 

highly realistic retinal fundus images from retinal vessel maps. These generated images have the 

same diagnostic power as real images; images were easily diagnosed for the presence of plus 

disease by retinopathy of prematurity experts, and their diagnoses were highly correlated. This is 

important, as previous studies have not formally evaluated the ability of physicians to form 

diagnoses from generated medical images.  
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AIM 3B: AUGMENTING THE SEVERITY OF RETINAL VESSEL MAPS 

 

ABSTRACT 

Retinopathy of prematurity (ROP) is a blinding disease that affects prematurely born infants. A 

significant indicator of the need for treatment of ROP is the presence of plus disease, described as 

venous dilation and arterial tortuosity. The diagnosis of plus disease is, unfortunately, a 

dichotomous decision based on subjective comparison to an outdated reference standard image. In 

this work, we aim to create personalized reference standard images of plus disease for individual 

patients. 

To do so, we explore the modification of retinal vessel maps. We use unpaired-image GANs to 

increase the severity of plus disease present in retinal vessel maps from normal or pre-plus disease 

to plus disease, or to augment the severity along a novel vascular severity score (VSS) scale 

ranging from 1.0 to 9.0. The retinal vessel maps were then converted into retinal fundus images 

using a previously trained paired-image GAN, and evaluated via DeepROP, an automated plus 

disease screening tool. 

We found that converting images from normal or pre-plus disease vasculature to plus disease 

vasculature worked as intended almost every time. Converting from VSS 1 to VSS 2, VSS 3, …, 

VSS 9 proved to be more challenging, likely due to dataset size limitations. However, there was a 

general trend of increasing vascular severity produced by each model. Ultimately, this work may 

allow for generation of personalized reference standard images, which may better alert non-ROP 
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experts as to when an infant may require treatment, or at the very least be referred to an ROP 

expert. 

 

INTRODUCTION 

Although retinopathy of prematurity (ROP) is a highly-treatable disease, if diagnosed in a timely 

fashion, it remains one of the world’s leading causes of childhood blindness.1,2,18 While there are 

a handful of reasons for this phenomenon, a significant issue revolves around the accurate 

diagnosis of plus disease. The presence of plus disease, defined as venous dilation and arterial 

tortuosity, is required for the diagnosis of treatment-requiring (TR-) ROP in five out of six 

conditions under which ROP should be treated (Figure 1).1,16 The International Classification of 

Retinopathy of Prematurity (ICROP) refers physicians to use a “standard” photograph to define 

the minimum amount of vascular dilatation and tortuosity required to make the diagnosis of plus 

disease (Figure 2).1,3 However, many multi-centered clinical trials suggested that the diagnosis of 

plus disease should be made if sufficient vascular dilatation and tortuosity were present in at least 

2 quadrants of the eye.2 Furthermore, the original fundus image from the ICROP is outdated — 

the resolution of the image is low and it has a narrow field-of-view as compared to modern retinal 

fundus cameras and ophthalmoscopes and depicts a more severe case of plus disease. Put together, 

these issues have increased the subjectivity of plus disease diagnosis, thereby decreasing ROP-

expert agreement on what constitutes plus disease. Ultimately, this has led to overtreatment in 

some children, and undertreatment in others, both of which can lead to lifelong visual 

impairment.1,3 While ROP experts may not agree on diagnostic cut points for plus disease 

diagnosis, they do tend to rank vascular severity similarly.22,23 That is, although there may be 

https://paperpile.com/c/8elAWA/0Exa+NnjX+KuXI
https://paperpile.com/c/8elAWA/NnjX+IPTJh
https://paperpile.com/c/8elAWA/NnjX+R4GR
https://paperpile.com/c/8elAWA/KuXI
https://paperpile.com/c/8elAWA/R4GR+NnjX
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disagreement between whether or not an eye has plus disease, they can agree that the vasculature 

of one eye may be more severe than another. In this work, we aim to take advantage of this by 

generating personalized reference standard plus disease images for a given patient’s eyes. 

 
 

Figure 1: Example retinal fundus images of increasing vascular severity. From left to right, 

retinal fundus images of an eye that was originally diagnosed normal, developed pre-plus disease, 

and then plus disease. In plus disease images, retinal blood vessels are dilated and tortuous as 

compared to normal images. The degree of dilation and tortuosity of pre-plus blood vessels is less 

than that of plus disease blood vessels, but greater than normal. 

 

Figure 2: Original fundus photograph depicting plus disease from the International 

Committee for the Retinopathy of Prematurity. 
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To do so, we use a series of generative adversarial networks (GANs). GANs have an uncanny 

ability to generate highly-realistic images, and are slowly being introduced into the field of 

medicine.113,117 GANs contain both discriminative and generative convolutional neural networks 

that are trained to deceive one another.47,49,50 A discriminative network attempts to estimate an 

output given a set of inputs, whereas a generative network attempts to model the distribution of 

the input given an output.47,49,50 To train these networks, data are supplied in pairs – inputs and 

corresponding output(s). The two models are pitted against one another, and as training progresses, 

the ability of each model improves (i.e., as the discriminator better learns to discern between real 

and generated images, the generator must also learn how to better simulate data). Ideally, this 

results in a generator that consistently fools a well-trained discriminator into classifying its outputs 

as real using highly realistic generated images. 

