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Abstract

Many profound insights from biomedical research and clinical practice remain hidden

within the unstructured text of scientific articles and electronic medical records.

Extracting structured information from biomedical text could dramatically accelerate

the pace of biomedical research, but due to the high variability of natural language, it

hinges on our ability to recognize when different-looking statements are saying the

same thing. Unfortunately, attempts to address this problem in the biomedical domain

usually involve structured lexicons and ontologies, which are expensive and time-

consuming to produce. In recent years, a subdomain of natural language processing

called distributional semantics has approached normalization in a different way: by

learning mathematical representations of words, phrases, and relationships based on

their usage patterns in large corpora. These methods can detect that two different

strings are semantically related based on how they are used in context, and require

little or no human effort.

This dissertation illustrates how distributional approaches can be applied to

several important biomedical text mining tasks, including gene, drug and disease

name normalization, ontology building, and the construction of a structured radiology

lexicon from clinical notes. I describe a novel distributional algorithm (EBC) for

extracting relationships among biomedical entities, such as chemicals, genes and

diseases, and show how it can be applied to learn the structure of chemical-gene,

chemical-disease, gene-disease, and gene-gene relationships from contextual usage

patterns. Finally, I apply distributional relationship extraction to two inferential

tasks: curating pharmacogenomic pathways, and uncovering the mechanisms behind

drug-drug interactions.
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Chapter 1

Introduction

Biomedical research generates text at an incredible rate. Each year, several hundred

thousand new articles enter Medline from over 5,500 unique journals (Figure 1.1)

[98,99]. The literature’s rapid growth and the rise of interdisciplinary domains like

bioinformatics and systems biology are changing how the scientific community interacts

with this important resource. Knowledge bases like OMIM [40], DrugBank [152] and

PharmGKB [150] manually curate and restructure information from the literature to

increase its accessibility to researchers and clinicians. These knowledge bases capture

cross-sectional “slices” of the literature, drawing connections among facts reported in

different journals, at different times, and in different research domains. Often, they

examine the literature in ways not easily captured by current indexing strategies, such

as MeSH terms or key words.

As the literature grows and the information we need to extract increases in

complexity, full manual curation of these knowledge bases is rapidly becoming infeasible.

Progress in natural language processing (NLP) has encouraged the development

of automated and semi-automated methods for enabling more efficient curation of

biomedical text [50, 81,134], especially as biomedical research begins to explore even

larger text-based resources, such as electronic medical records (EMRs) [57,96].

However, tasks that are simple for human readers, such as recognizing when

two different-looking statements mean the same thing, or when one statement is a

more general version of another statement, are often extremely challenging for NLP

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1. New citations added to Medline per year, 1965-2012. Data from the National
Library of Medicine.

algorithms. Recognizing when two different strings map to the same concept (at some

defined level of granularity) is sometimes called “normalization”. In the biomedical

domain, normalization is usually accomplished using structured lexicons and ontologies,

which are difficult and time-consuming to produce and do not translate easily to new

domains.

One way around the problem of normalization, and one that has been explored

extensively in the computer science and linguistics literature, is to infer whether two

segments of text (words, phrases, sentences, etc.) are semantically related by examining

similarities and differences in their usage patterns over large, unlabeled text corpora.

Methodologically, these approaches fall under an umbrella term: “distributional

semantics”. If two statements are used in similar contexts, this idea goes, they are

likely to be semantically related. If distributional approaches are successful, they

could obviate or greatly reduce the need for manually curated lexicons and ontologies.



1.1. RESEARCH HYPOTHESIS AND SPECIFIC AIMS 3

1.1 Research Hypothesis and Specific Aims

Hypothesis Distributional techniques can partially or completely replace human-

curated lexicons and ontologies for normalization in biomedical text mining.

Specific Aims

1. Develop distributional methods that extract and normalize biomedical entities

and relationships in text using minimal labeled training data. In cases where ex-

isting distributional techniques may apply, evaluate them on relevant biomedical

tasks.

2. Evaluate these methods against human curated data from PharmGKB, Drug-

Bank, and other biomedical databases to assess their potential for assisting

curation.

3. Apply to four related tasks:

(a) Constructing more complete lexicons of drugs, genes, and phenotypes

(b) Expanding PharmGKB’s coverage of drug-gene, gene-gene and gene-phenotype

relationships

(c) Predicting new drug-drug interactions based on mechanisms of drug action

as described in text

(d) Automating (or partially automating) the curation of pharmacogenomic

pathways from research articles

1.2 Summary of the Dissertation

Chapter 2 describes a simple technique for learning whether two drugs are likely to

interact based on descriptions of their interactions with genes. The method depends

on PHARE, a manually constructed ontology, for normalization. The limitations of

this work, discussed at the end of the chapter, inspired the rest of this dissertation.

Chapter 2 also provides important background information on drug-drug interactions

(DDIs) and why text mining might be relevant for predicting them.

Chapter 3 is a survey of the research field of distributional semantics: how, from
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an algorithmic standpoint, do we efficiently learn how words, phrases and relationships

are similar, based only on their contextual usage patterns?

In Chapter 4, I show how the methods from Chapter 3 can be applied to expand

the coverage of an existing biomedical lexicon, normalize disease, drug, and gene names

(with varying degrees of success), and build a domain specific lexicon of radiology

terms based on their usage in clinical notes.

Chapter 5 introduces a new algorithm, Ensemble Biclustering for Classification

(EBC) that is similar to the algorithms from Chapter 3 but addresses some of their

shortcomings, specifically for the task of relationship extraction. Relationship ex-

traction has taken a backseat to word and phrase similarity assessments in the

distributional semantics literature, but it is a particularly important task for the

curation of biomedical knowledge bases.

Chapter 6 applies EBC to the task of drug-gene relationship extraction from

Medline text. I describe how EBC can be used to expand existing knowledge bases

(DrugBank and PharmGKB), and how even in the absence of any training data,

EBC can be applied in an unsupervised manner to learn the structure of drug-gene

relationships entirely from contextual usage patterns.

In Chapter 7, I show how unsupervised EBC can be applied to learn relationship

classes of four different types - chemical-gene, chemical-disease, gene-disease, and

gene-gene. I build an annotated network of relationship types and show how its

structure can be used to infer new biomedical relationships from old ones.

Chapters 8 and 9 describe the application of EBC, the relationship classes learned

in Chapter 7, and the ideas about inference discussed therein to two important

biomedical problems: the automated curation of pharmacogenomic pathways from

text, and the mechanistic explanation of drug-drug interactions.



Chapter 2

A Motivating Example:

Drug-Drug Interactions

Drug-drug interactions (DDIs) are an emerging threat to public health. Recent

estimates indicate that DDIs cause hundreds of thousands of emergency room visits

and hospitalizations each year in the United States. Current approaches to DDI

discovery, which include Phase IV clinical trials and post-marketing surveillance,

are insufficient for detecting many DDIs and do not alert the public to potentially

dangerous DDIs before a drug enters the market.

Here we describe a novel approach to the early detection of DDIs that is based

on mining the biomedical literature for drug-gene interactions and connecting them

in series to predict drug-drug interactions. The method is simple, predicts DDIs

with high accuracy, and could be applied to perform surveillance of the biomedical

literature for likely DDIs in real time, as new discoveries about drugs, genes, and their

relationships are made. Unfortunately it also illustrates many of the pitfalls associated

with information extraction from biomedical text – pitfalls that inspired the rest of

this dissertation.

The text in this chapter is borrowed mainly from our published paper [107]. Much

of the background information about DDIs is taken from our subsequent review

article [105].

5
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2.1 Drug-Drug Interactions: Incidence and Impact

In 2007, a meta-analysis of 23 clinical studies from around the world revealed that

drug-drug interactions (DDIs) cause approximately 0.054% of emergency room visits,

0.57% of hospital admissions, and 0.12% of rehospitalizations [3]. There are 136.1

million emergency room visits [32] and 34.1 million hospital discharges [39] in the USA

alone each year. If these percentages are correct, Americans experience DDI events

serious enough to send them to the emergency room almost 74,000 times per year,

and hospitals admit nearly 195,000 patients per year because of DDIs. Unsurprisingly,

DDIs also contribute to increased cost and duration of hospital stays [94].

We should expect DDI incidence to increase as the simultaneous use of multiple

drugs becomes more common. According to the Centers for Disease Control (CDC),

the percentage of the US population taking at least one prescription drug within the

last 30 days increased from 39.1% in 1988-1994 to 47.5% in 2007-2010. During that

same period, the percentage of Americans taking three or more prescription drugs

rose from 11.8% to 20.8%, and the percentage taking five or more drugs increased

from 4.0% to 10.1% (Figure 2.1a) [33]. Polypharmacy is particularly common among

the elderly, making them especially susceptible to DDIs (Figure 2.1b). In the 2007

study described above, DDIs caused 4.8% of hospital admissions among the elderly,

increasing their risk nearly 8.5-fold relative to the general population.

2.2 Why DDIs are Difficult to Study

Many known DDIs involve common medications such as antihypertensives, anti-

inflammatories, and anticoagulants (Table 2.1), so a reasonable question is why so

many DDIs go undetected for so long. Drugs have occasionally been pulled from the

market because of DDIs, but even in such cases the drugs were usually available to the

public for years before withdrawal (see [10] and [116]). Although in-vitro laboratory

studies, such as DDI assays, can help to alert drug manufacturers and the scientific

community to the presence of new DDIs, the difficulty of recognizing DDIs in the

clinic, the dose dependence of many DDIs, the nature of the drug approval process,
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Figure 2.1. (a) Number of prescription drugs used in the past 30 days by percentage of
the USA population (age-adjusted estimates). Source: National Center for Health Statistics.
Health, United States, 2011: With Special Feature on Socioeconomic Status and Health.
Hyattsville, MD. 2012. Table 99: Prescription drug use in the past 30 days, by sex, age,
race, and Hispanic origin: United States, selected years 1988-1994 through 2007-2010. (b)
Average number of prescriptions filled in 2011 in the USA by age. The data include both
new prescriptions and refills, brand name, and generic drugs. Source: The Kaiser Family
Foundation, statehealthfacts.org, accessed September 14, 2012. Data source: SDI Health,
LLC: Special Data Request, 2012. Calculations based on 2011 population estimates from
the US Census Bureau.
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Table 2.1. Examples of known drug interactions. Mibefradil and astemizole were pulled
from the market because of their interactions with other drugs, even though both were
considered safe on their own.

Year reported Drug combination Effect Refs

1990 Ketoconazole Ventricular arrhythmias [92]
Terfenadine

1993 Astemizole Prolonged QTc interval, arrhythmias [10]
CYP3A4 inhibitors (e.g. grapefruit juice)

1997 Sorivudine Fatal toxicity [100]
Fluorouracil

1998 Mibefradil Bradycardia, rhabdomyolysis [116,128]
Various cardioactive drugs including β-
blockers and statins

1998 Clozapine Death due to depression of nervous,
respiratory, and cardiovascular sys-
tems

[30]

Fluoxetine
2005 Clarithromycin Death in patients with renal insuffi-

ciency
[49]

Colchicine
2008 Warfarin Gastrointestinal bleeding [127]

Antibiotics
2008 Propofol, methylprednisolone, cyclosporine Fatal toxic myopathy [34]

Colchicine, simvastatin
2011 Pravastatin Increased blood glucose [143]

Paroxetine

and natural genetic and demographic variation can all delay DDI recognition.

For example, we cannot realistically expect practicing physicians to notice and

document most DDIs on their own. Patients who take multiple drugs are often afflicted

with multiple comorbidities, and it is difficult to determine whether adverse events

are the result of side effects from a single drug, interactions between two or more

drugs, or exacerbations of the patient’s underlying disease(s). In addition, the number

of patients on a particular drug combination, especially within a single practice or

hospital, may be small, preventing physicians from recognizing patterns of interactions

within their own patient cohorts. Some DDIs are also dose-dependent, which means

that a DDI may be unrecognizable unless a patient is dosed at the high end of the

approved range for one or both drugs.

In addition, DDIs are often difficult to observe within the environment of a pre-

market clinical trial. Phase III clinical trials, the last stage of investigation before a
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drug enters the market, usually enroll only 1000-3000 individuals. If the test agent

interacts with a drug that is not typically prescribed among members of the study

population, or if the interaction is weak or rare, few if any study subjects will experience

DDI-related symptoms over the course of the study. It comes as no surprise, therefore,

that the DDIs we know about are those that cause the most consistent and serious

side effects, or those that occur between very commonly prescribed classes of drugs.

Finally, natural human variability can potentially mask the effects of many DDIs.

We already know that individuals with particular genetic complements are more sensi-

tive to the effects of certain drugs [17, 136] and have a greater chance of experiencing

adverse side effects [97] than others. We might therefore expect DDIs to appear more

frequently among certain genetic subpopulations, such as people with transporter gene

mutations, for example, or those who are “fast” or “slow” metabolizers. We also know

that demographic variation – differences in age, gender, race/ethnicity, weight, and

height, among other factors – explains much of the variation in dosing requirements for

many drugs [13,17,153], so we might expect those factors to confound DDI detection

as well. The US Food and Drug Administration (FDA) regularly publishes documents

containing advice about the design of DDI studies that addresses many of these

complicating factors, summaries of which can be found in [48] and [156].

2.3 Mechanistic Prediction of DDIs from Text

Biologically, many DDIs are the result of conflicting or synergistic interactions between

a pair of drugs and similar genes or molecular pathways within the human body [2,58].

Therefore, what we observe as drug-drug interactions might often be considered

drug-gene-drug interactions. Unfortunately, while lists of known DDIs are widely

available and commonly used in clinical practice, drug-gene interactions are not as

widely known. Genes and drugs can interact in a variety of ways, and it is unclear

which interaction types are most predictive of a drug’s tendency to interact with other

drugs. No complete databases exist that concisely describe the exact mechanisms by

which drugs and genes interact; most of these interactions are only described in papers

buried deep within the scientific literature.
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For these reasons, text mining presents an intriguing possible solution to the

problem of uncovering novel DDIs [15, 37, 109]. A growing body of research has

sought to classify DDIs and better understand gene-drug relationships using text

mining; for example, Tari et al [142] developed a method that combined text mining

and automated reasoning to extract novel DDIs. Other authors have built text-

based networks of biological entities and used reasoning techniques to uncover new

biologically relevant relationships among them [12, 108]. Previous work from our

own group [18,20] has established methods for using a syntactical parser to identify

and characterize drug-gene relationships. The end result was a semantic network of

drug-gene relationships in which the edges consisted of several hundred interaction

types and subject/object context terms normalized to concepts in an ontology. All of

these approaches have sought to infer novel relationships among biological entities by

combining known facts expressed in scientific text.

The work described here extends this line of research by using our semantic network

- in particular, paths through the network that connect pairs of drugs - to infer the

types of drug-gene relationships that can predict drug-drug interactions. An advantage

of our method is the fact that it makes almost no a priori assumptions about the

nature of these relationships, instead using a machine learning algorithm (a random

forest) to identify the kinds of gene-drug relationships that best predict DDIs. Besides

learning which textual features are most relevant for predicting DDIs, the method can

also be used to predict novel DDIs and to explain these predictions through suggested

mechanisms of interaction.

2.3.1 Methods: Extraction Pipeline for Drug-Gene Relations

This project built on an earlier method for text mining Medline to extract drug-gene

interactions [20]. That method worked as follows:

1. Create two lexicons of terms, one for gene names and one for drug names. We

used two custom lexicons. The first consisted of a set of 731 known pharma-

codynamic and pharmacokinetic genes identified by the PharmGKB database

curators [62]. The second consisted of 2,910 unique drug and drug-class names,
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also from PharmGKB. The gene lexicon also included all common synonyms for

each gene; we required the drug name to be in its generic form (rather than a

brand name) to be included1.

2. Obtain a corpus of Medline article abstracts. The Helix Group at Stanford

University maintained a corpus of all Medline abstracts published before 20092.

The corpus contained about 17.5 million abstracts and 88 million sentences.

3. Retrieve all sentences in Medline that mention both a drug and a gene of interest.

The drug and gene entities of interest are known as seeds. We accomplished

this using the two aforementioned lexicons and running 100 search processes in

parallel on Stanford’s BioX2 cluster3.

4. Represent sentences as dependency graphs using the Stanford Parser [61]. The

dependency graphs are rooted, oriented, and labeled graphs, where the nodes are

words and the edges are grammatical relationships between words [23]. If two

seeds were not located in the same sentence clause, that sentence was removed

from consideration. In addition, if a graph contained more than one clause and

there was a clause that did not contain either seed, that clause was removed

from consideration. A sample dependency graph for one Medline sentence of

interest is shown in Figure 2.2.