There are two main types of GANs: (1) those that require paired image data and (2) those that do 

not.106 Paired-image GANs require that both input and output images are structurally similar, but 

represent different modalities. Typically, this involves a real image and a labeled image. Figure 3 

best illustrates this concept, where labels are converted to scenes, or vice versa.49 Not only do 

paired-image GANs produce higher-quality images than unpaired-image GANs, but they typically 

require fewer images for training. This is because paired data allows a GAN to home in on what 

the true differences are between two imaging modalities, and learn how it can best model the 

mapping between said modalities. However, collecting paired images can be difficult, if not 

impossible. In contrast, unpaired-image GANS do not have this limitation, but require more 

images to train and results are often of lesser quality.49,50 Prime examples of this are displayed in 

Figure 4 where, for instance, finding paired image data of zebras and horses posed in the same 

manner would be virtually impossible. Although the images are believable, close examination of 

https://paperpile.com/c/8elAWA/s0YC+Phtu
https://paperpile.com/c/8elAWA/f4Hf+BFOm+JNg0
https://paperpile.com/c/8elAWA/f4Hf+BFOm+JNg0
https://paperpile.com/c/8elAWA/EES6
https://paperpile.com/c/8elAWA/BFOm
https://paperpile.com/c/8elAWA/BFOm+JNg0
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the “horses” reveals that they are somewhat blurry and their faces are not sharp. Similarly, in the 

horse to zebra scene, the grass has been modified to be slightly browner — likely because zebras 

are typically photographed in savannas and deserts, whereas horses are photographed in prairies 

and grasslands — even though this was not an intended outcome. 

 

Figure 3: Example implementations of the pix2pix generative adversarial network. This 

model uses paired-image data to convert feature maps to real images (Labels to Street Scene, 

Labels to Facade, Edges to Photo), and real images to feature maps (Aerial to Map). The results 

are realistic and of relatively-high resolution. Figure adapted from Image-to-Image Translation 

with Conditional Adversarial Networks.49 

https://paperpile.com/c/8elAWA/BFOm
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Figure 4: Example implementations of the CycleGAN generative adversarial network. This 

model converts the style of images from one to another using unpaired images. Figure adapted 

from Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 

This is because the task of transferring the style of color images is not trivial, due to image size 

and the vast array of colors (millions) that must be learned.47,49,50,106 On the other hand, black and 

white or grayscale images are better suited for this task, as there are only 2 or 256 possible values 

per pixel, respectively. In this work, we use an unpaired-image GAN to modify grayscale retinal 

vessel maps, as they are theoretically easier for a model to learn and simulate. Specifically, we 

modify the vessel maps of normal or pre-plus disease eyes to appear as plus disease. The eventual 

goal is to then convert said vessel maps into retinal fundus images using a paired-image GAN. 

Ultimately, this allows for the synthesis of personalized reference standard images to which 

physicians may compare infants’ eyes.  

https://paperpile.com/c/8elAWA/BFOm+JNg0+EES6+f4Hf
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METHODS 

Institutional Review Board 

This study was approved by the Institutional Review Board at the coordinating center (OHSU) and 

at each of 8 study centers (Columbia University, University of Illinois at Chicago, William 

Beaumont Hospital, Children’s Hospital Los Angeles, Cedars-Sinai Medical Center, University of 

Miami, Weill Cornell Medical Center, Asociación para Evitar la Ceguera en México [APEC]). 

This study was conducted in accordance with the Declaration of Helsinki. Written informed 

consent for the study was obtained from parents of all infants enrolled. 

Retinal Fundus Image Dataset 

As part of the multicenter ROP cohort study, i-ROP, over 30,000 nasal, temporal, inferior, 

superior, and posterior-pole retinal fundus images were collected from 970 preterm infants during 

routine ROP screening examinations. Between three and eight independent experts labeled each 

image set as normal, pre-plus, or plus disease, and an expert consensus diagnosis was formed, 

which established the ground truth diagnosis. Experts were all ophthalmologists with extensive 

experience in both ophthalmoscopic and image-based diagnosis of ROP. In addition to an ROP 

diagnosis, every posterior-pole image for a given subject was analyzed by DeepROP, an automated 

plus disease classifier. DeepROP provided a soft-max probability for each image as having normal, 

pre-plus, or plus disease vasculature, with all three values summing to one. From these values, a 

vascular severity score (VSS) ranging [1.0, 9.0] was created: 

𝑉𝑎𝑠𝑐𝑢𝑙𝑎𝑟  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  𝑃(𝑛𝑜𝑟𝑚𝑎𝑙)  +  5 ∗  𝑃(𝑝𝑟𝑒𝑝𝑙𝑢𝑠)  +  9 ∗  𝑃(𝑝𝑙𝑢𝑠). 
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Images of stage 4 (partial retinal detachment) and 5 (total retinal detachment) ROP were not 

included in the dataset, nor were images where image quality was deemed “not acceptable for 

diagnosis.” 

Model Setup and Training 

Ten separate GANs were trained to modify the retinal vasculature in the following ways: normal 

to plus, pre-plus to plus, VSS 1 to VSS 2, VSS 1 to VSS 3, and so on to VSS 1 to VSS 9. Each 

model had unique datasets that were downsampled by plus disease diagnosis or VSS. The normal 

to plus and pre-plus to plus datasets were randomly split, 70/10/20, into train, validation, and test 

datasets, respectively. Because the number of training images for training VSS models was low, 

especially for the rarer VSS scores 7–9, the tuned parameters used for the normal to plus and pre-

plus to plus models were used to train the VSS models, and generator learning was evaluated by 

comparing discriminator versus generator losses, and by manual inspection of generated images 

in the training dataset. A test dataset (20%) was used for final model evaluation. Additionally, 

because a subject may be represented in the dataset more than once (multiple imaging sessions and 

multiple image views), it was ensured that subjects were unique to either the train, validation, or 

test datasets. This by-subject split was common across all trained models, so that they could later 

be compared.  

Models were built and trained in Python using PyTorch on an Nvidia V100 GPU (Santa Clara, 

CA).109 For each image in the training, validation, and test datasets, vessel maps were generated 

using a previously-trained U-Net.6,45 The open-source CycleGAN code was forked from a Github 

repository, hosted by its authors, and applied to the i-ROP training datasets.50,118 Models were 

trained for 100 epochs at an initial learning rate of 0.0002, and linearly decayed to a learning rate 

https://paperpile.com/c/8elAWA/k6vu
https://paperpile.com/c/8elAWA/ATDp+9c5U
https://paperpile.com/c/8elAWA/5fSA+JNg0
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of 0 over another 100 epochs. During training, image pairs (e.g., normal and plus disease vessel 

maps) were input at a resolution of 640x480, scaled to 572x572, and randomly cropped to 512x512 

in the same location for each image in the set. Discriminator and generator loss functions on both 

the training and validation test sets were monitored to ensure learning was occurring at an equal 

rate between objective functions, and that overfitting was not occurring. Manual inspection of the 

training set images occurred to verify that generated vessel maps were medically plausible. 

Image Severity Verification 

As mentioned, because GANs are an unsupervised learning method, there is theoretically not a 

“target” outcome. While visual inspection of generated images could confirm increased vessel 

dilation and tortuosity, whether the images were converted to plus disease remained a question, as 

they could have been converted to pre-plus disease. Therefore, we chose to evaluate the diagnoses 

of generated images from the validation and test datasets using DeepROP, which provided both a 

diagnosis and a VSS. After a GAN was successfully trained (discriminator and generator loss 

curves tracked one another) and visual inspection of generated training dataset images appeared 

appropriate, the vasculature of validation set images was modified. If the diagnoses of modified 

validation set images were accurate and no adjustments to the model were needed, the final model 

was evaluated on the test dataset.  
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RESULTS 

Augmenting Vessel Severity to Plus Disease 

During the first training pass of the normal to plus disease CycleGAN, it was found that the 

discriminator loss quickly approached zero while the generator loss did not, suggesting that the 

generator was not easily able to trick the discriminator. This was further confirmed by generating 

plus disease images from normal images using the validation dataset — these images were 

evaluated via DeepROP, which showed that many images were either unchanged, not medically-

plausible or, at best, were converted to pre-plus (Figure 5). 
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Figure 5: Examples of failed CycleGAN transformations. A, C, and E represent original vessel 

maps with normal retinal vasculature. CycleGAN either (B) failed to change the vessel map at all, 

(D) changed it in a way that was not medically plausible, or (F) only converted the image to pre-

plus disease. 
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Thus, this model was fine-tuned by reducing the number of filters in the first layer of the 

discriminator from 64 to 32. This had the effect of reducing the capacity of the discriminator, 

thereby slowing its learning rate and allowing for the generator to learn how to better mimic the 

appearance of plus disease. After 200 epochs, the discriminator loss was 0.254 and the generator 

loss was 0.253, suggesting that the generator was likely able to trick the discriminator and that 

generated images were of the desired diagnosis. Using this model, generated images were input to 

pix2pixHD, and generated plus disease images from the validation dataset were evaluated via 

DeepROP. All 32 generated images were diagnosed as “plus” by DeepROP (Figure 4). To further 

confirm that this tuned model was performing as expected, the test dataset was also evaluated. 

Again, 100% of the 64 test dataset images were transformed from normal to plus (Figure 5). 

Manual inspection of both validation and test dataset images revealed medically plausible results 

(e.g., there were not any abnormal vasculature patterns that could lead to a plus disease diagnosis, 

such as loops or abnormal branching patterns).  