5. Identify and normalize composite entities. A seed does not usually occur in

isolation in a sentence, but as part of a larger composite entity that includes

the surrounding context. For example, a gene name like CYP3A4 will usually

occur as part of a larger entity, such as CYP3A4 degradation or CYP3A4

elimination. We used a previously-established algorithm [18] to identify the

context terms surrounding each seed and normalize them. The normalization

process involved mapping context terms with similar semantics but different

syntax, such as degradation of CYP3A4 and CYP3A4 degradation, to the same

concept (Elimination) using a previously-constructed ontology [20].

1Note that throughout this analysis, we use the term “gene” interchangeably with “gene product”
or “protein”; it is actually the protein product of a gene that interacts with a drug.

2Work on this project began in 2010, which is why this corpus is so old.
3The Bio-X2 cluster at Stanford University was funded by the National Science Foundation, NSF

award CNS-0619926.
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6. Extract relations between composite entities. Relations describe the nature of

the interaction between the two entities in a given sentence. They take the

form R(a, b), where a and b represent the locations of the two entities in the

dependency graph, and R is a node that connects a and b and indicates the

nature of their relationship. For a sentence to progress past this stage of the

analysis, the relation connecting the gene and drug entities must have been a

verb (e.g. associated) or a nominalized verb (e.g. association).

7. Normalize relations. The extracted relations, like the context terms surrounding

each seed, were normalized. During normalization, the raw relations were mapped

onto a much smaller set of normalized relationships taken from the ontology.

For example, the verbs associated and related both map to the ontological entity

isAssociatedWith. In addition, less-common terms like augment were mapped to

more common synonyms, like increase.

The overall goal of the normalization process for both composite entities and

relations was to collapse statements with the same semantic meaning but different

word choice or syntax to the same basic relationship, reducing the number of features

that needed to be considered later when building the DDI classifier. When tested on

a smaller set of drug-gene relationships extracted from Medline, our ontology was

able to properly normalize approximately 80% of all relation types mentioned in the

literature. Nonetheless, by including only those sentences where the relation could

be normalized, we necessarily excluded some true facts about drug-gene relationships

from our network. It is important to note that only sentences for which the relation

could not be normalized were thrown out; sentences for which the context terms could

not be normalized were still included - the context was simply normalized to Thing,

as described further in Section 2.3.4.

2.3.2 Methods: Creating a Semantic Network

When applied to the entire Medline 2009 corpus, the relation extraction and normal-

ization process yielded 76,784 different normalized drug-gene relationships of the form

shown in Figure 2.3. We eliminated all relationships in which the verb could not be
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Figure 2.2. Dependency graph for the sentence “Pepstatin A also blocked the
acetaminophen-induced degradation of the CYP3A4 in a transfected HepG2 cell line” (PMID:
15078344). The red arrows show the path through the graph that connects the seeds Pep-
statin A (a drug) and CYP3A4 (a gene). Because this path contains a verb - in this case,
blocked - this is a sentence of interest.

normalized (i.e. was not one of the relations contained in the ontology), which left

us with 53,208 relationships4. We then put all relations in active voice, collapsing

passive/active pairs of normalized verbs such as isMetabolizedBy and metabolizes into

a single feature. This left 49,021 normalized relations. However, many of these nor-

malized relations were duplicates of each other because a given drug-gene relationship

could be reported in similar ways many different times throughout the biomedical

literature. We chose to eliminate duplicate paths of this nature. After collapsing the

duplicate edges, we were left with 24,155 unique edges, which we used to construct a

semantic network, a subset of which is shown in Figure 2.4. Each edge in the semantic

network had the form shown in Figure 2.3 (top), but is simplified in Figure 2.3 (bottom)

for clarity.

4In our article describing this work [107], we stated, “Examples of relations that could not be
normalized included protects, mimicked, oxidize, encode, and seen. We are in the process of expanding
our ontology to include some of these less common relations.”
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Figure 2.3. A single drug-gene edge in the semantic network. A composite entity consists
of a drug or gene and its surrounding [normalized] context terms. (a) The general form of
an edge. (b) A specific example.

2.3.3 Methods: Building A Classifier for DDIs

Feature Extraction

The feature extraction phase of this project relied on one central assumption: that

the shortest textual path linking two drugs in the network represented the simplest

explanatory mechanism of their interaction (if any such mechanism existed). The set

of relevant features then consisted of all the genes, relations, and context terms found

on the shortest path. To find the shortest path between any two drugs D1 and D2,

we performed a breadth-first search for D2, starting at D1. Breadth-first search is

guaranteed to yield the optimal (shortest) path between two points on a graph [119].

The shortest possible path between any two drugs in the network has the form shown

in Figure 2.5. For the purposes of building our training set, we considered only drug

pairs that had one or more shortest paths of the form in Figure 2.5; if the shortest

path was longer than this, the drug pair was not included in the training set. We

made this decision because we wanted to explore only those drug pairs for which the

mechanistic explanation provided by the shortest path could be interpreted easily.

By assigning each feature a numeric index, we could easily convert the lists of

normalized terms found on the shortest paths into a matrix of numbers, with each
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Figure 2.4. A subset of the semantic network (selected to enhance visual clarity), including
only the 43 most pharmacogenomically-important genes from PharmGKB and 600 drugs
that were known to interact with at least one other drug. The green nodes represent drugs
and the pink nodes genes. The context terms and relations are not shown in this picture,
but are present on every edge, as shown in Figure 2.3. Multiple edges between the same
gene-drug pair in this figure represent different textual relationships found between that
gene and drug in the literature.
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Figure 2.5. The minimum-length path between two drugs in the network. It is two edges
long. The colors and symbols in this figure are identical to those in Figure 2.3: green squares
represent drugs, and the pink circle represents a gene. The yellow rectangles represent
relations, and the blue circles and squares represent context terms for genes and drugs,
respectively.

row corresponding to a single path and the columns corresponding to the number of

occurrences of each feature on the path. If multiple shortest paths were found, we

included a separate row in our training matrix for each unique path.

Classification

The next step was to train a supervised machine learning classifier to recognize

interacting drug pairs based on the textual features of their connecting paths. We

randomly sampled 5000 drug pairs from a list of known interacting pairs provided by

DrugBank [152], then selected 5000 additional drug pairs randomly from the drug

lexicon, ensuring that none of them were on DrugBank’s list of interactions. For each

of the 5000 pairs in our positive and negative training sets, we found all of the paths

between the two drugs in the pair that took the form shown in Figure 2.5 and recorded

the features observed along the paths. Each path between an interacting drug pair

became a positive training example, and each path between a noninteracting drug

pair became a negative training example.

We used a random forest [43], specifically the implementation found in the R library

randomForest, to perform the final classification for all of the drug pairs in our

training set. The random forest is an ensemble method in which many uncorrelated

decision trees vote to classify data points; it outperformed both logistic regression

and a support vector machine (SVM) classifier used in the early stages of this project.

Each tree in the random forest uses only a subset of the features for classification,

which ensures that votes from different trees are uncorrelated. We found that the

overall classification error stabilized when approximately 200 trees were included in
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the forest.

Performance Evaluation

The standard metric of performance for the random forest is the out-of-bag (OOB)

estimate of the error, which is similar to leave-one-out cross-validation [43]. Each tree

in the random forest is constructed using only about 2/3 of the available training data;

the rest of the data points are referred to as the “out-of-bag” data for that tree. Thus

it is possible to build the entire forest, then reclassify each training example using

only those trees for which it was OOB. The generally-accepted rule is to use a voting

cutoff of 50% to classify a training point as positive; this means that for the random

forest to assign the label “interacting” to a path, 50% or more of the trees in the

forest had to classify that path as interacting. We used the standard OOB estimate

of the error to evaluate the random forest’s performance on our training data.

One interesting feature of the random forest is that it provides a natural measure

of its classification certainty for each training example - namely, the fraction of trees

that voted “interact” for that example. By ranking the paths for a particular drug

pair based on the number of “yes” votes each received from the random forest, we

can determine which path(s) represent the most likely mechanism(s) of interaction for

that pair.

2.3.4 Results: Ranking of Important Features

A total of 1806 entities were represented in our network: 1061 drugs, 532 genes, 172

context terms, and 41 relations. There were 172,271 negative training examples (paths

between 5000 noninteracting drug pairs) and 182,534 positive training examples (paths

between 5000 interacting drug pairs) in our training set, all of which had the form

shown in Figure 2.5.

The random forest uses a permutation method to provide an estimate of which

textual features were most important to the classification process; the 50 most impor-

tant features are shown in Figure 2.6. Among the most important features are the

genes ABCB1, IL28B, TNF, CYP3A4, EGF, CAMP, and CYP2D6, the context terms
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Figure 2.6. The 50 most important features to the random forest classifier, ordered
according to a permutation metric [43]; the numeric values of importance are not as
informative as the relative sizes of the bars.

Synthesis, Expression, DrugDose, GeneOrGeneProductActivity, DrugTreatment, Drug-

Metabolism, GeneProductActivation, GeneInhibitor, Repression, and DrugEffect, and

the relations metabolizes, isAssociatedWith, inhibits, suppresses, increases, regulates,

and induces.

Three context terms on this list appear strange at first glance: Drug, Gene, and

Thing. Context is normalized to the term Drug or Gene if the drug/gene seed is itself

the subject or object of the verb or nominalized verb in the sentence, as in the example

sentence CYP2C9 metabolizes warfarin. In this sentence, the gene CYP2C9 would be

normalized to CYP2C9 Gene and the drug warfarin would be normalized to warfarin

Drug. Context is normalized to the term Thing if the real context is some property of

the drug or gene that cannot be otherwise normalized. For example, in one sentence,
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Table 2.2. The final contingency table for the random forest classifier.

the authors used the term “polymorphism” incorrectly as a modifier of a drug name,

referring to “polymorphisms in (drug name) drugdose. . . ”. Because the drug context

in that sentence was polymorphisms but the seed was a drug name and not a gene

name, polymorphisms was not found in the ontology among the acceptable context

terms for the drug and the context was normalized to Thing. One can therefore think

of Thing as a marker for cases where normalization of a context term was not possible

(using the current version of the ontology), but normalization of the relation proceeded

normally.

2.3.5 Results: Predicting Drug-Drug Interaction Mechanisms

The final contingency table for the random forest classifier is shown in Table 2.2. The

random forest correctly assigned 281,461 out of 354,805 training paths (79.3%; 135,842

non-interacting and 145,619 interacting paths) to the correct class. It said 36,429

paths represented interactions when the drug pair involved did not appear on the list

from DrugBank (false positives), and claimed that 36,915 paths did not represent

interactions when in fact the drug pair did appear on the list from DrugBank (false

negatives).

We can get a sense of the significance of this result by considering what would

happen if we simply flipped a coin to assign the label “interacting” or “noninteracting”

to each path. Roughly 50% of the paths in our training set corresponded to interacting

drug pairs, and the other 50% to noninteracting drug pairs. Therefore, if we assigned

the labels “interacting” and “noninteracting” entirely at random, we would expect to
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correctly classify about 50% of paths (with the false positive error rate approximately

equal to the false negative error rate). Our method thus represents an improvement

in accuracy of nearly 30% over simple guessing.

In addition to classifying interacting and noninteracting drug pairs with nearly 80%

accuracy, our method provides insight into the possible mechanisms by which drugs

interact. By choosing a path from one drug to the other through a particular gene, we

obtain one potential mechanism for how the two drugs could interact. For example,

Figure 2.7 shows a selection of the highest-ranking paths for a known interacting drug

pair: verapamil and atorvastatin. Table 2.3 shows the Medline sentences corresponding

to the edges that comprise these paths. All of these paths received at least 90% “yes”

votes from the random forest.

Table 2.3. The raw sentences from Medline abstracts that correspond to the edges shown
in Figure 2.7. Each path between verapamil and atorvastatin consists of two edges (i.e. two
sentences).

PMID Normalized Relation Sentence

Relationships involving f2 (thrombin)

2611956 verapamil Thing inhibits Gene f2 Ilexonin A and verapamil markedly inhibited the thrombin in-

duced Ca2+ influx.

12921859 atorvastatin DrugEfficacy prevents

Gene f2

In addition, thrombin induced NF-kappaB translocation and

membrane translocation of RhoA in smooth muscle cells which

were both prevented by pre-treatment of the cells by atorvastatin.

12921859 atorvastatin Drug decreases Gene

f2

How atorvastatin could limit the pro-inflammatory response to

thrombin was studied in cultured rat aortic smooth muscle cells.

15792677 atorvastatin Drug decreases Thing

f2

Atorvastatin reduces thrombin generation after percutaneous

coronary intervention independent of soluble tissue factor.

Relationships involving ABCB1 (P-glycoprotein, MDR1)

16996216 atorvastatin Drug causes Synthesis

ABCB1

Atorvastatin at 10 and 20 microM up-regulated ABCB1 expres-

sion resulting in a significant 1.4-fold increase of the protein lev-

els.

16996216 atorvastatin Drug increases Thing

ABCB1

Treatment of HepG2 cells with 20 microM atorvastatin caused

a 60% reduction on mRNA expression (p < 0.05) and a 41%

decrease in ABCB1-mediated efflux of Rhodamine123 (p < 0.01)

by flow cytometry.

9607955 verapamil DrugTreatment induces

GeneOrGeneProductActivity

ABCB1

Previous drug exposure of the cells showed that verapamil,

celiprolol, and vinblastine induced the P-gp expression, while

metkephamid (MKA) decreased the P-gp expression level as com-

pared to the control.
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9636053 verapamil DrugActivity demon-

strates Thing ABCB1

P-gp proteoliposomes from P. pastoris showed a strong

verapamil- and valinomycin-stimulated ATPase activity, with

characteristics (KM, Vmax) similar to those measured in mam-

malian cells.

9535788 verapamil Drug inhibits Gene

ABCB1

In addition, the DNA-damaging agent was found to enhance in a

dose-dependent manner cellular efflux of the P-gp substrate rho-

damine 123, which was inhibited by the P-gp inhibitor verapamil,

thus providing evidence that exposure to MMS led to increased

P-gp-related drug transport in rat liver cells.

7769842 verapamil Drug inhibits GeneOr-

GeneProductActivity ABCB1

When P-gp function was assessed by Rhodamine 123 (Rh123) ef-

flux kinetics, we found that only KG1a and KG1 cells, which have

an early (immature) CD34+ CD33- CD38- phenotype, and to a

lesser extent TF1, with an intermediate (CD34+ CD33+ CD38+)

phenotype, displayed significant P-gp activity which could be in-

hibited by both verapamil and SDZ PSC 833.

16457995 verapamil DrugAbsorption inhibits

Gene ABCB1

While cyclosporine and verapamil significantly increased the ab-

sorption of methylprednisolone and vinblastine through potent

inhibition of intestinal P-gp, tacrolimus failed to achieve this.

17936633 verapamil Drug regulates GeneOr-

GeneProductActivity ABCB1

The results displayed that only compound 3c was P-gp inhibitor

as Elacridar, while compound 3a and reference compounds Cy-

closporin A and Verapamil modulated P-gp activity saturating

the efflux pump as substrates.

16260035 verapamil Drug suppresses Gene

ABCB1

Depsipeptide-resistant KU812 cells expressed P-glycoprotein (P-

gp) and their resistance was abolished by co-treatment with ver-

apamil.

15257901 verapamil DrugDose isAssociated-

With Repression ABCB1

DL-PPMP and verapamil were found to inhibit MDR1 gene ex-

pression in KBV(200) cells at the mRNA level, and complete

inhibition occurred after a 48-hour DL-PPMP treatment at 25

micromol/L.

15257901 verapamil Drug inhibits Expression

ABCB1

The inhibition of GCS and mdr1 gene expressions is positively

correlated with the concentrations of DL-PPMP and verapamil,

which can reverse MDR by inhibiting synthesis of GCS and mdr1

gene, indicating the positive correlation between the expression

of GCS gene and MDR in KBV(200) cells.

7749215 verapamil DrugTreatment de-

creases Expression ABCB1

The level of mdr1 mRNAs is decreased in the presence of vera-

pamil (with a maximum effect obtained at the 24th hour), which

suggests that the mechanism of action of verapamil is transcrip-

tional and/or post-transcriptional.

Relationships involving VEGFA

14615256 verapamil Drug decreases Synthesis

VEGFA

Verapamil (100 microM) decreased IL-6 and VEGF production

(P < 0.03 and P < 0.005, respectively) in central keloid fibrob-

lasts cultures at 72 h.

16701707 atorvastatin Drug induces Gene

VEGFA

We observed that atorvastatin significantly stimulated VEGF re-

lease in a dose-dependent manner.

17389519 atorvastatin Drug isAssociated-

With Repression VEGFA

Atorvastatin effectively inhibited laser-induced CNV in mice and

was associated with downregulation of CCL2/MCP-1 and VEGF

and reduced macrophage infiltration into the RPE/choroid.
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12084593 atorvastatin Drug decreases Expres-

sion VEGFA

Atorvastatin therapy reduced VEGF plasma levels in CAD pa-

tients (from 31.1 +/- 6.1 to 19.0 +/- 3.6 pg/ml; p < 0.05).

Relationships involving CYP3A4

15001968 verapamil DrugEfficacy isAssociat-

edWith Expression CYP3A4

Values for the maximum rate of metabolism (V(max)) of vera-

pamil N-dealkylation (formation of D-617) and N-demethylation

(formation of norverapamil) activities correlated with the

CYP3A4 protein content in both organs.

11907487 CYP3A4 Gene induces Drug-

Metabolite verapamil

Consistent with expression data, formation of verapamil metabo-

lites catalyzed by CYP3A4 and CYP2C was shown.

11005703 CYP3A4 Enzyme metabolizes

Drug atorvastatin

Atorvastatin, cerivastatin, lovastatin and simvastatin are predom-

inantly metabolised by the CYP3A4 isozyme.

11061579 CYP3A4 Gene metabolizes Drug

atorvastatin

Atorvastatin is metabolized solely by CYP3A4, and pravastatin

metabolism is not well defined.

Relationships involving CYP3A

16513446 verapamil Drug inhibits GeneOr-

GeneProductActivity CYP3A

Verapamil inhibited CYP3A activity, with a maximum effect oc-

curring within 10 days.

16013069 verapamil DrugMetabolism in-

hibits Repression CYP3A

The above data suggested that the metabolism of verapamil and

the formation of norverapamil was inhibited by naringin possibly

by inhibition of CYP3A in rabbits.

14744949 verapamil DrugIsoform inhibits

Gene CYP3A

The present study showed that verapamil enantiomers and

their major metabolites [norverapamil and N-desalkylverapamil

(D617)] inhibited CYP3A in a time- and concentration-dependent

manner by using pooled human liver microsomes and the cDNA-

expressed CYP3A4 (+b5).

12433810 atorvastatin Drug increases Expres-

sion CYP3A

Treatment of 2- to 3-day-old human hepatocyte cultures with

3×10(−5) M lovastatin, simvastatin, fluvastatin, or atorvastatin

for 24 h increased the amounts of CYP2B6 and CYP3A mRNA

by an average of 3.8- to 9.2-fold and 24- to 36-fold, respectively.

16258024 CYP3A Gene metabolizes Drug

atorvastatin

Atorvastatin (ATV) is primarily metabolized by CYP3A in the

liver to form two active hydroxymetabolites.

Most of the edges connecting verapamil and ABCB1 in Figure 2.7 seem to indicate

that verapamil inhibits the activity of ABCB1. The edges connecting atorvastatin and

ABCB1 indicate that atorvastatin upregulates the production of P-glycoprotein, the

protein product of ABCB1. The two drugs’ effects on ABCB1 therefore interfere with

each other. Following another path, this time through the gene CYP3A4, we see that

CYP3A4 induces the breakdown of verapamil into its metabolites, specifically by N-

dealkylation and N-demethylation of the drug. Since CYP3A4 is a major metabolizing

enzyme for atorvastatin, we might expect that coadministration of the two drugs

could lead to heightened levels of one or both of them in the body, leading to toxicity.
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Figure 2.7. A subnetwork representing some of the possible interaction modes between
verapamil and atorvastatin.
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These represent two different possible mechanisms of interaction.

These suggested mechanisms are useful because they provide summaries of what

the scientific community knows about pharmacogenomically-mediated interactions

between drug pairs of interest. The drug-gene relationships that form the basis of these

mechanisms are all existing knowledge; however, our method provides a novel way to

connect disparate facts from across the biomedical literature to provide mechanistic

explanations of drug-drug interactions5. In the case of drug pairs that are already

known to interact, using this approach provides a list of potential mechanisms of

interaction, which may help us uncover new mechanisms that are not yet part of

common medical knowledge. By looking at known interacting drug pairs with similar

mechanisms of interaction, we can also begin to predict what the phenotypic effects of

our newly-predicted interactions might be.

2.4 A Retrospective Critique of this Work

This chapter describes one simple way that text mining can address an important

biomedical problem: predicting drug-drug interactions based on drug-gene interactions

extracted from the literature. In effect, we were attempting to predict novel DDIs

based on mechanistic and structural information about the drugs themselves and their

interactions with proteins. The advantage of this approach lies in the fact that it

relies mainly on chemical and bioactivity data from laboratory studies rather than

clinical data. As a result, it could potentially be used to predict DDIs before drugs

enter the market.

We encountered a few issues in this project that paved the way for the work in the

rest of this thesis. The project also made us aware of some broader challenges that,

while not problematic for this particular study, limited its generalizability to other

problems in biomedical information extraction.

· Using a custom ontology introduced a bottleneck. The construction of the PHARE

5Other authors have already pointed out that by finding new ways to connect seemingly-unrelated
facts from throughout the scientific literature, we can often generate interesting, and novel, hypotheses.
For an example, see [139].
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ontology was a separate project [19, 20] that created a black box upon which

our work depended, but that was difficult to understand and update. Multiple

assumptions were made in the construction of the ontology that, while reasonable,

introduced biases in the types of relationships we could extract, as well as their

granularity.

· Normalization using the ontology resulted in low recall. Due to these assumptions,

we estimate that we were able to retrieve and normalize less than half of relevant

drug-gene relationships from Medline. Even estimating recall is difficult, since

it requires manual analysis of hundreds of sentences; absolute recall numbers

were not reported in the original study describing relationship extraction using

PHARE [20].

· Spelling errors or variants of named entities not in PHARE could not be detected.

PHARE depended on the PharmGKB lexicons to recognize and normalize entities.

Any variant that was not an exact match to these lexicons could not be detected.

· Using PHARE limited the approach’s generalizability. Aside from other relation-

ships involving known drugs, genes and phenotypes, this approach could not be

used for other similar projects that might involve connecting two relationships

in series.

Perhaps most importantly, while normalization using PHARE helped us collapse

descriptions of relationships into a smaller space of descriptions, it did not tell us

anything about how various descriptions were semantically related to each other.

PHARE extracts and normalizes only the connecting verb and context terms from a

sentence. It does not normalize the entire description, which is why we resorted to

using the verbs and context terms separately as features. This essentially assumed

that each component of a path (verbs, gene, context terms) contributed on its own to

determining whether the two drugs interacted, which is incorrect (Gene isDecreasedBy

Drug is not 2/3 similar in meaning to Gene isIncreasedBy Drug). This also explains

why our most predictive features were all gene names.

In the rest of the dissertation, we describe techniques that address normalization

in a different way, and that alleviate many of the issues described above. In Chapter 9,

we revisit drug-drug interactions from this new perspective.



Chapter 3

Distributional Semantics

For decades, researchers in natural language processing (NLP) have investigated the

idea that human notions of semantic similarity, which derive from our experiences in

the world and our sensory associations with various words and grammatical structures,

might be replicated by a statistical approach that considers how these words and

phrases are used in large corpora. One of the earliest quotes on this subject, by Firth

(1957), perhaps summarizes this idea the best: “You shall know a word by the company

it keeps” [31]. This idea – that words occurring in similar contexts tend to have

similar meanings – is known as the distributional hypothesis [26,147]. Distributional

semantics is not a field as much as a collection of techniques that have been developed

over the years by researchers in computer science, philosophy and linguistics. An

excellent general review can be found in [147]. For a review of distributional semantics

in the biomedical domain, please see [16].

This chapter reviews some of the major themes in distributional semantics and

takes a closer look at two approaches that make appearances later in this dissertation:

random indexing and the skip-gram model.

3.1 Target, Context, Model

Methods in distributional semantics typically involve three components, which I will

call the target, context, and model.

26
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Figure 3.1. A distributional semantics model conceptualized as a matrix in which the
rows are the target, the columns are the context, and the model describes how to create the
weight (numeric value) that is present in each cell.

· The target refers to the entity whose semantics we care about. Examples include

words, phrases, pairs of words/phrases, or documents.

· The context is the set of textual features that we think should be similar for two

targets if the targets themselves are semantically similar. We might assume, for

example, that words with similar meaning will be used in the same documents.

In that case, the context is the set of all documents.

· The model tells us how information about the context is used to produce a

representation of the target. This representation often takes the form of a vector

of numeric weights: one for each context feature. The model also tells us how

the representations should be compared to establish how semantically similar

two targets are.

Following the exposition in [147], we will picture these three components as a

matrix in which the rows represent the target and the columns the context. The

matrix elements are numbers (“weights”) created using the model (see Figure 3.1).

The width of the matrix is the number of possible context features, M , and the height

of the matrix is the number of targets, N . This conceptualization is abstract, but it

helps us understand very different-looking distributional semantics techniques within

a single, unifying framework.
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Figure 3.2. The SMART information retrieval system as a matrix. Here the rows are
documents and the columns are words in those documents. A cell of the matrix contains
some variant of the TFIDF score for a given word.

3.2 Historical Background

Some of the earliest distributional semantics models focused not on the semantics

of words and phrases, but the efficient retrieval of documents1. In fact, many of

these ideas form the conceptual foundation of modern search engines [84, 147]. For

example, the SMART information retrieval system [123,125], developed in the 1960s,

represented documents as vectors of length |V |, where V is the set of all unique words

present in the corpus. A document vector’s elements contained TFIDF scores2 for all

of the words for that document. We can draw this system as shown in Figure 3.2.

The goal of the SMART system was to provide an efficient way to retrieve documents

from a database: each document would be represented as one of these vectors, and so

would a user’s query. By ranking the documents based on their vectors’ similarity to

the query vector, the best matching documents would, theoretically, filter to the top.

1For a review of even earlier methods for creating word space models, mainly from linguistics and
cognitive psychology, please see [121], Chapter 3: Word Space Models.

2TFIDF refers to “term frequency inverse document frequency”, a weighting scheme for words
in documents in which the score goes up the more times a word occurs in the document, and it
decreases with the number of documents in which a term is present. So for example, the term “the”
might have a high frequency within a given document, but because it occurs in almost all documents,
its TFIDF is low. There are many formulations of TFIDF weighting. A good review is given in [84]
Chapter 6: Scoring, Term Weighting and the Vector Space Model and some of the original research
on TFIDF for document retrieval can be found in [124].
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Figure 3.3. Latent Semantic Analysis (a.k.a. Latent Semantic Indexing), a technique
whereby a reduced SVD is performed on a term by document matrix. This matrix is the
transpose of the one used by the SMART information retrieval system in Figure 3.2, with a
slight modification in terms of the weighting scheme.

However, beginning in the 1990s, researchers began to use these vector space

models (VSMs) for tasks beyond search. Most of these techniques focused on two

areas: measuring the semantic similarity of words and phrases, and measuring the

similarity of relationships between entities (relational similarity).

3.2.1 Word and Phrase Similarity

In the 1990s, inspired by the work of the SMART team [125] on document retrieval

using VSMs, Deerwester and colleagues developed Latent Semantic Analysis (LSA) [26].

LSA essentially works by transposing the matrix in Figure 3.2 and then performing a

reduced singular value decomposition (SVD) on it [137], as shown in Figure 3.3. It

also uses a slightly different TFIDF weighting scheme, based on entropy. The weight

of term i for document j is given by

fij = (log(TFij) + 1)×

(
1−

∑
j

pij log pij
logND

)

where ND is the total number of documents in the collection, pij = TFij/fi, and fi is

the frequency of term i in the corpus [28,121].

By including only the top K singular values and multiplying the first two matrices
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in Figure 3.3, one can obtain compressed (K-dimensional) vectors for all of the words

in V . One disadvantage of LSA is that K is a free parameter, and LSA’s results on

various word similarity tasks are dependent on this parameter choice3 [26, 66].

In LSA, the word vectors are typically compared to each other using cosine

similarity4, which produces scores in the range σ ∈ [−1, 1].

Even as LSA was being developed, other authors were building word vectors using

different notions of context. In 1992, Schütze described a model similar to LSA in

which the context was, instead of documents, windows of words around a target

word [129,130]. In 1995, Lund and Burgess [82] extended these ideas further to create

Hyperspace Analogue to Language (HAL), which again uses word windows for context,

but introduces a positional weighting scheme for the context words (Figure 3.4).

Although not as widely cited as LSA, HAL’s definition of context is actually closer

to that of many modern distributional semantics techniques, including the popular

word2vec [88]. Other authors have explored different notions of context, such as

grammatical dependencies [76, 101], or incorporated additional information about the

target words, such as selectional preferences for argument positions [29].

Two more recent methodological advances in the estimation of word and phrase

similarity using distributional semantics are random indexing [120] and neural word

embeddings [4, 88], both of which are reviewed in more detail later in this chapter,

and both of which make appearances in Chapter 4 of this dissertation.

3.2.2 Relational Similarity

While models of words have dominated the distributional semantics literature, there

is nothing about the ideas of target and context that require the target to be a

word. In fact, a great deal of recent work has focused on building distributed

representations of longer stretches of text such as phrases [14,89,102,159], sentences [60]

and documents [68].

3The original LSA paper stated, of K: “We have not explored the degree of accuracy needed in
these numbers, but we guess that a small integer will probably suffice” [26].

4The cosine similarity of two vectors, w and v, is defined as σ(w, v) = w · v/‖w‖‖v‖, where ‖ · ‖
denotes the L2 (Euclidean) norm.
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Figure 3.4. Hyperspace analogue to language (HAL). There are some subtleties to this
model that are usually ignored. The authors defined context as a narrow window of words
on either side of a target word and built a |V | × |V | cooccurrence matrix where the rows
contained cooccurrence information for words appearing before the target word and the
columns contained cooccurrence information for the words following it. Cooccurrence
frequencies were weighted by w − x, where w is the window width and x is the distance
between the target word and context word. The rows and columns of this |V | × |V | matrix
were then concatenated to produce a vector of length 2|V | for each word, where the first half
of the vector corresponded to cooccurrence counts before the target word and the second after
the target word. To make HAL consistent with our “target, context, model” formulation, we
show the second version of the cooccurrence matrix here. HAL used Euclidean or Manhattan
distance to calculate the similarity of different rows in this matrix to each other.

Figure 3.5. A pair-pattern matrix used to establish similarity of relations. Here the rows
are pairs of words (or phrases) and the columns are some type of connecting pattern, such
as the words in between the pair of words in a sentence, or dependency paths. The ijth
element reflects how frequently pair i is connected by pattern j in the corpus.
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One type of distributional similarity that is relevant for many important tasks in

text mining, especially in biomedical text mining, is relational similarity : given two

entities, can we obtain a distributed representation of their relationship, and can we

assess how similar that relationship is to relationships between other entity pairs?

It appears that relational similarity between entities cannot simply be derived from

properties of the entities themselves – it is something fundamentally different [73,147].

We can conceptualize the relational similarity task as operating on a matrix

where the rows are pairs of words (or phrases) and the columns are patterns that

connect these word pairs in a corpus. Popular choices include the span of words

occurring between the pair words in sentences, or dependency paths connecting them

in dependency graphs. The matrix elements contain measures of association between

pairs and patterns, such as counts of how frequently pair i is connected by pattern j

in a corpus.

This pair-pattern matrix was first introduced by Lin and Pantel in 2001 in their

paper describing DIRT (Discovery of Inference Rules from Text) [77]. This work was

also the first to coin the term extended distributional hypothesis, which states that

patterns co-occurring with similar pairs have similar meanings. In their 2001 paper,

Lin and Pantel applied this idea to paraphrase detection [77]. Subsequently, Turney

made a similar analogical leap to the one that turned SMART into LSA. He claimed

that if the extended distributional hypothesis is true, its inverse is also true: word

pairs connected by similar patterns have similar semantic relations. This is the latent

relation hypothesis, introduced in Turney’s 2005 paper on Latent Relational Analysis

(LRA), a technique which uses the SVD on a pair-pattern matrix in a manner similar

to LSA [145,146].

More recently, Riedel et al [112,155] used factorization of a pair-pattern matrix for

relation extraction, although their factorization method went beyond word pairs to

include parameters related to the similarities of individual words within the pairs and

also incorporated structured information from knowledge bases. Several related meth-

ods have clustered patterns to discover latent groupings of entity pairs corresponding

to distinct relations [41,117,135,157]. Others have clustered both rows and columns

of a pair-pattern matrix to discover relations between entities on the web [7] and to
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build semantic networks [63]. The issue of textual entailment, finding the degree to

which one statement implies the existence of another, is a core problem in natural

language processing and is also closely related to the ideas described above. It is

reviewed extensively in [21] and [22].