 

Figure 4: Validation dataset results for the normal to plus disease CycleGAN. All 32 

validation dataset images were successfully converted from normal to plus disease vasculature. 
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Figure 5: Test dataset results for the normal to plus disease CycleGAN. All 64 test dataset 

images were successfully converted from normal to plus disease vasculature. 

Similar to the normal to plus disease CycleGAN, it was found that the discriminator loss of the 

pre-plus to plus disease CycleGAN quickly approached zero while the generator loss did not, 

suggesting that the generator was not able to easily trick the discriminator. This was again 

confirmed by generating plus disease images from pre-plus images in the validation dataset. 

Generated images were not evaluated by DeepROP, as they were not medically plausible.  

Therefore, this model was also tuned by reducing the number of filters in the first layer of the 

discriminator from 64 to 32. After 200 epochs, the discriminator loss was 0.248 and the generator 

loss was 0.250, suggesting that the generator was able to trick the discriminator. Using this model, 

generated pre-plus disease images from the validation dataset were evaluated via DeepROP. All 

32 generated images were diagnosed as “pre-plus” by DeepROP (Figure 6). This desired model 

behavior was confirmed using the test dataset. 94% of the 64 test dataset images were transformed 

from pre-plus to plus — four images were not diagnosed as plus (Figure 7). Manual inspection of 

both validation and test dataset images revealed medically plausible results. 



 

 

  
102 

 

 

Figure 6: Validation dataset results for the pre-plus to plus disease CycleGAN. All 32 

validation dataset images were successfully converted from pre-plus to plus disease. 

 

Figure 7: Test dataset results for the pre-plus to plus disease CycleGAN. Most test dataset 

images were successfully converted from pre-plus to plus disease vasculature. A total of four out 

of the 64 images were not diagnosed as plus disease by DeepROP. 
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A subset of normal eyes and pre-plus eyes that actually developed plus disease over time were 

compared with GAN predictions of plus disease in those specific eyes. In general, the predicted 

retinal vascular trees were not exact matches to the actual retinal vascular trees, however there 

were similarities. An example is presented in Figure 8. Here, the model did not predict that 

vitreous haze would occlude portions of the retina. Although, it did predict that the retinal 

vasculature would dilate, and that tortuosity would increase in the areas depicted by white arrows. 

However, the overall severity of the predicted plus disease appeared to be slightly increased over 

the level of plus disease in the real image. In practice, this could be problematic, as the overall 

severity of an eye for the diagnosis of plus disease has yet to be fully agreed upon by ROP experts. 

Therefore, in addition to increasing vessel severity from normal or pre-plus to plus to plus, we also 

investigated increasing vessel severity in a more granular fashion, using the novel VSS. 
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Figure 8: Example of normal vasculature transformed to plus disease vasculature. (A) An 

eye with normal vasculature that eventually developed (B) plus disease. (C) A prediction of how 

plus disease would appear in the eye, given the image in A. 
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Augmenting Vessel Severity Along the Vascular Severity Score 

In this set of experiments, the goal was to transform images in the i-ROP dataset with a VSS of 1 

(the most commonly presented VSS in the i-ROP dataset) to VSS 2–9 (Figure 8). Because the 

groups are more granular (i.e., there are nine VSS designations versus three plus disease diagnoses) 

and adequately-sized train, validation, and test datasets were not possible, we opted to forgo the 

extra validation dataset and use knowledge gained from previous experiments (i.e., set the number 

of filters used in the first layer of the discriminator to 32, train for 100 epochs with a static learning 

rate and linearly decay to 0 over another 100 epochs). The cycle consistency loss was monitored 

as a measure of over-/under-fitting, and generated training dataset images were visually inspected 

for plausibility. The models were then evaluated on their respective test datasets. 
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Figure 8: Distribution of the vascular severity score in the i-ROP Dataset. As is common with 

normal versus pre-plus versus plus, the majority of images are VSS 1, meaning they are normal. 

Around 7% of images are VSS 7–9, in line with the percentage of images that have plus disease.  

After 200 epochs, discriminator and generator losses were compared to one another — models did 

not appear to be severely over- or under-fitting (Table 1). However, the discriminators in models 

VSS 1→7, VSS 1→8, and VSS 1→9 all appeared to be outperforming their respective generators. 

The number of filters in the first layers of these discriminators was reduced from 32 to 16 in an 

attempt to slow the learning of the discriminator as compared to the generator, but results did not 

improve. This suggests that this disparity between discriminator and generator losses is due to a 

data limitation, which aligns with the VSS distribution in the i-ROP dataset (Figure 8). 
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Table 1: Discriminator and generator losses for each of the VSS models. 