3.3 Some Practical Considerations

By this point, many observers will have noticed that the matrix shown in Figure 3.1,

regardless of whether it is a word-document, word-word, or pair-pattern matrix, is

going to be very large. The number of unique tokens in a reasonably-sized corpus,

such as Medline, typically ranges from |V | ≈ 100, 000, where |V | is the vocabulary

size, to over 1 million. If we also consider word combinations (phrases) up to length

n, the total number of words and phrases will be on the order of |V |n. The numbers

of documents, patterns, etc. in a corpus are somewhat arbitrary but can be huge.

Medline, for example, contains well over 16 million abstracts as of this writing5.

Even though techniques like LSA reduce the dimensionality of the final target

representations using matrix decompositions, they still necessitate first forming the

entire matrix (Figure 3.1) and then decomposing it. Computing the SVD on a giant

matrix can be very costly, both with respect to runtime and memory [120].

The two techniques discussed in the remainder of this chapter, random indexing

(Section 3.4) and word2vec’s skip-gram model (Section 3.5), create low-dimensional

representations of word and phrase targets without ever constructing the full co-

occurrence matrix for their contexts. As we will see, this dimensionality reduction

will come at a cost, which is interpretability - the elements of lower-dimensional

representations do not correspond to measurable quantities, such as counts of words

within documents. What is gained, however, is computational efficiency.

5The total number of citations in Medline is actually much higher, around 24 million, but not all
of these have abstracts.
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3.4 Random Indexing

In the mid-2000s, Sahlgren and colleagues developed Random Indexing [120], an

alternative to LSA that is based on Pentti Kanerva’s work on sparse distributed

memory [55,56].

3.4.1 How it Works

In random indexing, each word in a corpus is assigned a random, sparse elemental

vector. The dimension of this vector is its length, and the seed length is how many of

the terms in the vector are nonzero; typical values for dimension and seed length are

100− 1000 and 5− 20. An elemental vector is built by initializing all of its elements

to zero and then randomly assigning the value “1” to s/2 elements and “-1” to a

different s/2 elements, where s is the seed length. After the elemental vectors are

assigned, a context vector is built for a particular target word by adding together the

elemental vectors from words that occur within some pre-specified window width of

the target word. It is important at this stage to distinguish the elemental from the

context vectors: elemental vectors are randomly assigned, and context vectors are

built for each target word using the elemental vectors of the other words that surround

it. It is the context vectors that will be used to compare word meanings.

The process for building the context vectors is simple: one moves through a corpus

with a bin of width 2w + 1, where w is the window width, and adds elemental vectors

for all words within the bin to the context vector for the word in the middle. These

added elemental vectors may optionally be weighted according to some predefined

scheme, such as their corresponding context word’s overall frequency in the corpus

or the distance between context and target word. Finally, the context vectors are

normalized to unit length. To evaluate the semantic similarity of two words, one

calculates the cosine similarity of the context vectors corresponding to those two

words.

Different variants of random indexing encode word order for surrounding terms

in context vectors in different ways. The most basic version ignores it completely;

elemental vectors for all words within the bin are added directly to the context vector
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Figure 3.6. Random indexing. Here the context vector for the word polymorphism is being
assembled from the elemental vectors of the cooccurring words within a window width of 3
(these include: and, searched, whether, in, GST, and genes). The blue squares represent −1
elements and the orange squares represent +1 elements. Note that the final context vector
for polymorphism will not look like this. The word polymorphism occurs dozens of times in
the corpus, so many more elemental vectors will be added to create the final context vector.
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for the word in the middle, as shown in Figure 3.6. More elaborate versions use

convolution [53] or permutations [122] to encode word order6.

3.4.2 Why it Works

Consider the matrix in Figure 3.7. In this matrix, the rows represent target words,

the columns represent words from the surrounding context (within a window width of

w), and the ijth element is the raw count of the number of times word j appeared in

the context for word i. Call this matrix A.

Now imagine randomly projecting A by multiplying it on the right by a random

matrix, R, of size |V | × d, where d might be on the order of 100− 1000. This random

matrix is generated in a way that ensures its rows and columns are approximately

orthogonal, so that RTR ≈ I, perhaps by sampling its elements from a Gaussian

distribution7. The result will be a new matrix, B = AR, also of size |V |×d, whose rows

look nothing like those of the original matrix. However, as long as d is of sufficiently

high dimensionality, the distances between the rows of B will be approximately the

same as between the corresponding rows of A. This surprising result comes from

the Johnson-Lindenstrauss Lemma [52], which states that if points in a vector space

are projected onto a random subspace of sufficiently high dimension, the distances

between the points are approximately preserved.

Now consider the fact that A could be written as the sum of many other matrices.

A is a matrix of counts, so it could be assembled by the following procedure:

1. Initialize the |V | × |V | matrix, A, to all zeros.

2. Proceed through the corpus with a window of fixed size. Assume there are N

total cooccurrence events that occur. At cooccurrence event i, context word with

index ci occurs in the context of target word with index ti. This cooccurrence

6The preceding three paragraphs were borrowed, almost verbatim, from the Background section
of our previously-published paper [104].

7A Gaussian distribution is, indeed, a common choice for producing random matrices with
this property. However, it leads to dense, real-valued matrices that may be very large. In 2001,
Achlioptas [1] showed that simpler distributions with zero mean and unit variance, such as a discrete
distribution where P (X = 1) = 1/2 and P (X = −1) = 1/2, or one where P (X = 0) = 2/3,
P (X = 1) =

√
3/6, and P (X = −1) =

√
3/6, also produce mappings that satisfy the Johnson-

Lindenstrauss lemma.
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is recorded by adding to A a |V | × |V | matrix, Ci, where all elements are zero

except the element (ti, ci), which contains “1”.

3. Continue until you reach the end of the corpus.

The A that results from this procedure is identical to the A that is in Figure 3.7. It

can be written

A =
N∑
i=1

Ci

and the projected matrix, B, can be written

B = AR =
N∑
i=1

CiR.

That is, we would have achieved the same result if we had randomly projected all of

the Cis and then added them together, as opposed to projecting A. The matrix CiR

contains all zeros except for one row - the row with index t(i). That row contains the

c(i)th row of R. This means that the t(i)th row of A will eventually contain the sum

of all of the rows of R that correspond to words found in its context.

The random indexing algorithm described in Section 3.4.1 involves precomputing

these rows of R (the elemental vectors) and adding them together to create context

vectors. The only requirement is that these rows be orthogonal or nearly orthogonal,

and ideally they would also be sparse (to save memory). Hecht-Nielsen [44] showed

that in a high-dimensional space, there are many more nearly-orthogonal than purely-

orthogonal directions. By simply sampling random directions from a high-dimensional

space, we can produce elemental vectors that are nearly orthogonal. Random indexing

uses a variant of Achlioptas’s [1] idea about how these random elements should be

distributed.

3.5 The Skip-Gram Model

In 2013, a team at Google [88] published a paper and associated software package

detailing two simple neural network based language models that could be used to learn

vector representations of words efficiently over large corpora. The best-performing
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Figure 3.7. Random indexing as matrix projection. On the left is a word × word matrix
of cooccurrence counts. This is what would result from random indexing if the elemental
vectors were the length of the vocabulary, |V |, and each contained only a single “1” element
and |V | − 1 “0” elements. We can view the random indexing algorithm as projecting this
matrix using a sparse random matrix, R, whose rows and columns are orthogonal.

model is called the skip-gram model.

3.5.1 How it Works

The mathematical details of the skip-gram model are explained in detail in a tutorial

from a researcher at the University of Michigan8. The skip-gram model is trained

using stochastic gradient descent and backpropagation, and the end result is a matrix

of size |V | × h, where h is the size of the model’s hidden layer (usually 100− 1000).

As with random indexing, because there is never a need to represent a giant matrix of

cooccurrence counts, and because the model is trained in an online, and not batch,

fashion, the training process is fast and quite memory efficient, even on very large

corpora. This fact, combined with the fact that the model’s authors created a fast and

user-friendly software suite (word2vec), has contributed to the skip-gram model’s

rapidly becoming the most popular method for building distributional word vectors.

8http://www-personal.umich.edu/∼ronxin/pdf/w2vexp.pdf
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3.5.2 Why it Works

At first, it was a bit unclear why the skip-gram model leads to good word embeddings.

However, Levy and Goldberg [38,72] recently showed that word2vec’s training process

implicitly factorizes a positive pointwise mutual information (PPMI) matrix, as shown

in Figure 3.8. Pointwise mutual information (PMI) is defined in the target-context

formulation as

pmi(t; c) = log
p(t, c)

p(t)p(c)

where t represents the target, p(t) the marginal probability of target t over all contexts,

c a context term, and p(c) the marginal probability of that context term over all

targets. The positive pointwise mutual information (PPMI) is a modified version of

the PMI in which negative values are replaced by zero.

In addition to showing that the skip-gram model factorizes a PPMI matrix, Levy

and Goldberg also showed that with the right hyperparameter adjustments, the

vectors built using the skip-gram model behave much like vectors produced using

LSA, GLOVE [103], or other distributional techniques such as random indexing. For

capturing different kinds of semantic similarity, what matters most appears not to be

the model itself, but rather the type of context one uses in creating the vectors [71].
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Figure 3.8. The skip-gram model as matrix factorization. Although the details of how the
skip-gram model is trained involve stochastic gradient descent and backpropagation and
appear very different from how LSA and random indexing work, Levy and Goldberg [72]
showed that in fact, the skip-gram model is implicitly factorizing a PPMI matrix.



Chapter 4

Lexicon and Ontology Building

In this chapter, we show how distributional semantics approaches can be applied to

the related tasks of biomedical named entity normalization, lexicon learning, and

ontology building. The text in the first part of this chapter is drawn from one of our

published papers [104].

4.1 Normalization

As we saw in Chapter 2, one of the key first steps in biomedical text mining is

normalization: mapping the diversity of natural language to a smaller set of concepts,

ideally those that are well characterized and understood, such as known drug, gene or

disease entities. Normalization is particularly important in the biomedical domain

because of the diversity with which even simple ideas can be described. For example,

consider the following:

· To identify patients with diabetes in medical records, we need to understand

that if the physician writes “diabetes”, “diabetes mellitus”, “diabotes” (spelling

error), “Diabetes” (capitalization variant), or “DM” (abbreviation), all of these

terms refer to the disease of interest.

· Protein names often have multiple forms, such as “ABCB1”, “MDR1”, “P-

glycoprotein”, and “P-gp”, all of which refer to the same protein (multidrug

resistance protein 1, mutations in which are responsible for many cases of

41
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antibiotic resistance). Extracting drug-protein relationships from the literature

requires knowing when two different-looking strings are referring to the same

protein.

· Different authors have different styles and word preferences. One might con-

sistently use “augments” while another uses “increases”, yet they are both

describing the same change. One radiologist might consistently use “hypodense”

to describe a bright white region on an image, while another might use “hypoat-

tenuating”. Descriptions vary by institution, geographic region, subject area,

journal and individual author.

· Drugs have brand names and generic names. If we want to know if a patient is

taking Lipitor, we should also look for the term “atorvastatin”.

It is tempting to want to handle normalization by hiring domain experts to build

structured lexicons and ontologies. In fact, this has been the dominant normalization

strategy throughout the biomedical domain. Millions of dollars and thousands of

man hours have been invested in resources like UMLS [6, 78], a collection of dozens of

ontologies that aims to catalogue all of the ways different biomedical concepts can be

described and how these concepts are related to each other.

There are many good reasons to build a biomedical ontology: standardization of

medical billing codes, medical education (teaching students to use consistent terms

when describing clinical findings, for example) and solidifying our understanding of

entities and their relationships in specific domains. Perhaps more importantly from

the perspective of text mining, recent work has shown that for many text mining

tasks, string matching to terms in ontologies works just as well as more sophisticated

NLP approaches [54]. However, it is important to consider the relative expense of

constructing ontologies vs. building NLP systems, especially if the ontologies are

domain-specific and the NLP approaches can be applied to multiple domains.

Here I argue that the best approach to normalization is to use NLP as a first step

to identify relevant terms and phrases and localize them within ontologies prior to

human review. Distributional semantics techniques applied to relevant corpora, such

as Medline or clinical notes, represent an efficient and scalable way to accomplish this

task. Applying distributional semantics as a first step can greatly reduce the time
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needed for ontology building and ensure that ontologies can be continually updated

to reflect modern usage patterns.

Our work builds on many decades of work in the biomedical domain to recognize

relevant entities in text and understand how they are related to each other. Biomedical

named entity normalization begins with biomedical named entity recognition, which has

a long history within NLP [51,64,115]. Several different approaches exist for discovering

named entities within biomedical text, some of which have been developed into full-

fledged software solutions that can be downloaded and deployed with ease [69,132].

Several authors have investigated which features provide the best performance in

biomedical NER, and some have included distributional features among these [95,141].

Our work also draws heavily on a history of efforts in automated biomedical ontology

learning [79, 118, 148]. Finally, the problem of normalization was attacked head-on

by the biomedical NLP community in the BioCreative competitions [65, 93], which

led to a number of novel approaches for handling normalization. Many of these

are included in PubTator, a project from the National Center for Biotechnology

Information (NCBI), which provides downloadable annotations for all of Medline using

a suite of state-of-the-art named entity recognition (NER) tools [149].

4.2 Augmenting an Existing Ontology

Many biomedical ontologies are built for specialized purposes. For example, the

PHARE (PHArmacogenomic RElationship) ontology was built for the sole purpose of

extracting and normalizing pharmacogenomic relationships from the medical literature

(Figure 4.1) [20]. PHARE includes rules for recognizing relationships in sentences; it

extracts pharmacogenomic relations with 80% precision. Coulet et al used PHARE to

extract and normalize over 40, 000 relationships among drugs, genes and phenotypes

[19]. Later work used PHARE-normalized gene-drug relations to predict drug-drug

interactions [107] (see Chapter 2).

Here we compare the structure of PHARE to the structure predicted using a

popular method for unsupervised word similarity assessment called random indexing

(Chapter 3, Section 3.4). We show that the word pair similarities predicted by random
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Figure 4.1. An example of relation normalization using the PHARE ontology. Here two
sentences that look very different on the surface are mapped to the same normalized “fact”.

indexing correlate significantly with the words’ relative positions within PHARE. We

further examine the degree to which random indexing could be expected to reproduce

PHARE; that is, to assign PHARE’s word labels to the appropriate concepts and

roles within the ontology. Although random indexing, at least as it was applied here,

is not sufficient to fully reproduce the PHARE ontology, we conclude that it shows

promise for identifying candidate terms for inclusion in future versions of the ontology.

4.2.1 Background: The PHARE Ontology

The (PHARE) ontology was created in 2010 by Adrien Coulet and colleagues at

Stanford University. The researchers extracted approximately 40,000 raw relationships

(verbs and nominalized verbs) among 3007 drugs, 41 genes and 4202 phenotypes from

biomedical sentences and identified the 200 most frequent relationship types from

within this set. They then manually merged similar relationship types into conceptual

roles and organized these roles in a hierarchy [20]. They repeated this process for

the nouns most often modified by drug and gene entities, such as expression and

polymorphism, creating a hierarchy of modifier concepts. Finally, they defined a set of

rules for application of the roles and concepts to drug, gene, and phenotype terms

found in real English sentences. In particular, they limited the application of certain

roles and concepts to certain classes of entities. (Polymorphism, for example, was only

permitted to modify gene names, not drug or phenotype names.) The English words
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Figure 4.2. Portions of the role (left) and concept (right) hierarchies of the PHARE
ontology. These figures are taken from [19].

that map to each concept and role are called labels. The final version of PHARE

consists of (a) a hierarchy of roles, (b) a hierarchy of concepts, and (c) a set of labels

associated with each role or concept (Figure 4.2).

Recently, we investigated the degree to which pharmacogenomic relationships of

interest described in PubMed sentences conformed to the grammatical structures

PHARE is able to recognize. We found that although PHARE is excellent at ex-

tracting relationships of that form (nearly 100% sensitivity), its recall on interesting

pharmacogenomic relationships as a whole is quite low. Of 72 sentences describing

an inhibitory relationship between itraconazole and CYP3A4, for example, PHARE

was able to extract only 2 relations. We concluded that to extract all useful phar-

macogenomic relationships from Medline sentences, we would need to account for

greater variability in sentence structure and phrasing than PHARE currently supports.

As a first step in expanding PHARE’s coverage, we decided to experiment with

automated techniques for identifying other potential labels and their likely locations

within PHARE.

4.2.2 Methods: Extracting Drug-Gene Sentences

We extracted all sentences from Medline 2012 that mentioned a drug and a gene and

were between 4 and 50 words in length (approximately 95% of all sentences in Medline

fell within this range). Drug and gene mentions were established using simple string

matching and lexicons of drug and gene terms from PharmGKB [46,62]. We included
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only single-word drug and gene names for simplicity. We manually removed several

common words that were accidentally included in the lexicons and were not actually

drugs or genes (such as enzymes, glycine, and vaccines for drugs; dehydrogenase,

protease, and murine for genes). The final lexicons included 1470 unique drug strings

and 37,922 unique gene strings. Our final corpus consisted of 494,804 sentences.

4.2.3 Methods: The Semantic Vectors Package

We used the Java-based Semantic Vectors package [151] to construct vector represen-

tations of all words occurring at least three times in our corpus. Semantic Vectors is

a convenient implementation of random indexing (see Section 3.4) based on Apache

Lucene [86]. We varied the window size, vector dimension and seed length to evaluate

how much these parameters affected our representations, and to find the combination

that created the optimal vectors for our task. We also evaluated the means by which

word order was encoded: basic vectors did not encode word order, drxn vectors

encoded only the direction associated with a context word (before or after the target

word), and perm vectors used permutations to encode the relative position of each

context word relative to the target word. The degree of semantic similarity between

two [unit-normalized] vectors was calculated using cosine similarity.

4.2.4 Methods: Calculating Concordance with PHARE

We wanted to see how well similarity scores for word pairs calculated using random

indexing corresponded to those words’ semantic relatedness within PHARE. Because we

could not calculate the semantic relatedness of PHARE’s concepts and roles directly

using random indexing (since they are not English words), we instead calculated

pairwise similarity scores between all concept labels, and independently, all role labels,

in PHARE. We also wanted to determine whether a particular formulation of the

semantic vectors we generated (such as a particular window width, dimension, or

seed length) optimized the vectors’ concordance with the structure of the PHARE

ontology. We tested all combinations of the following: window widths 1, 3, and 5,

vector dimensions 50, 100, 150, 300, 500, and 1000, word order encodings basic, drxn,
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and perm, and seed lengths 4, 10, and 20.

We hypothesized that high similarity scores would correspond to close ontological

relationships, meaning larger numbers of common ontological parents. For each label

pair, we measured (a) the cosine similarity of its two labels’ context vectors and (b)

the number of common ontological parents for the labels in that pair (traversing

the ontology upward until we reached the root node). We then repeated these

measurements for all concept label pairs and, separately, all role label pairs in the

ontology. We used the Kendall-Tau nonparametric correlation coefficient, specifically

the implementation in R’s stats package, to test the correlation between cosine

similarity and number of common ontological parents separately for both concepts

and roles. Unfortunately, the algorithm for calculating the Kendall-Tau coefficient is

O(n2); because the number of data points in our experiments was so large and the

number of ties so high, and because we performed many different trials with different

parameter values for our semantic vectors, calculating the full Kendall-Tau coefficient

for each trial took too long. We therefore used 1000-point samples of our data and

repeated the calculation of the Kendall-Tau coefficient 100 times for each sample; here

we report the medians of those results. For all subsequent analyses, we used the best

performing vectors, the specific formulation of which differed for roles and concepts.

4.2.5 Methods: Reassigning Labels Within the Ontology

Next, we evaluated how well random indexing could localize labels within the ontology.

We removed each concept or role label from the ontology, one at a time. (Call the

removed label L, and call its corresponding context vector VL.) We then evaluated

VL’s (a) mean and (b) maximum cosine similarity with the vectors for the remaining

labels from each ontological group (a concept, if L was a label for a concept, or a role,

if L was a label for a role). We ranked the groups according to their label vectors’

similarity with VL to ascertain which concepts or roles L was most likely to belong to.

The result was a ranked list of candidate concepts or roles for each L. Ideally, the

correct concept/role assignment for each label would rise to the top of its ranked list

of candidates.
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There are 228 concepts and 77 roles in the PHARE ontology. However, if a role

was the passive-voice version of another role (isInducedBy, rather than induced) it was

excluded from our analysis and its labels added to the active form version of the role.

We therefore evaluated our performance on 54 of the 77 original roles.

4.2.6 Methods: Identifying New Terms for PHARE

Finally, we wanted to see if our semantic vectors could be used to efficiently augment

the PHARE ontology. PHARE only includes a few hundred of the most common role

and concept labels found in Medline; since its precision is only 80%, there are likely

other reasonable labels that it missed. We wanted to see which other words might

logically be added as labels to each concept and role. As a preliminary investigation

of this possibility, we compared the vectors for each non-ontology term to all known

label vectors from the ontology. For each concept or role label within the ontology,

we found the top non-ontology term whose semantic vector best matched its own.

This led to a ranked list of possible ontology candidates, ordered by their similarity

to a current label in the ontology. For role labels, we restricted our list to verbs or

nominalized verbs. For concept labels, we restricted our list to nouns (nominalized

verbs, like identification, were also acceptable here). We then manually reviewed the

lists for the most likely “ontology augmentation candidates”.

4.2.7 Results: Optimizing Vector Construction

Figure 4.3 shows the results of our initial experiments to ascertain which type of

semantic vector, generated by random indexing, best captured the structure of the

PHARE ontology. As described in the Methods, we evaluated a variety of different

vector types (window widths, dimensions, word order encodings and seed lengths) to

see which led to the highest Kendall-Tau correlation between X = cosine similarity of

label vectors and Y = number of common parents for those labels within the ontology.

No matter what type of semantic vector we constructed, the correlation between X

and Y was significant at the 95% confidence level; the best performing vectors had

median correlations of 0.108 (p = 0.00121; concepts) and 0.165 (p < 0.0001; roles).
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Figure 4.3. Bar plots of correlations between number of common parents in ontology and
distributional similarity scores for (left) concepts and (right) roles. Each bar represents a
different type of semantic vector. Orange bars represent vectors with width 1, gray width 3,
and blue width 5.

Interestingly, the window widths associated with the best-performing vectors

differed between concept and role labels. Concept labels correlated most highly with

ontology position when a window width of 5 was used, while role labels were just the

opposite; the correlation was highest with a window width of 1. Intuitively, this makes

sense; concepts are nouns and roles are verbs, so one might speculate that most of

the information about verbs is contained within the words immediately preceding and

following them, while nouns’ meaning depends on the more general “theme” of the

sentence.

4.2.8 Results: Similar Concept and Role Labels

Some examples of highly similar concept and role labels, where similarity was assessed

using the cosine similarity of the respective words’ vectors, are shown in Table 4.1.

The semantic relatedness of most of these word pairs is obvious. However, we do

notice one peculiarity of the random indexing approach, which is that antonyms are

not separated; in fact, antonyms have a high similarity score. This makes sense when

one considers the nature of random indexing’s context vector assembly process; there

is no context where downregulation occurs in which upregulation could not also occur.

However, it does raise a red flag in terms of random indexing’s ability to reproduce

the structure of the PHARE ontology; in the role portion of the ontology, for example,

induces and inhibits live on separate branches. Random indexing could potentially
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Table 4.1. Some close matches between known concept labels (top) and role labels (bottom)
within the PhARE ontology.

localize them only to within the same parent branch, regulates.

4.2.9 Results: Reassigning Labels to the Ontology

Our results for the “label reassignment” portion of our assessment are shown in

Figure 4.4. The graphs display four lines: “specific-avg” and “specific-best” contain

the number of correct concept/role assignments for labels that occurred within the

top k items on their ranked lists (where k is the “Ranked List Position” value on the

horizontal axis). The avg/best designation refers to the way in which the concept/role

assignments were ranked; in the “avg” case, we calculated the test label’s similarity

to all labels within a concept/role and took the mean of those values as our match

score for that concept/role. In the “best” case, we took the maximum of those values.

Practically speaking, this means that if a test label was highly similar to only one

member label of a concept/role, that concept/role would be ranked highly in the “best”
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Figure 4.4. Correct concepts/roles found, by position in the ranked list. Separate graphs
are shown for (left) roles and (right) concepts. The total number of concepts included here
was 228 and the total number of roles was 54.

case but not in the “avg” case.

The “specific” vs. “parents” designation in Figure 4.4 refers to what we counted as

a “hit”. In the “specific” case, a concept/role label was considered correctly classified

by position k only if its most specific matching concept/role appeared on the ranked

list by that point. In the “parents” case, the most specific concept/role or one of its

parent concepts/roles in the ontology could appear. We simply wanted to see whether

some of our missed assignments were the result of the test label’s being assigned to a

more general super-class of the correct concept/role, which would be less of a problem

than if it were assigned to an entirely incorrect part of the hierarchy.

Of the 602 concept labels we examined, 104 (17.3%) were correctly classified (i.e.

the correct role was first on the ranked list) when the “best” method was used to

assign the matches, and 17 (2.8%) were correctly classified when the “avg” method

was used. This seems to indicate that often a label will be distributionally similar

to some, but not all, other labels within its concept/role. Of the 319 role labels we

examined, 94 (29.5%) were correctly classified when the “best” method was used and

25 (7.8%) were correctly classified when the “avg” method was used. If we relax our

restriction on the concept/role assignment such that a parent of a given concept/role

is also acceptable, 443 (73.6%) of concept labels are assigned correctly for “best” and

20 (3.3%) for “avg”, and 194 (60.8%) of role labels are assigned correctly for “best”
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and 31 (9.7%) for “avg”.

In addition, performance increases if we consider assignments beyond rank position

#1. Considering only the “best” assignment methods, since those seem to outperform

“avg” at every turn, 234 (73.4%) of correct role labels and 420 (69.8%) of correct

concept labels occur in the top 20% of the labels’ ranked lists.

4.2.10 Results: Identifying New Ontology Terms

The final part of our analysis sought to identify those terms, not currently part of the

ontology, that would make good candidates for inclusion as labels, and to localize those

new labels within the ontology. Table 4.2 shows the best candidates, evaluated in

terms of the criteria described in the Methods. Some of these terms, such as “tumors”

and “combinations”, were minor variants of other words that were already present

in the ontology. In the case of both “tumors” and “combinations”, their respective

singular forms (“tumor”, “combination”) were already present as labels within the

concepts assigned to them using random indexing. Findings like this boosted our

confidence in random indexing considerably. Many of our findings from Table 4.2 are

already under review for possible inclusion in future versions of PHARE.

However, so as not to over-sell this method to the reader, we have also included

some errors in Table 4.2. “Capillary” was the highest-similarity word to “gel”, for

example, probably due to their common proximity to the relatively uncommon word

“electrophoresis”, but “gel”’s corresponding concept in the ontology is TopicalFormu-

lation. Similarly, because “treated” is often used to describe chemical treatment of

cell cultures in our corpus, it matched closely with “pretreated”, while in PHARE

“treated” is only permitted to describe a drug’s treatment of a disease. A similar

problem occurs for “incubation” and “treatment”.

It is interesting to note that training semantic vectors on domain-specific corpora

like our 500,000 drug-gene sentences seems to yield an increase in the specificity

with which word senses are represented. For example, a context vector for the word

“given” trained on text from the Wall Street Journal probably would not share much

similarity with one for the verb “administered”. However, because of the specific
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Table 4.2. Some new concepts and roles discovered for the PHARE ontology. Top 15
ontology augmentation candidates for roles. Errors are denoted by a gray background. Top
15 ontology augmentation candidates for concepts. We include one example of a concept
associated with the given concept label; there could have been more than one in the ontology,
since labels are not unique for concepts. Errors are denoted by a gray background.
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Figure 4.5. Dependency parses for the two example sentences shown in Figure 4.1. Because
the structure of these sentences is so similar, one could conceive of using distributional
semantics methods to establish an alignment between them, thus performing a task akin to
normalization without the use of an ontology.

contextual cues found in drug-gene sentences, “given”’s closest vector neighbor is

indeed “administered”. This is because, in drug-gene sentences, to “give” something

(a rat, a human) a drug is to administer that drug. There are not many other contexts

within these sentences in which “given” is used. The same argument is probably also

true for “cascade” and “pathway” and “uptake” and “transport” (Table 4.2).

4.2.11 Discussion: Interpreting Correlation Strength

The relatively weak correlation between the proximity of word labels within the

PHARE ontology and their vector space similarities is a strong indication that there is

more information in the ontology than can be captured purely by looking at how words

are used in context. For example, several of the ontological concepts and roles contained

labels that were common terms, like “find”, that gained additional specificity by the

rules PHARE provides on how they are to be applied to real biomedical sentences.

Our investigations here take none of these word sense factors into account, aside from

our selection of a training corpus in which the word senses in question are limited.

To our semantic vectors, “established” (as in “established methods”) is the same as

“established” (as in “established a new technique for”). This is a major limitation of

the distributional approach used here; ambiguities like this were one reason PHARE

was created.
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However, it is interesting to consider the degree to which these imperfections

matter for real biomedical applications. For example, consider the two dependency

parses shown in Figure 4.5. (A dependency parse is one technique for representing

the deep grammatical structure of a sentence.) These parses are for the two example

sentences shown in the normalization example in Figure 4.1. Noted biomedical relation

extraction algorithms like RelEx [36] already use dependency parses in their analysis,

but they apply manually-generated rules to them to extract relations of interest.

(PHARE was also inspired by Coulet et al’s observation of common structural “motifs”

in dependency-parsed biomedical sentences.) We immediately notice that the sentences

in this figure are structurally similar, and that we might conceive of aligning the

two dependency graphs and using vector space representations of word meanings to

compare the quality of these alignments. This assessment of the sentences’ similarity

would perform a task akin to normalization. In this case, even if “arthritis” and

“tolerability” somehow ended up with similar distributional representations, it wouldn’t

matter for the purposes of assigning the alignment score because they exist in different

grammatical “places” within the two graphs. Alignment-based approaches like this

are already common in the computer science literature; for example, in automatic

essay grading [91] and entailment recognition [45]. So, practically speaking, even a

weak distributional “signal” might be enough for some interesting applications.

4.2.12 Discussion: Limitations of this Approach

Our approach suffers from a few additional limitations that are worth mentioning.

First, our corpus consisted of individual Medline sentences containing drug and gene

names; we did not consider additional contextual cues from the rest of the abstracts.

We did this in the interest of building semantic vectors that were as domain specific as

possible; however, the lack of additional domain cues probably hurt us, especially with

respect to concept assignments (which, as we observed, preferred wider bin widths).

Second, as briefly alluded to earlier and as lamented frequently in the distributional

semantics literature, our techniques did not capture the opposing nature of antonyms.

As far as we know, there is no way to reliably distinguish antonyms using distributional
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means.

In addition, our evaluation of word similarities, and our assignment of word labels to

concepts and roles within the PHARE ontology, ignored much of the ontology’s deeper

structure. For example, some concepts are only permitted to modify phenotypes, while

others are only permitted to modify genes. We ignored this structure and compared

the labels from these different concepts directly. This was done in the interest of quick

exploration and simplicity, but restricting our comparisons to labels from specific

concepts/roles could very well have improved our performance reassigning labels to

PHARE. However, since the point of our study was to see how much the structure of

PHARE could be captured without human intervention, we did not choose to restrict

our analysis in this way.

And finally, label assignments within PHARE are unique for roles but not concepts.

This meant that a given label could have more than one concept associated with it,

and it probably explains the huge increase in performance we experienced when we

included parent concepts in our analysis in Figure 4.4.

4.2.13 Summary: Ontology Building with Random Indexing

Random indexing produces vector representations of words that correlate significantly

with these words’ positions within a biomedical ontology. In this section, we showed

that word pairs’ semantic vectors became increasingly similar as the words shared

more common parents within the PHARE ontology. We also discovered that words

could be assigned to reasonable concepts and roles within the ontology if we scored

them based on their maximum similarity with other word labels within a given concept

or role. We expanded this approach to assign some new word candidates that are not

currently in the ontology to their most likely ontological locations.

Although these representations do not capture all of the information contained

in the ontology, they have several advantages. First, they are quick and easy to

produce, and can easily be adapted to different corpora (Medline, other biomedical

text, or specialized subsets of Medline such as the drug-gene sentences we examined

here). Second, they seem to capture much of the semantic meaning of individual
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words, at least as those words are represented within the PHARE ontology, and they

can be used to quickly and easily “bootstrap” connections to other words in the

corpus that could be suitable for inclusion in the ontology. They can also provide

a rough sense of where those words should be located within the ontology. And

finally, and most importantly, construction and evaluation of these vectors requires no

manual rule-making or annotation; the vectors are learned in an unsupervised manner

from unlabeled text corpora. Although our explorations here are preliminary and

much work remains to be done to fully establish the role of distributional semantics

methods within biomedical text mining, increasing interest in this field within the

biomedical community could lead to exciting new applications in the areas of named

entity recognition, concept normalization, and specialized ontology building within

bioinformatics.