Model Discriminator Loss Generator Loss 

VSS 1→2 0.253 0.266 

VSS 1→3 0.244 0.262 

VSS 1→4 0.264 0.241 

VSS 1→5 0.216 0.231 

VSS 1→6 0.224 0.298 

VSS 1→7 0.191 0.368 

VSS 1→8 0.140 0.375 

VSS 1→9 0.206 0.365 

 

Using the best-trained models for each VSS transformation, test dataset images were transformed 

from VSS 1 to the desired VSS for each model (Figure 9). Although the models did not perform 

perfectly, especially for VSS 7 and VSS 8, there appears to be a gradual increase in VSS for each 

image ranging from desired VSS 2 to desired VSS 9 (Figure 9, Table 2). This was confirmed via 

a one-way analysis of variance (p < 2e-16); a post-hoc pairwise t-test with Bonferroni correction 

for multiple comparisons is presented in Table 3. Statistically dissimilar VSSs were not produced 

by the following models: VSS 1→2 and VSS 1→3, VSS 1→4 and VSS 1→5, VSS 1→6 and VSS 

1→7, VSS 1→6 and VSS 1→7, and VSS 1→7 and VSS 1→8. 
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Figure 9: Actual DeepROP vascular severity scores for test set images versus the desired 

transformation. N.S. indicates models that did not produce images with significantly different 

vascular severity scores. 

Table 2: Mean ± standard deviation VSS of each CycleGAN model. 

Model Mean ±  SD 

VSS 1→2 3.0 ± 1.6 

VSS 1→3 2.9 ± 1.5 

VSS 1→4 3.8 ± 1.5 

VSS 1→5 4.1 ± 1.4 

VSS 1→6 5.6 ± 1.4 

VSS 1→7 5.1 ± 1.7 

VSS 1→8 5.5 ± 1.5 

VSS 1→9 8.4 ± 0.9 
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DISCUSSION 

This study aimed to simulate plus disease in retinal fundus images collected from preterm infants 

who did not, at the time of imaging, have plus disease. The overall goal was to generate 

personalized reference standard images for plus disease for individual subjects. To accomplish 

this, retinal fundus images were segmented into retinal vessel maps, where the vascular patterns 

were augmented, and then back-converted into retinal fundus images using a previously trained 

GAN. There are two key findings: (1) the severity of retinal blood vessels in retinal vessel maps 

can be augmented to appear as plus disease and (2) the severity of plus disease can be augmented 

in a granular fashion along the scale of a novel 1–9 vascular severity score. 

This work has many important implications. First, it allows for generation of personalized 

reference standard images for individual patients. This is important, as the current reference 

standard image is outdated — it is blurry and has a narrow field-of-view (Figure 2)1,3 Additionally, 

the degree of plus disease presented in the image is severe compared to the consensus treatment-

requiring plus disease presented in Figure 1. The plus disease images used in this study were all 

diagnosed by ROP experts with decades of experience from around the United States, who came 

to a consensus diagnosis for each image. This arguably better represents the true degree of plus 

disease that warrants treatment. However, it is expected that the ICROP will be updated relatively 

soon, and that the issues associated with the image of plus will be addressed. Therefore, we also 

felt it was necessary to produce images that exhibited increasingly worse vascular patterns. In this 

way, the vasculature can be increased to a desired level of plus disease. For example, it may be 

that the updated ICROP will suggest that VSS 9 is beyond the severity level required for treatment, 

and that VSS 8 is sufficient. The model can then be amended to produce images of VSS 8, rather 

than just “plus disease.” 

https://paperpile.com/c/8elAWA/NnjX+R4GR
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Another interesting potential application of these methods centers around synthetic datasets. In 

many fields of research, it is often the case that data is hard to obtain, either due to practical 

limitations, privacy concerns, or disease rarity. For numeric data, new cases can often be simulated 

using machine learning algorithms. However, until now, image data has proven difficult to 

simulate realistically 47,106. In this study, we have shown that we can increase the vascular severity 

of retinal fundus images in a manner that is indistinguishable from real images by ophthalmic 

experts. This is important as it may allow for the training of machine learning methods on datasets 

of limited size by generating synthetic images from real images. Then, real images could be used 

for testing to evaluate real-world performance. 

Although the normal to plus disease, pre-plus to plus disease, and VSS 1–9 models performed well 

according to DeepROP, there are still limitations to these models. First, it cannot be guaranteed 

that all images will be transformed to the desired VSS. This was likely due to dataset size 

limitations47 However, it’s possible that more fine-tuning would allow for the VSS models to better 

learn the desired severities. That said, even with a larger amount of data, there will still be images 

that are not properly converted, as was witnessed with the pre-plus to plus disease test set. Second, 

these models do not predict exactly how plus disease will present in a given patient. This was 

demonstrated in Figure 8. Although there are similarities between true and predicted vascular 

patterns that should alert physicians to the presence of plus disease, there are also differences. 

Some of the vasculature may not be visible, or more or less tortuous. However, the overall severity 

should be similar. Therefore, an examiner would need to keep in mind that predicted images are 

reference standards that better represent an individual, but are not exact predictions. 