4.3 Normalizing Biomedical Entity Names

One might hypothesize that distributional similarity (how words and phrases are used

in context) approximates the kind of similarity we as humans consider when building

structured lexicons and ontologies. If this is true, these distributional methods could

provide scalable alternatives to ontologies for the normalization of biomedical entity

names, such as drug, gene, and disease names, in biomedical text.

Here we apply the distributional semantics software package word2vec to nor-

malize drug/chemical, gene/protein, and disease names based on their usage patterns

in Medline text, evaluating its performance against gold standard synonym sets from

PharmGKB, UMLS, NCBI and DrugBank. We investigate three different versions

of the original word2vec implementation, as well as a newer variant of word2vec

called dependency word2vec. We develop a set of heuristics for efficiently using this

technology to find synonyms.
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Figure 4.6. Context used for different variants of word2vec.

4.3.1 Methods: Word and Phrase Vectors with word2vec

For this project, we used the word2vec package created by Mikolov et al [88] to

build vector representations of all terms in our two corpora (defined below). The

original implementation of word2vec uses a linear context window, meaning that all

terms that occur within a window width w of a target term in a corpus will contribute

to the context for that term (see Figure 4.6). The word2vec package has a number

of settable parameters including vector length, the size of the context window, and the

choice of model (CBOW vs. skip-gram). In our experiments, we used the skip-gram

model with vector length 100 and a context window width of 1, 3, or 5. We call these

three models orig-w2v-1, orig-w2v-3, and orig-w2v-5.

Recently, other researchers have pointed out that terms can be similar in many

different ways, and that a linear context window only creates one type of embedding.

We therefore implemented an alternative algorithm, dependency word2vec [71], that

produces markedly different embeddings from original word2vec. Instead of a linear
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context window, dependency word2vec uses terms connected to a target term in a

dependency graph, along with their grammatical relationships to the target term, as

its notion of context (Figure 4.6). We used two different choices for the “negative

sampling” parameter of dependency word2vec, since the original word2vec software

uses a value of 5 for this parameter but the code for dependency word2vec uses 15

by default. We therefore call these two models dep-w2v-5 and dep-w2v-15.

Because word2vec constructs a separate vector for each token in the text, there is

no intuitive way to compose the vectors for “diabetes” and “mellitus” into a combined

vector for the term “diabetes mellitus”. However, many biomedical synonyms have

different numbers of tokens; “CYP3A4” (one token), for example, is a synonym

for “cytochrome P450 3A4” (three tokens). To handle this, we need some way of

concatenating multi-word entities into single tokens before running word2vec. Below,

we describe how we addressed this problem for each of our two corpora.

4.3.2 Methods: Construction of PubTator Corpus

PubTator [149] provides downloadable annotations for all of Medline using a suite of

state-of-the-art named entity recognition (NER) tools. It also provides the full titles

and abstracts for those Medline records in which at least one biomedically relevant

entity, such as a chemical, gene, or disease, was annotated. There are approximately

16.5 million such abstracts in the corpus. Annotations are updated daily. Our version

of the PubTator annotations was downloaded on November 29, 2015.

We used the PubTator annotations to concatenate phrases corresponding to

annotated biomedical entities; for example, the phrase “typhoid fever”, if identified as

an entity by PubTator, was changed to “typhoid fever” (using the underscore). This

concatenation step was performed first, before any additional preprocessing was done.

We then constructed the final PubTator corpus by tokenizing the text of each

title or abstract in every PubTator record using the Stanford CoreNLP toolkit1 [85],

concatenating the resultant tokens using single spaces, and lowercasing all of the text.

Each processed record was then added to the corpus file on its own line.

1http://stanfordnlp.github.io/CoreNLP/
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4.3.3 Methods: Constructing Gold Standard Synonym Sets

Because we are testing whether distributional similarity approximates the kind of

similarity we as humans consider when deciding whether terms are synonyms, a natural

source of gold standard evaluation data for our project is human-curated lexicons

and ontologies. We consider three types of entity in our evaluation: drug/chemical

names (“chemicals”), gene/protein names (“genes”) and disease/phenotype names

(“diseases”). All evaluations were performed using vectors built on the PubTator

corpus. We produced gold standard synonym sets from two different sources for

each entity type, keeping only those terms for which both original and dependency

word2vec could construct vectors, meaning that they occurred at least 5x in the

PubTator corpus. The details of these synonym sets are in Table 4.3.

4.3.4 Methods: Vector Construction and Comparison

Through these experiments, we wanted to discover both (a) what method of creating

vectors best recapitulates human notions of biomedical synonymy, and (b) how vectors

should be compared to each other to best distinguish synonyms from non-synonyms.

Our technique for comparing different methods was to create distributions of similarity

scores separately for synonym and non-synonym term pairs and look for the method

for which the Kolmogorov-Smirnov (KS) statistic, a measure of dissimilarity between

two distributions, was highest. We used all five methods of creating distributional

term vectors shown in Figure 4.6 (orig-w2v-1, orig-w2v-3, orig-w2v-5, dep-w2v-5,

dep-w2v-15 ) and compared the vectors using one of three techniques:

1. Cosine similarity. The cosine similarity of two vectors v and w is defined as

σ(v, w) =
v · w
‖v‖‖w‖

where ‖ · ‖ denotes the Euclidean norm. This technique used the raw value of

the cosine similarity as the similarity score between v and w.

2. Rank + reverse rank. Here the vector for term i in the vocabulary, vi, was

compared to all other vectors vj in a background set and the list of all similarity
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Table 4.3. Details of the construction of synonym sets for each entity type. Each synonym
set consists of all terms corresponding to a single database identifier for which vectors could
be built on the PubTator corpus.

Name # synonym sets /
# synonym pairs

Number of total
terms
(# annotated by
PubTator)

Entity type Description

pharmgkb-
chemical

1451 / 14,830 6798
(5610; 82.5%)

drug/chemical The PharmGKB drug lexicon [150] orig-
inated from DrugBank [152] and Mi-
cromedex, and also contains some chem-
ical names from PubChem [8] and NDF-
RT2, as well as a few additional names
added manually by the PharmGKB cura-
tors. All terms corresponding to the same
PharmGKB ID were considered synonyms
and constituted one synonym set.

pharmgkb-
gene

10,137 / 36,080 28,623
(27,570; 96.3%)

gene/protein The PharmGKB gene lexicon [150] is based
on terms from EntrezGene [83] and HGNC
[110]. All terms corresponding to the same
PharmGKB ID constituted one synonym
set.

pharmgkb-
disease

1841 / 19,466 7803
(7491; 96.0%)

disease The PharmGKB disease lexicon [150] is
based primarily on MeSH3 [6], but also
contains some terms from SNOMED4 and
MedDRA5. All terms corresponding to the
same PharmGKB ID constituted one syn-
onym set.

drugbank-
chemical

1697 / 9701 6146
(5334; 86.8%)

drug/chemical Each drug record in DrugBank [152] con-
tains a main name, DrugBank ID, set of
synonyms for the main name, and set of
product names for the drug. All synonyms
and product names for a given DrugBank
ID together constituted one synonym set.

ncbi-gene 42,388 / 109,821 62,128
(52,583; 84.6%)

gene/protein The NCBI gene info.txt file contains gene
information from NCBI’s Gene database6.
All terms corresponding to a single
database identifier constituted one syn-
onym set.

icd9-disease 1564 / 10,167 5503
(5247; 95.3%)

disease We parsed the 2015AB version of UMLS,
specifically the MRCONSO.RRF file, and
found all concept unique identifiers (CUIs)
mapping to at least one ICD9 code. Since
ICD9 is a disease ontology, these CUIs cor-
responded to known diseases or disease cat-
egories. We then traversed the file again
and found all alternate strings mapping
to these same CUIs. All strings mapping
to the same CUI constituted one synonym
set.
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scores was ordered from largest to smallest. The rank of each term k was found

relative to term i and the reverse rank of term i to term k (on term k’s ranked

list) was also found. The similarity score for i and k is then the sum of the rank

and reverse rank.

3. Min(rank, reverse rank). The same as score 2, except that instead of

summing the rank and reverse rank, we take the minimum. So if term i ranks

term k near the top of its list (low rank) but k puts i near the bottom (high

rank), the score for that pair is term i’s rank for term k.

Because the synonym sets were of different sizes, we had to be careful about how we

constructed the synonym and non-synonym score distributions. Let Si be a synonym

set of size Ni. The similarity scores contributing to the synonym score distribution for

this set are σ(Sij, Sik), where j = 1, . . . , Ni, k = 1, . . . , Ni, and j 6= k, where Sij is the

jth member of the ith synonym set. Note that this double-counts each synonym pair,

but does not change the score distribution.

To create the non-synonym score distribution, we created parallel sets Ri of

randomly chosen terms from a background set. The background sets were those terms

annotated [by PubTator] with the same entity class as Si. We then added the scores

σ(Sij, Rik), where j = 1, . . . , Ni, k = 1, . . . , Ni, and j 6= k, to the non-synonym score

distribution.

This method creates a “worst case scenario”, where the non-synonym terms are

close in meaning to the synonym terms, and also reflects a potential common use

case for these techniques, in which NER software is first used to create a filtered set

of candidate terms and then a distributional semantics method like word2vec is

applied to normalize them.

4.3.5 Methods: Performance Metrics for Synonym Finding

Using the best-performing vector construction and comparison methods, we calculated

similarity scores for (a) correct synonym pairs and (b) incorrect synonym pairs – these

were pairs where both terms were present in the synonym set file, but were from

different synonym sets. We calculated precision, recall and F0.5 numbers for synonym
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retrieval for each of our six synonym set types (pharmgkb-chemical, icd9-disease, etc.),

where

F0.5 = (1 + 0.52)
precision · recall

(0.52 · precision) + recall

is a commonly used measure similar to the F1 score except that it weights precision

higher than recall. We evaluated 60 different score cutoffs and found a score threshold

that optimized F0.5 for each set.

4.3.6 Results: Best Practices for Constructing and Compar-

ing Vectors

A summary of the Kolmogorov-Smirnov statistics comparing synonym and non-

synonym similarity score distributions is shown in Table 4.4. Regardless of scoring

method and synonym set type, the orig-w2v-5 vectors (linear context window of

width 5) performed best at identifying biomedical synonyms7. These were followed in

basically consistent order by orig-w2v-3 and orig-w2v-1, with the dependency-based

vectors performing worst on nearly all synonym sets.

As for scoring method, although the obvious choice would be to establish a threshold

for synonymy based on the value of the cosine similarity score, this method turns out

to perform rather poorly. The best choice for separating synonym and non-synonym

distributions is to use the min(rank, revrank) scoring method. This is apparent from

the plots in Figures 4.7 and 4.8, which show distributions of similarity scores for

synonyms and non-synonyms using the orig-w2v-5 vectors on all different synonym

set types, and the cosine similarity (Figure 4.7) and min(rank, revrank) (Figure 4.8)

scoring methods.

Also apparent from these plots is the fact that some entity types have more

recognizable synonym pairs than others. In general, disease synonyms are the easiest

to recognize using distributional similarity, followed by chemical synonyms and then

gene synonyms.

7There were only two exceptions: orig-w2v-3 edged out orig-w2v-5 on the pharmgkb-chemical
synonym sets using the min(rank, revrank) scoring method, and orig-w2v-1 won on the drugbank-
chemical sets using the min(rank, revrank) score. However, the differences here were so small that
we concluded the orig-w2v-5 vectors perform best in general.
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Figure 4.7. Distributions of cosine similarities of synonyms (colored densities) for different
entity types, relative to those entities’ cosine similarities with randomly-chosen words from the
corpus (gray densities). (a) pharmgkb-chemical, (b) drugbank-chemical, (c) pharmgkb-gene,
(d) ncbi-gene, (e) pharmgkb-disease, (f) icd9-disease.
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Figure 4.8. Distributions of min(rank, revrank) for synonym pairs (colored densities) for
different entity types, and the same scores relative to randomly-chosen words from the corpus
(gray densities). (a) pharmgkb-chemical, (b) drugbank-chemical, (c) pharmgkb-gene, (d)
ncbi-gene, (e) pharmgkb-disease, (f) icd9-disease.
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Table 4.4. Kolmogorov-Smirnov statistics for synonym vs. non-synonym distributions, for
each type of synonym, for each vector type. We considered three types of scoring methods:
(a) cosine similarity, (b) rank + reverse rank, (c) minimum of rank and reverse rank.

COSINE SIMILARITY orig-w2v-5 orig-w2v-3 orig-w2v-1 dep-w2v-5 dep-w2v-15
pharmgkb-chemical 0.617 0.573 0.443 0.365 0.354
drugbank-chemical 0.691 0.646 0.543 0.446 0.441

pharmgkb-gene 0.392 0.347 0.250 0.181 0.172
ncbi-gene 0.334 0.290 0.206 0.147 0.139

pharmgkb-disease 0.797 0.730 0.587 0.544 0.543
icd9-disease 0.785 0.727 0.580 0.518 0.519

RANK + REV. RANK orig-w2v-5 orig-w2v-3 orig-w2v-1 dep-w2v-5 dep-w2v-15
pharmgkb-chemical 0.665 0.639 0.545 0.487 0.490
drugbank-chemical 0.742 0.713 0.640 0.572 0.578

pharmgkb-gene 0.468 0.428 0.338 0.276 0.282
ncbi-gene 0.412 0.371 0.294 0.248 0.255

pharmgkb-disease 0.833 0.786 0.678 0.679 0.683
icd9-disease 0.833 0.782 0.675 0.654 0.666

MIN(RANK, REV. RANK) orig-w2v-5 orig-w2v-3 orig-w2v-1 dep-w2v-5 dep-w2v-15
pharmgkb-chemical 0.784 0.789 0.783 0.763 0.775
drugbank-chemical 0.846 0.844 0.847 0.821 0.828

pharmgkb-gene 0.720 0.711 0.698 0.686 0.697
ncbi-gene 0.693 0.687 0.680 0.674 0.689

pharmgkb-disease 0.950 0.940 0.917 0.921 0.927
icd9-disease 0.941 0.932 0.908 0.894 0.905
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Table 4.5. Performance metrics for synonym retrieval for the six synonym set types against
a background of terms tagged with the same entity type by PubTator.

Synonym set type Optimal threshold Precision Recall

pharmgkb-chemical 6 0.19 0.08
drugbank-chemical 4 0.20 0.08
pharmgkb-gene 3 0.08 0.02
ncbi-gene 3 0.04 0.01
pharmgkb-disease 7 0.44 0.15
icd9-disease 6 0.53 0.18

We therefore conclude that the optimal way to recognize biomedical synonyms,

at least from among the options we tried, is to build vectors using a linear context

window of width 5, and to establish a cutoff for synonymy of two terms based on the

min(rank, revrank) score.

4.3.7 Results: Synonym Finding for Chemicals, Genes and

Diseases

Figure 4.9 shows precision, recall and F0.5 results for all six synonym set types, for

60 different min(rank, revrank) score thresholds. The optimal min(rank, revrank)

thresholds, based on F0.5, for the six types, along with precision and recall numbers

at those thresholds, are shown in Table 4.5. In general, performance at recognizing

synonyms against a background of similar entities is quite low. Precision and recall

were highest for the icd9-disease dataset, at 0.53 and 0.18, respectively, and lowest

for the ncbi-gene dataset, at 0.04 and 0.01 respectively. It appears that one can tell

disease syonyms are similar (and different from other diseases) much more easily from

context than one can for genes/proteins.

4.4 Learning a Radiology Lexicon

In the previous section, we investigated using word2vec to find synonyms for biomed-

ical entities such as drugs, genes and phenotypes. We established a set of heuristics



68 CHAPTER 4. LEXICON AND ONTOLOGY BUILDING

Figure 4.9. Performance measures and optimal threshold cutoffs for recognizing different
entity types. (a) pharmgkb-chemical, (b) drugbank-chemical, (c) pharmgkb-gene, (d) ncbi-
gene, (e) pharmgkb-disease, (f) icd9-disease.
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around using distributional semantics to find synonyms. Here we apply the best-

performing technique to a corpus of clinical radiology notes to recreate RadLex, a

human-curated ontology of radiology terms, based solely on contextual usage patterns.

Our approach identifies synonym pairs found in RadLex with 61% precision and 30%

recall. We use it to identify a total of 19,770 predicted new terms for RadLex out of a

possible 775,248 unique strings in our corpus, and to connect these new predictions to

their closest synonyms within RadLex.

4.4.1 Methods: Radiology Note Corpus

Our radiology corpus consisted of the RadCore [42] database and a corpus of additional

radiology reports from Stanford University. RadCore is a multi-institutional database

of radiology reports aggregated in 2007 from three major healthcare organizations:

Mayo Clinic (812 reports), MD Anderson Cancer Center (5000 reports), and Medical

College of Wisconsin (1,893,819 reports). To these we added 4,056,227 radiology reports

of 564,210 patients from Stanford Hospital and Clinics Epic electronic health record

system since 1998. These were obtained from the STRIDE (Stanford Translational

Research Integrated Database Environment) database at Stanford [80]. STRIDE is a

research and development project to create a standards-based informatics platform

supporting clinical and translational research.

The preprocessing of the raw radiology notes to create the radiology corpus was

handled much in the same way as for the PubTator corpus, except that because we

did not have entity annotations, we needed another way of concatenating phrases.

We therefore used word2phrase, a tool provided by the creators of word2vec,

to concatenate likely phrases in this corpus. We used the default parameters for

word2phrase.

4.4.2 Methods: Recreating RadLex

RadLex is a lexicon of 46,340 radiology concepts and associated terms created over

a decade by over 30 professional radiology organizations [67]. The lexicon is not

explicitly designed for the purpose of normalizing synonyms, but it does contain 636
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Figure 4.10. Performance measures and optimal threshold cutoff for RadLex synonyms.

concepts that map to multiple strings. We repeated the calculation of performance

metrics for these synonyms to get an idea of what kind of performance to expect when

finding synonyms for all of RadLex. After evaluating 60 different score cutoffs and

finding the score threshold that optimized F0.5, we built a network representation of

all the predicted new synonym pairs and visualized the results in Cytoscape [133].

4.4.3 Results: RadLex Synonym Finding

Figure 4.10 shows a plot similar to those in Figure 4.9 for synonym finding in RadLex.

The maximum value of F0.5 is 0.51 at a threshold of 4. This choice of threshold leads

to a precision of 0.61 and recall of 0.30. These numbers are much higher than for the

PubTator dataset, which probably reflects the fact that we are comparing against a

background of all terms vs. those tagged with the same entity type, as well as the fact

that the terms in RadLex are intended, by design, to be used in very specific contexts.

Using 4 as a threshold for min(rank, revrank), we connected all terms at that score

or below. Figure 4.11 shows two small network representations of new predictions
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and their closest RadLex terms. The first shows that heterogeneous enhancement

is connected to the spelling variant heterogenous enhancement, as well as inhomo-

geneous enhancement and enhances heterogeneously, neither of which is currently

in RadLex but both of which are indeed synonyms for heterogeneous enhancement.

Of course, Figure 4.11(a) also illustrates one of the classic errors associated with

distributional similarity finding: it has trouble distinguishing antonyms, which are

frequently used in similar contexts. Homogenous enhancement, a known RadLex term,

is predicted to be a synonym of heterogeneous enhancement, when in fact they are

opposites.

Figure 4.11(b) examines a set of anatomical terms surrounding the RadLex term

brainstem. Interestingly, the term brainstem is connected within this network to all of

its component parts: the pons, medulla, and midbrain (or mesencephalon, another

synonym identified by word2vec), as well as to the concatenation variant brain stem.

There are many connections in this subnetwork that involve relationships other than

total synonymy, such as the fact that dorsal pons and ventral pons are both component

parts of their connected RadLex term pons.

A list of the top 40 new candidate terms for RadLex, as well as their closest matching

terms in RadLex, is shown in Table 4.6. Of the top 40 hits, by our estimation, 29

are synonym pairs (or close enough that substituting one term for another would

not change meaning, though it might lead to an ungrammatical sentence). The rest

illustrate most of the potential failure modes associated with distributional techniques

for synonym finding. For example, the top hit, rt/lt, actually reflects two errors. The

terms RT and LT are frequently used in radiology notes to denote right side and left

side, and both should probably be in RadLex. However, rT is also used to mean the

rostrotemporal auditory area, which is why that term was present in RadLex and LT

was not. Connecting LT to RT would normally have produced an antonym error, but

it also reflects a situation where the same abbreviation is used to refer to multiple

entities, and distributional similarity cannot catch that.

Rows 2 and 7 reflect cohypernym errors. Both indicate that the term middle finger

should be included in RadLex, which is probably true, but they assign it to the

synonym terms ring finger and index finger, which are cohypernyms of the term finger



72 CHAPTER 4. LEXICON AND ONTOLOGY BUILDING

Figure 4.11. Two network representations of new connections to existing RadLex terms
found through distributional similarity using 4 as a threshold for min(rank, revrank). All
of these examples come from the pairs in Table 4.6 and the other new and old synonymy
connections that surround them. Nodes that are currently in RadLex are shown in orange,
and new predictions are shown in blue. If an edge connects two nodes that are both in
RadLex, it is shown as a solid line with no arrow. If it is connecting a current RadLex node
to a new prediction, it is a dotted line with an arrow pointing toward the new term.
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Table 4.6. A list of the “top hits” for inclusion in RadLex. These are terms where min(rank,
revrank) to one or more terms in RadLex was at or below 4. The cosine similarities of these
terms to their top matching RadLex terms are also shown.
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(as is middle finger) but not synonyms.

Rows 13, 35, 37, and 38 illustrate connections between closely related terms (in

this case, brain structures) that are not synonyms. However, all of the newly predicted

terms are correct brain structures that should be present in RadLex. The frontal horn

refers to an anterior portion of the lateral ventricle, the centrum semiovale is a mass

of white matter continuous with the corona radiata, and the splenium is a portion of

the corpus callosum. All three terms are actually present in RadLex, but not in these

forms; for example, “splenium of corpus callosum” is a term in Radlex, but “splenium”

by itself is not.

In the case of spinal cord/cord (row 25) one could make the case that in a radiology

report, the term cord is most probably referring to the spinal cord, but it is certainly

not a synonym. Finally, there are two relationships that are simply errors: int rot is a

radiology view, while pel max refers to the maximum permissible exposure limit of

radiation. The terms gradient coil and by adjusting have nothing semantically to do

with each other.

4.4.4 Summary: Using Word Vectors for Lexicon Building

from Clinical Documents

Ultimately, using distributional normalization allowed us to filter a set of around

770,000 terms down to a set of 19,770 potential candidate terms for RadLex, but these

terms would still need to be reviewed by a human before they are entered into RadLex.

At 10 seconds per term, reviewing 770,000 terms would take a human approximately

2140 man-hours, or around 267 days (working 8 hours a day with no breaks) while

reviewing 19,770 terms would only take about a week. In addition, distributional

methods provide “nearest neighbors” within a lexicon, so the question becomes not

“Should this word exist somewhere in this lexicon and if so, where?” but “Is this word

synonymous with this other word, yes or no?”. The second question is much easier to

answer.

Our conclusion is thus that distributional normalization can provide a valuable

and efficient technique for expanding the coverage of existing lexicons and ontologies,
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but it is not accurate enough to perform completely automated normalization. Its

performance also depends on the nature of the entities involved. Someone wishing to

apply it to his or her specific domain should consider starting with a wide context

window (probably w = 5), the min(rank,revrank) score, and a score (rank) threshold

of 4-6 (unless he/she has a sample set of synonyms available on which to optimize

F0.5).



Chapter 5

Ensemble Biclustering for

Classification

In this chapter, we introduce a novel algorithm, Ensemble Biclustering for Classification

(EBC), that is related to several of the techniques from Chapter 3 but uses a different

notion of context than they typically employ. It was designed to serve as a more

efficient alternative to LSA for relation extraction. EBC solves some of the technical

challenges associated with relation extraction on pair-pattern matrices. In this chapter,

we discuss the technical aspects of EBC. In Chapter 6, we show how EBC can be

used to discover classes of drug-gene relationships from the unstructured text of the

biomedical literature.

Much of the text of this chapter was borrowed from our published paper [106] and

its supplementary material.

5.1 Background

The techniques discussed in Chapter 3 all build vector space models of targets (words,

phrases and relations) based on cooccurrence counts with their contexts. Random

indexing and word2vec, the two models we explored in Chapter 4, build vector

representations of words and phrases based on the counts of surrounding context

words (or some weighted version of these counts), though both could, in principle, be

76
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extended to arbitrary contexts.

EBC is closely related to these techniques, but it has a few important differences.

In particular, EBC:

· Uses a binary matrix - either a feature can occur in a given context or it cannot.

Instead of counting cooccurrences of target and context, EBC operates on a

matrix of 1s and 0s - did this context occur for this target ever in the corpus:

yes or no?1

· Is efficient for large, sparse datasets. It takes O(τ · z · N(k + `)) operations

to run EBC, where τ is the number of iterations each run of ITCC takes to

converge (see Section 5.2), z is the number of nonzero matrix elements, N is

the number of independent runs of ITCC, and k and ` are the row and column

cluster numbers. The N independent runs of ITCC can easily be parallelized.

In contrast, algorithms for computing the SVD depend on the row and column

dimensions of the matrix itself, which may be huge compared to the number of

nonzero elements.

· Handles missing data naturally. Empty cells in the matrix are simply ignored.

In this sense, EBC is closer in spirit to random indexing than it is to word2vec,

which requires sampling of contexts that did not occur2.

· Enables flexible feature spaces. The context for EBC can be anything, from

dependencies to neighbor words to documents. Although this is also theoretically

true for all of the methods from Chapter 3, since all can be represented as

matrices, in practice it is more difficult for some than others. EBC is entirely

agnostic to the type of data in its input matrix.

· Has no free parameters. We have developed a heuristic for finding row and

column cluster numbers for EBC that leads to high performance on drug-gene

relation extraction and the other tasks for which we have tried EBC. Although

one could optimize k and ` for a given task, for example by using a validation set,

1In principle, there is no reason why EBC could not be applied to other matrix types, though
another type of biclustering algorithm may be more appropriate for dense, real-valued matrices.
ITCC really shines when the matrices involved are sparse.

2This sampling results in an additional parameter, the negative sampling parameter, which must
be set by the user.
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Figure 5.1. What the matrices for EBC look like if EBC is applied to (left) relation
extraction and (right) word similarity.

we valued being able to choose k and ` in circumstances where we have access

to little or no training data. The development of our heuristic was inspired by a

problem that had plagued LSA: how to choose the number of singular values

used by the truncated SVD produce reduced-dimensional vectors for words.

LSA’s performance is sensitive to that choice, as we show below in Section 6.73,

whereas for EBC, it’s possible to let the data tell us what choices to make.

· Unifies the target representation and similarity assessment. Random indexing,

word2vec, LSA and all of the methods from Chapter 3 produce vectors that are

typically compared using cosine similarity or some other type of vector similarity

measure. In EBC, the similarity assessment of different target rows is baked into

the representation - we bicluster the matrix multiple times, and the similarity

score is how frequently any two rows cluster together. This could be considered

either good or bad, but it is definitely different from how other distributional

semantics methods calculate similarity.

EBC is an ensemble method in which we form a low-rank approximation of a data

3The authors of the original LSA paper noted that the optimal choice of dimension for their
vectors was an important parameter that, depending on the dataset, strongly affected their results.
Because they were psychologists and viewed LSA as a model of learning, they suggested that an
organism might learn by optimizing this parameter for different tasks [66]: “Because, as we see
later, the model predicts what words should occur in the same contexts, an organism using such a
mechanism could, either by evolution or learning, adaptively adjust the number of dimensions on the
basis of trial and error.”
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matrix using biclustering and stack thousands of slightly different approximations on

top of each other to make similarity assessments of the matrix’s rows (or columns).

It is most similar in spirit to Latent Semantic Analysis (LSA) [26] (Section 3.2),

which uses the singular value decomposition (SVD) [137] instead of biclustering to

accomplish a similar goal, and has been applied in at least one case to corpus-level

relationship extraction (a technique called Latent Relational Analysis, or LRA) [145].

The big difference, aside from the points above, is that EBC uses multiple low-rank

approximations of the matrix, whereas the SVD finds a single, optimal low-rank

approximation.

5.2 Information-Theoretic Co-Clustering (ITCC)

The backbone of EBC is a biclustering algorithm called Information-Theoretic Co-

Clustering (ITCC) [27]. ITCC treats a matrix, M , as a joint probability distribution

over its rows (Y ) and columns (X). Given fixed numbers of row and column clusters,

ITCC finds a set of cluster assignments for the rows and columns for which the mutual

information between the clustered random variables, X̂ and Ŷ , is as high as possible

relative to the mutual information between X and Y . In other words, the algorithm

finds maps CX and CY , where

CX : {x1, x2, . . . , xm} → {x̂1, x̂2, . . . , x̂m}

CY : {y1, y2, . . . , ym} → {ŷ1, ŷ2, . . . , ŷm}

that ensure the difference

I(X, Y )− I(X̂, Ŷ ) (5.1)

is minimized. Equation 5.1 thus becomes the objective function of ITCC.

We will go through some of the math from [27] here, both to provide some

background for our discussion of EBC, and because it is interesting.
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5.2.1 Deriving the Algorithm

The objective as KL divergence Lemma 2.1 in [27] states that we can write the

loss in mutual information from Equation 5.1 as

I(X, Y )− I(X̂, Ŷ ) = D(p(X, Y ) ‖ q(X, Y ))

=
∑
x̂

∑
ŷ

∑
x∈x̂

∑
y∈ŷ

p(x, y) log

(
p(x, y)

q(x, y)

)

where D(· ‖ ·) denotes the Kullback-Liebler (KL) divergence, or relative entropy, and

q(X, Y ) is a distribution of the form

q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ) (5.2)

where x ∈ x̂, and y ∈ ŷ. Importantly, as is shown in [27], p(x̂, ŷ) = q(x̂, ŷ),

p(x|x̂) = q(x|x̂), and p(y|ŷ) = q(y|ŷ), so we could just as easily write q instead

of p in Equation 5.2. Also note that the KL divergence only takes this form because

we are considering hard clusterings of the rows and columns, so

p(x̂, ŷ) =
∑
x∈x̂

∑
y∈ŷ

p(x, y) (5.3)

p(x̂) =
∑
x∈x̂

p(x) p(ŷ) =
∑
y∈ŷ

p(y)

and the conditional distributions p(x|x̂) and p(y|ŷ) have the form p(x|x̂) = p(x)/p(x̂)

for x̂ = CX(x) and 0 otherwise (and same for y). Having expressed the objective in

this form, we need a way to figure out how to assign the maps CX and CY to create

clusters so that this KL divergence is minimized.

Additional identities If ŷ = CY (y) and x̂ = CX(x), then two more identities are

also true:

q(y|x̂) = q(y|ŷ)q(ŷ|x̂) q(x|ŷ) = q(x|x̂)q(x̂|ŷ) (5.4)

q(x, y, x̂, ŷ) = p(x)q(y|x̂) q(x, y, x̂, ŷ) = p(y)q(x|ŷ) (5.5)
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The proofs of both Equations 5.4 and 5.5 are straightforward and can be found in [27].

Minimizing the objective We already showed that the ITCC objective can be ex-

pressed as the KL divergence between two distributions, p(x, y) and q(x, y). Lemma 4.1

from [27] shows that this objective can be expressed in two different ways, which helps

the authors formulate an algorithm for minimizing it. First,

D(p(X, Y, X̂, Ŷ ) ‖ q(X, Y, X̂, Ŷ )) =
∑
x̂,ŷ

∑
x:CX(x)=x̂
y:CY (y)=ŷ

p(x, y, x̂, ŷ) log
p(x, y, x̂, ŷ)

q(x, y, x̂, ŷ)

=
∑
x̂,ŷ

∑
x:CX(x)=x̂
y:CY (y)=ŷ

p(x)p(y|x) log
p(x)p(y|x)

p(x)q(y|x̂)

=
∑
x̂

∑
x:CX(x)=x̂

p(x)
∑
y

p(y|x) log
p(y|x)

q(y|x̂)

where the first equality follows from Equation 5.5 and also uses the fact that as long

as ŷ = CY (y) and x̂ = CX(x), p(x, y, x̂, ŷ) = p(x, y) = p(x)p(y|x). This expresses the

objective solely in terms of the X̂ clusters. We can perform a similar derivation to

express the objective solely in terms of the Ŷ clusters, which results in

D(p(X, Y, X̂, Ŷ ) ‖ q(X, Y, X̂, Ŷ )) =
∑
ŷ

∑
y:CY (y)=ŷ

p(y)
∑
x

p(x|y) log
p(x|y)

q(x|ŷ)

Aside from allowing us to express the objective in terms of either the row or

column clustering, this derivation also allows us to define the distribution q(Y |x̂) as a

“row cluster prototype” and the distribution q(X|ŷ) as a “column cluster prototype”.

Intuitively, we can see that assigning each row and column to its closest “prototype”

cluster (where “closest” is defined in terms of KL divergence) will minimize the

objective.