  

https://paperpile.com/c/8elAWA/EES6+f4Hf
https://paperpile.com/c/8elAWA/f4Hf
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CONCLUSION 

In this work, we have trained multiple generative adversarial networks to increase the severity of 

the retinal vasculature to better mimic the appearance of plus disease in retinopathy of prematurity. 

Future work will aim to better simulate VSSs. Ideally, we will be able to train GANs that can 

accurately model various VSSs that are increasing in a statistically different manner. The ultimate 

goals will be to (A) implement this method for better reference standards for physicians, especially 

non-ROP experts who examine infants for ROP in rural areas and (B) to generate synthetic datasets 

so that image-based risk models may be trained from them. Overall, these models produce highly 

realistic images that are diagnosed as plus disease by DeepROP, a plus disease screening tool 

currently in the FDA approval process. It is our hope that these simulated images can provide 

personalized reference standard images to assist ROP examiners with plus disease diagnoses. 
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DISCUSSION 

 

In this work, we have developed multiple algorithms to assist with accurate and reliable diagnosis 

and prediction of treatment-requiring (TR-) retinopathy of prematurity (ROP). The first algorithm, 

a convolutional neural network (CNN), was able to detect acceptable quality retinal fundus images 

— those from which accurate and reliable ROP diagnoses can be formed — from those which 

were not. The second algorithm, ElasticNet regularized logistic regression, used a combination of 

clinical factors and a CNN-derived vascular severity score to predict all infants who were at risk 

of eventually developing TR-ROP, while accurately ruling out more than half of those who would 

not. The final algorithms were generative adversarial networks (GANs). The first set of GANs, 

cycleGANs, operate on retinal vessel maps to augment the severity of the retinal vasculature to 

appear as plus disease or to incrementally augment it along a novel 1–9 vascular severity scale. 

Another GAN, pix2pixHD, converts the augmented retinal vessel maps into realistic retinal fundus 

images. These images can then be used as personalized reference standard images to assist non-

experts with monitoring ROP in children who are not predicted to develop TR-ROP. There are 

three key findings that arose from this study: (1) the quality of retinal fundus images can be quickly 

and accurately detected by a CNN, (2) a parsimonious logistic regression model that uses a 

vascular severity score can detect eyes that are likely to develop TR-ROP, and (3) GANs can 

accurately augment the appearance of plus disease in retinal vessel maps and generate realistic 

retinal fundus images from retinal vessel maps. These models have potential to be used alone or 

in conjunction and have attempted to address the issues in the three previously outlined specific 

aims. 



 

 

  
114 

Aim 1: Quality Control for Retinal Fundus Images. We will ensure that high quality retinal 

fundus images are used for both telemedicine and automated diagnosis of ROP by training a 

convolutional neural network to detect images that are acceptable for the diagnosis of ROP from 

those which are not. 

During the training phase for the image quality model, the mean (SD) area under the receiver 

operating characteristics curve (AUROC) of five-fold cross-validation was 0.958 (0.005), which 

suggested that the individual models were performing well and that they were not overfit to the 

training data. Evaluation on a held-out test dataset confirmed this (AUROC=0.965). These 

AUROCs suggested that this model would have high discriminatory power along many decision 

thresholds for image quality. To test this, experts ranked a subset of 30 test set images from worst 

to best quality. The CNN’s rank was established by ordering the probabilities of images being of 

acceptable quality; it was highly correlated with the expert consensus rank (correlation coefficient: 

0.90). Given these results, there are two conclusions that can be made: (1) the model was able to 

distinguish between images of acceptable quality and images of low or questionable quality with 

a high degree of confidence, and (2) because the model could rank image quality similarly to 

experts, the decision threshold can be altered based upon the application to which this algorithm 

is applied. 

As mentioned, a major limitation to image-based ROP diagnosis, whether via telemedicine or 

automated methods, is the lack of sufficient quality control.7,9,21 Standard image quality metrics, 

such as the peak signal to noise ratio (PSNR), do not capture some of the nuances of ROP.72,80 For 

example, vitreous haze can be a symptom of severe ROP, which can cause occlusions 1. However, 

not all occlusions are detrimental to an accurate ROP diagnosis. Unlike the PSNR, this CNN 

presumably identifies not only vitreous haze, but the degree and extent of occlusion, and its 

https://paperpile.com/c/8elAWA/TpzB+52va+3cOP
https://paperpile.com/c/8elAWA/gTWO+mybG
https://paperpile.com/c/8elAWA/NnjX
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location relative to other retinal features, such as the optic disc or major retinal blood vessels. Other 

methods have attempted to subdivide retinal fundus images into smaller blocks that can be 

examined alone, and an overall score produced.72 While these methods are better at judging the 

degree and extent of occlusions than PSNR, they still fail to take into account where in the image 

it occurs (i.e., small occlusions in the periphery are far less damaging to an accurate ROP diagnosis 

than large occlusions near the center of an image). 

This model has a few potential applications. The image quality labels used to train this model 

(“Acceptable”, “Not Acceptable”) were determined via consensus agreement by six ROP experts 

from across the United States, each of which had extensive experience in image-based diagnosis 

of ROP. Therefore, because this model had such high agreement with experts’ determination of 

image quality, it could be used, as-is, in telemedicine pipelines. It could also be used by automated 

methods for the diagnosis of ROP; however, the decision threshold at which images are classified 

as “Acceptable” or “Not Acceptable” may need to be adjusted, as it is possible that automated 

methods may need slightly higher quality images, or may even be able to use lower quality images. 

While this method addresses issues specific to ROP, it should be noted that it certainly has potential 

for application in other ophthalmic diseases that are evaluated via retinal fundus images. It is also 

likely that a CNN can be trained to determine image quality for a variety of other imaging 

modalities and non-ophthalmic diseases. 

  

https://paperpile.com/c/8elAWA/gTWO
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Aim 2: Prediction of Treatment-Requiring ROP Patients. We will develop a risk model for the 

prediction of TR-ROP. Data suggests that the severity of the retinal vasculature may be an early 

and significant predictor of TR-ROP. The goal will be to have 100% sensitivity, with specificity 

above 50%, in order to reduce the number of subjects needing to be screened by more than half. 

In this aim, we successfully demonstrated that just two features could accurately predict, more 

than one month in advance, eyes that would develop TR-ROP, while correctly ruling out more 

than half of those that would not. Using the training dataset, we first performed a correlation 

analysis in order to discover which clinical features were tied to the development of TR-ROP. 

After dropping features with low correlation values or low representation in the dataset, we used 

five-fold cross-validation to train and tune multiple ElasticNet logistic regression models on all 

possible combinations of the remaining features, namely: birthweight (BW), gestational age (GA), 

and a deep learning-based vascular severity score (VSS). All infants were screened between 32 

and 34 weeks PMA. We found that a combination of GA and VSS produced the model with the 

highest AUPR. We tuned this model’s decision threshold, via five-fold cross-validation, using the 

F2 score. On a held-out test dataset and on an independent test dataset, the model had 100% 

sensitivity and specificity equal to 55% and 68%, respectively. There are two key takeaways from 

this work: (1) VSS, evaluated at 32–33 weeks PMA, is correlated with TR-ROP, and (2) a risk 

model that uses VSS and GA as predictors is not only highly sensitive, but also specific. 

These are important findings, as TR-ROP risk models with 100% sensitivity and high specificity 

are rare.10,18,19 Those that have demonstrated 100% sensitivity and high specificity, when evaluated 

on more diverse datasets, such as the i-ROP dataset, often begin to fail.11 For example, the 

Children’s Hospital of Philadelphia (CHOP) developed what is arguably the best-performing ROP 

risk model, to date. However, it was only trained on infants that were admitted to a single hospital 

https://paperpile.com/c/8elAWA/Lf7SU+0Exa+rxhO
https://paperpile.com/c/8elAWA/yiCe
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in Philadelphia, PA.10 When the CHOP ROP model was evaluated on a larger and more diverse 

set of patients from all across North America, the specificity of the model had to be reduced to 6% 

in order to achieve 100% sensitivity.11 

Our model, however, was trained and evaluated on a large, diverse dataset, and further evaluated 

on an entirely independent test dataset. In both cases, sensitivity was 100% and specificity was 

greater than 50%, suggesting that this model generalizes well to larger North American 

populations. If performance were to remain consistent, this means that more than half of the infants 

screened for ROP could either be discharged or screened far less frequently. This would effectively 

reduce the screening burden, which equates to more time and attention spent evaluating and 

treating those who are predicted to be at a higher risk of developing TR-ROP, while simultaneously 

reducing the physiological stress placed on those who are predicted to be at low or no risk of 

developing TR-ROP. Ultimately, these results, coupled with the fact that this model is extremely 

parsimonious — it consists of only two, easy-to-obtain features that are input to a highly-

interpretable logistic regression model — suggest that it could quickly and easily be applied, 

clinically. 

  

https://paperpile.com/c/8elAWA/Lf7SU
https://paperpile.com/c/8elAWA/yiCe
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Aim 3: Development of Personalized Reference Standard Images. We will synthesize 

personalized reference standard images to assist non-experts with identification of TR-ROP. To 

accomplish this, we will use a series of generative adversarial networks. The first networks will 

augment the retinal vasculature present in retinal vessel maps (generated from retinal fundus 

images) to appear as plus disease (a significant indicator of TR-ROP) or to increase the vascular 

severity incrementally. The last network will be used to transform the augmented retinal vessel 

maps into realistic retinal fundus images. 

The overall aim of this work was to create personalized reference standard images of plus disease; 

it consisted of two parts. The first part was to convert retinal vessel maps into highly realistic 

retinal fundus images. The second was to augment the vascular severity of normal and pre-plus 

disease retinal vessel maps — segmentations of the retinal vasculature produced by a previously 

trained U-net — to appear as plus disease. Similarly, we also wished to incrementally increase the 

vascular severity of vessel maps along the novel 1–9 VSS. When put together, we can segment a 

given patient’s retinal fundus image into a retinal vessel map, modify said vessel map to appear as 

plus disease or any severity along the 1–9 VSS scale, then convert the image back into a retinal 

fundus image so that it may assist a physician during the screening and diagnosis of ROP. 

In the first set of experiments, we found that we could transform retinal fundus images into retinal 

vessel maps, and then convert them back into realistic retinal fundus images using a GAN. To 

further ensure that images were realistic and gradable, a set of physicians diagnosed all real and 

synthetic retinal fundus. Inter- and intra-expert diagnoses were nearly identical. This suggested 

that data was not lost during the conversions of retinal fundus images into retinal vessel maps, and 

then back. However, physicians were able to identify which images were real and which were 

synthesized. This was likely due to the capacity of the GAN used, which could only generate 
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images of size 256x256x3. When these images were upsampled to the common retinal fundus 

image size of 640x480x3, they appeared slightly blurry and pixelated. A follow-up experiment 

was performed some months later using a GAN with a much larger capacity — it could produce 

realistic images much larger than 640x480x3. We then found that a new set of ROP experts, when 

asked to identify real images from synthesized, could not do so. That is, the synthesized images 

were so realistic looking, that not even experts with decades of experience could identify them. 

In the second set of experiments, we found that CycleGAN converted 100% of images in the 

validation and test datasets from normal to plus disease, as determined by i-ROP DL. Furthermore, 

the converted images were medically plausible. This is an important note, since, prior to tuning, 

the GAN was simply attempting to create circular patterns in retinal vessel maps that would 

undoubtedly be diagnosed as plus disease by i-ROP DL, but are not realistic. 100% and 93.75% 

of validation and test dataset images, respectively, for the conversion of pre-plus to plus disease, 

were successful and medically plausible. CyleGAN operates by first determining whether an image 

is already of the desired class, and then converting it if it is not. The “converted” pre-plus images 

that were not diagnosed as pre-plus by i-ROP DL were not actually modified at all. This is, 

presumably, because CycleGAN evaluated the images and determined that they already 

represented plus disease. Whether CycleGAN or i-ROP DL is correct needs to be determined by 

trained ROP experts. Unfortunately, for this set of experiments, experts did not have time to 

evaluate the accuracy of thousands of synthetic retinal fundus images. Because the majority of 

infants, upon their first ROP screening examination, have a VSS of 1, we also attempted to convert 

images of VSS 1 to the eight remaining VSSs. Overall, there was an increasing trend of vascular 

severity. However, what was likely due to a lack of data given the high similarity between VSSs, 

images converted to VSS 2 and VSS 3 did not have statistically dissimilar VSSs. The same 
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occurred for images converted to VSS 4 and VSS 5, as well as VSS 6 and VSS 7, VSS 6 and VSS 

8, and VSS 7 and VSS 8. However, all images were within a couple VSSs of the desired VSS. 

Taken together, we can segment the retinal vasculature of subjects’ retinal fundus images into 

retinal vessel maps. We can then increase the severity of the segmented vasculature in a stepwise 

fashion or simply convert it to what is considered “plus disease” vasculature. From there, the vessel 

map can be converted into a highly realistic retinal fundus image. Overall, this method can help 

create personalized retinal fundus images of plus disease that have better quality and a wider field-

of-view than the current, yet outdated, reference standard image of plus disease. 
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SUMMARY AND CONCLUSIONS 

 

As previously mentioned, the increasing incidence of ROP — attributed to the ability to preserve 

the lives of younger, smaller infants — and the shortage of ROP experts has increased the 

prevalence of ROP-related visual loss. This has, unfortunately, resulted in ROP becoming a 

leading cause of childhood blindness in both developed and developing countries. It was our goal 

to solve some of the issues associated with the accurate and timely diagnosis of TR-ROP. First, a 

robust image quality algorithm was developed. This algorithm quickly alerts clinicians and 

researchers as to whether images are of high enough quality for the diagnosis of ROP. It can (and 

currently does) have applications in both telemedicine pipelines and automated methods for the 

diagnosis of ROP. Second, a risk model that can identify all subjects who will develop TR-ROP 

and correctly rule out more than half of the subjects in a screening pool who will never develop 

TR-ROP was developed. This model can significantly reduce the screening burden and the 

physiological stress placed on low-risk infants, allowing experts to prioritize those who are most 

at-risk of developing TR-ROP. Finally, to further reduce the screening burden, we proposed that 

non-ROP experts in developing countries assist with screening low-risk infants. To do so, we 

developed a model that can produce personalized reference standard images of plus disease, the 

most prominent indicator of the need for treatment of ROP. Using these images, non-experts can 

feel more confident in examining low-risk children, and can do so far less frequently than 

telemedicine or automated methods require, thereby reducing the ROP expert screening burden 

and the frequency of physiological stress placed on premature infants. Ultimately, we have 

addressed some of the major issues associated with ROP care, and hope for their implementation.
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