The ITCC algorithm follows directly from the derivation above. In Figure 5.2, we

reproduce it from Figure 1 of [27]. The only difference is that we treat y as the index

for rows and x as the index for columns (because in looking at a matrix, the columns

are along the x-axis and the rows along the y-axis), and Dhillon et al do the opposite.
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Input The joint probability distribution p(X,Y ), the number of row clusters, k, and
the number of column clusters, `.

Output The partition functions C†X and C†Y .

1. Initialization: Set t = 0. Start with some initial partition functions C
(0)
X and

C
(0)
Y . Compute

q(0)(X̂, Ŷ ), q(0)(X|X̂), q(0)(Y |Ŷ )

and the distributions q(0)(Y |x̂), 1 ≤ x̂ ≤ ` using Equation 5.4.
2. Compute column clusters: For each column x, find its new cluster index as

C
(t+1)
X (x) = argminx̂D

(
p(Y |x)‖q(t)(Y |x̂)

)
,

resolving ties arbitrarily. Let C
(t+1)
Y = C

(t)
Y .

3. Compute distributions

q(t+1)(X̂, Ŷ ), q(t+1)(X|X̂), q(t+1)(Y |Ŷ )

and the distributions q(0)(X|ŷ), 1 ≤ ŷ ≤ k using Equation 5.4.
4. Compute row clusters: For each row y, find its new cluster index as

C
(t+2)
Y (y) = argminŷD

(
p(X|y)‖q(t+1)(X|ŷ)

)
,

resolving ties arbitrarily. Let C
(t+2)
X = C

(t+1)
X .

5. Compute distributions

q(t+2)(X̂, Ŷ ), q(t+2)(X|X̂), q(t+2)(Y |Ŷ )

and the distributions q(t+2)(Y |x̂), 1 ≤ x̂ ≤ ` using Equation 5.4.

6. Stop and return C†X = C
(t+2)
X and C†Y = C

(t+2)
Y if the change in objective

function value, that is,

D
(
p(X,Y )‖q(t)(X,Y )

)
−D

(
p(X,Y )‖q(t+2)(X,Y )

)
is “small” (say 10−3). Else set t = t+ 2 and go to step 2.

Figure 5.2. Information theoretic co-clustering algorithm from Figure 1 of [27].
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5.2.2 Implementation Considerations

We have implemented ITCC in both Java and Python4. Implementing the algorithm

has alerted us to several technical considerations that others might wish to consider if

they decide to use it. We have listed these below.

1. Initialization strategy. To initially assign rows and columns to clusters, we choose

k− 1 row and `− 1 column cluster centers from among the rows and columns of

the matrix and match the rest of the rows and columns to these clusters based

on Jaccard5 similarity with the cluster centers.

2. Dealing with rows and columns that cannot be initialized. If a row or column

has zero Jaccard similarity with all of the centers (zero overlap with all) it is

initialized to a separate “other” cluster, so all of the rows that cannot initially

be assigned start out in the same cluster, and the same is true for columns.

Thus the total number of row and column clusters is always k and `, as desired.

3. Sensitivity to initialization strategy. Results, in terms of both the final objective

and the appearance of the final clusters, are sensitive to the initialization strategy.

For example, assigning rows and columns uniformly to clusters (for example,

by choosing a random x̂ ∈ [0, `) for every column x and a random ŷ ∈ [0, k)

for every row y) is a terrible idea because it leads to clusters whose conditional

distributions over rows and columns very closely resemble each other.

4. Ensuring k and ` stay constant. In Dhillon and Modha’s original algorithm, it is

possible to “lose” clusters over the course of one run of ITCC. This can happen,

for example, if two rows with exactly the same distributions of nonzero elements

over the columns are chosen as cluster centers. One cluster center row can then

be assigned to the other cluster, reducing the total number of row clusters by 1.

We therefore introduced a check in our code: after each iteration of ITCC, the

code checks to see if the desired numbers of rows and columns are present; if

not, it randomly selects the number of missing rows/columns uniformly from

the matrix rows/columns and relabels them as the cluster centers of the missing

4https://github.com/blpercha/ebc
5In the original EBC paper [106], we used cosine similarity, but later concluded that for binary

matrices, Jaccard similarity makes more sense. The results are similar in both cases.



84 CHAPTER 5. ENSEMBLE BICLUSTERING FOR CLASSIFICATION

clusters. It then checks again to ensure that the total numbers of row and

column clusters are correct, and continues the random assignment process until

they are. This was especially important when implementing the heuristic that

determines optimal cluster numbers (Section 5.3).

5. Using only binary matrices. If one only wants to work with binary matrices, it

is possible to make ITCC faster and less memory intensive by simply storing the

locations of the nonzero elements in the matrix and storing the uniform value of

these elements as a separate variable.

6. Rows first or columns first? Although the ITCC algorithm in Figure 5.2 is

shown as clustering the columns first, it does not matter whether one chooses to

cluster the rows or columns first. The final objective, in general, appears to be

similar in both cases. One thing this does affect, however, is the optimal k and

` found using our heuristic (Section 5.3), so it is important to use a consistent

axis ordering (rows-columns or columns-rows) when optimizing cluster numbers

and when running the algorithm.

7. Don’t store the cross-conditional distributions. Despite what it says in Figure 5.2,

it is not necessary to store the q(Y |x̂) and q(X|ŷ) distributions, as these values

can be calculated “on the fly” from the joint distribution over clusters, q(X̂, Ŷ )

and the conditional distributions q(Y |ŷ) and q(X|x̂). The q(Y |x̂) and q(X|ŷ)

distributions (we call these the cross-conditional distributions) can be large

because they are m× ` and n× k in size, so it’s best to avoid storing them.

8. Iterate over nonzero elements only. Figure 5.2, for expositional clarity, often

makes it seem as though one should iterate over all the rows and columns of the

matrix. However, the optimal runtime of the algorithm depends on iterating

over only the nonzero elements. There are multiple ways to store the matrix

internally to accomplish this, so we leave that choice to the reader. We use two

different options in our Java and Python packages for EBC.
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5.3 Finding Optimal Cluster Numbers k and `

5.3.1 A Heuristic for Finding Cluster Numbers

There are two unknown parameters that ITCC requires as input: the numbers of

row (k) and column (`) clusters. The objective function of the ITCC algorithm is

the difference in the mutual information between X and Y in the original dataset,

I(X, Y ), and between the clusters X̂ and Ŷ in the clustered dataset, I(X̂, Ŷ ) as

shown in Equation 5.1. This objective generally decreases as k and ` increase,

since by introducing more clusters, the approximate distribution q(x, y) more closely

approximates the original distribution p(x, y). Therefore, we need a separate heuristic

to decide on the optimal k and `6.

The key fact that led us to our solution is that the objective function decreases with

increasing k and ` no matter what the original matrix (M) looks like. In particular,

this should be true if we choose any random matrix (Mr) whose n ×m individual

elements are the same as those of M , but where the locations of those elements within

the matrix are randomized with respect to both rows and columns. We can think

of the “optimal clustering” as one that captures the structure inherent in M using

as few clusters as possible. We therefore reasoned that we should search for k and `

such that the value of the objective function for the clustering over M was as low as

possible relative to its value for Mr, meaning that the clustering captured more of the

original mutual information I(X, Y ) than would be expected due to chance. In other

words, we sought to minimize

objective(M)− objective(Mr) (5.6)

over many different randomized Mr matrices7. In spirit, our heuristic most resembles

6Although ITCC is a general-purpose biclustering algorithm and has not been used much in NLP,
the authors of the original ITCC paper actually evaluated it on a word-document cooccurrence
matrix. They stated, “Different data sets achieve their maximum at different numbers of word
clusters. In general selecting the number of clusters to start with is a non-trivial model selection task
and is beyond the scope of this paper.” They discussed using an information-theoretic regularization
procedure like minimum description length to select the optimal numbers of clusters, but to my
knowledge did not pursue this.

7Randomization scheme. We make lists of the row and column indices for all nonzero elements
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the popular gap statistic for unidimensional clustering [144].

To identify optimal k and `, therefore, we perform grid searches over ranges of

k and `, typically in the range [5, 400] (50 − 100 separate clusterings at each (k, `);

grid size = 5 or 10) and identify the k and ` that minimize the empirical mean of

Equation 5.6. If necessary, once the neighborhood of the minimum is identified, we

perform an additional, finer-grained grid search over that area. Note that although

this step requires a large number of ITCC runs, the output from all of these runs is

independent and they can be parallelized.

5.3.2 Examples of Heuristic on Small Matrices

We present here three examples of small, binary matrices, and show how our heuristic

can be used to find k and ` for each matrix. Beside the matrix are contour plots of

the score from Equation 5.6. In these plots, dark denotes a low value of Equation 5.6

(good) and light denotes a high value (bad). The left plot is what happens in the case

of row priority clustering (rows clustered first) and the right plot is for column priority

clustering. The two plots are virtually identical except in the case of the first matrix,

which is asymmetric8.

Example 1 This is a “binarified” version of the original example matrix used in

Dhillon et al ’s 2003 paper [27]. In the paper, the authors choose k = 3 as the number

of row clusters and ` = 2 as the number of column clusters, but our heuristic finds

in the matrix and shuffle the column indices relative to the rows to create new pairs. If necessary,
we randomly reshuffle some column indices until there are no duplicate row-column pairs in the
lists (this step is necessary as duplicates do sometimes occur when the lists are randomized). This
procedure ensures that there is a nonzero element in every row and column and also has the nice
property that it preserves the row and column marginal distributions.

8These plots are similar to what was shown in the supplementary material for [106]. In that
paper, the randomization scheme we used was slightly different than our current approach. It did not
preserve marginals and in addition, two nonzero matrix elements could be randomized to the same
location (the values of those cells were simply added together). As a result, the minimum for the
first matrix shown here is different than it was in the paper. We believe our current randomization
scheme leads to cluster numbers that are more accurate. For instance, it finds ` = 2 column clusters
for the first matrix here whereas the method we used in the paper led to ` = 3. In general the
optimal cluster numbers found using both methods are very close.
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k = 4, ` = 2 (when rows are clustered first) and k = 3, ` = 2 (when columns are

clustered first).

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

Example 2 Here is an example where the matrix obviously contains two row and

two column clusters:

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

Example 3 Finally, here is an example where the matrix obviously contains three

row and three column clusters:

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1
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5.4 The EBC Algorithm

Due to random initialization of the row and column cluster centers, ITCC will converge

to a different locally optimal biclustering on each run. The EBC algorithm is an

ensemble version of ITCC in which the heuristic from Section 5.3 is employed to select

k and ` and then information from thousands of independent ITCC runs is combined.

Here we assume the input data matrix is binary and of dimension m× n. How we use

EBC is task-dependent.

5.4.1 Semisupervised EBC

One potential use of EBC is to find new targets (for relation extraction, these are

entity pairs, such as drug-gene pairs) that share a relationship with some targets we

already have. For example, we may have access to a few drug-gene pairs that share

some relationship and want to find more like them. We call this limited input data the

seed set, and we call this version of EBC semisupervised EBC because it incorporates

both unsupervised clustering and supervised classification steps. In Chapter 6, we

show how semisupervised EBC can be used to extract drug-gene relationships of two

types from the biomedical literature. The two steps are:

1. Unsupervised step. Use ITCC to bicluster the matrix N times, recording the

number of runs in which each row appears in a row cluster with each other

row. The result is an m×m array, C, of co-occurrence values9. Note that no

information about the seed set is incorporated at this stage, so the unsupervised

step need be run only once per data matrix.

2. Supervised step. Identify a seed set, S, of rows that share some property of

interest. (In our experiments in Chapter 6, these were drug-gene pairs with

known pharmacogenomic or drug-target relationships.) Also identify a test set,

T , which may be all of the other rows in the matrix or a subset of them. Rank

9When m and n get very large, recording the m ×m matrix of cooccurrence values becomes
inefficient. In that case, we simply record the final cluster IDs for each row on every run. This means
recording only N numbers (usually N ≈ 2000) for each of m rows, instead of m numbers (where m
could be as high as a few million). The score calculations and similarity assessments can then be
done on the fly using these stored, length N vectors of cluster assignments.
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them based on a scoring function related to how often they co-cluster with

members of S (details below). Repeat this step as desired with different seed

sets.

Similarity Assessments Once EBC’s unsupervised step is performed and appro-

priate seed (S) and test (T ) sets identified, test set items can be ranked as follows:

1. EBC raw similarity scores. The simplest way to rank the test set items is by

their total cooccurrence frequency with members of the seed set. Let C(Ti, Sj)

be the cooccurrence frequency of the ith member of the test set and the jth

member of the seed set. Then the score for test set member i would be:

score(Ti) =

|S|∑
j=1

C(Ti, Sj).

2. EBC rank sum scores. For each test set member, Ti, rank all m rows of the data

matrix based on how frequently they cocluster with Ti. This produces a ranking

Ri of length m in which pairs that frequently cocluster with Ti are assigned high

ranks and those that seldom cocluster get low ranks. Ties are broken randomly.

The score for Ti is then the rank sum of the members of the seed set, S, within

this list, or:

score(Ti) =
m∑
j=1

j · I{Rij ∈ S}

where

I{Rij ∈ S} =

{
1 if Rij ∈ S
0 otherwise

Using ranks instead of absolute co-clustering frequencies produces a score that does

not depend on how often, on average, a given row co-clusters with other rows. For

some applications, those differences might not matter (or they might be informative)

but we normalized to ranks so promiscuous pairs (which are often well-known or

frequently mentioned entity pairs) would not consistently receive higher scores than

less promiscuous pairs. The rank sum scoring function will assign a high score to a

test set member as long as the seed set rows tend to cluster with it more frequently
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than other rows do.

To see how much EBC improves our ability to prioritize relevant information from

the literature over simple context matching (comparing matrix rows directly), we

typically compare it to two other similarity assessment methods that compare the

rows of the matrix directly:

1. Average cosine distance or average Jaccard distance. Let vTi be the row vector

in the data matrix associated with test set member i. This vector is of length

n. Let vSj
be the row vector associated with seed set member j. Here we score

each test pair Ti based on the average cosine similarity of vTi with all of the row

vectors from the seed set, or:

score(Ti) =
1

|S|

|S|∑
j=1

vTi · vSj

‖vTi‖‖vSj
‖

where ‖ · ‖ denotes the Euclidean norm. Alternatively, since we mainly deal with

binary matrices, we can use the Jaccard similarity score, where Z(Ti) is the set

of nonzero column indices for the row in the data matrix associated with test

set member i, and Z(Sj) is the set of nonzero column indices for the row in the

data matrix associated with seed set member j

score(Ti) =
|Z(Ti) ∩ Z(Sj)|
|Z(Ti) ∪ Z(Sj)|

.

2. Rank sum scores. In keeping with the spirit of EBC’s rank sum scoring function,

for each Ti we rank all m rows of the data matrix based on cosine (or Jaccard)

similarity to vTi . This produces a ranking Ri of length m in which rows with

high similarity to vTi are assigned high ranks and those with low similarity get

low ranks. The score for Ti is the rank sum of the members of S within this

list, and looks identical to that for EBC’s rank sum scoring function; the only

difference is that the rankings Ri are produced using cosine or Jaccard similarity

and not EBC.
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5.4.2 Unsupervised EBC

It is also possible to use the unsupervised step of EBC separately to discover patterns of

similarity among matrix rows; for example, through hierarchical clustering. One could

use the raw co-clustering frequencies as input to a hierarchical clustering algorithm,

but this also tends to prioritize promiscuous matrix rows and make them appear more

similar to each other than they are to less promiscuous rows. In unsupervised EBC, we

recommend using a method that has some of the advantages of the rank sum scoring

functions described for semisupervised EBC.

To implement EBC’s scoring function in an unsupervised manner to construct a

dendrogram, we start with our m×m matrix of co-occurrence values, C, in which Cij

is the number of runs (out of N total) in which row i co-clusters with row j. We then

convert C into a correlation matrix, ρ, also m×m, where ρij contains the Spearman

correlation of Ci· and Cj·, the ith and jth rows of C (note that C is symmetric, so

we could just as easily have used columns). These correlations are, as in EBC’s rank

scoring function, measures of how similarly row i and row j rank all other rows in the

matrix, and are not biased in favor of promiscuous pairs. We then use 1− ρ as the

distance measure for hierarchical clustering.

In Chapter 6, we use this approach with the minimax linkage function [5] to

produce a dendrogram showing the relationships among 3514 drug-gene pairs. Using

a different linkage function or distance metric, obviously, would produce a different-

looking dendrogram. In other words, there is no one correct way to use unsupervised

EBC.



Chapter 6

The Structure of Drug-Gene

Relationships

The creation of comprehensive, structured resources that catalog the relationships

between drugs and genes would accelerate the translation of basic molecular knowledge

into discoveries of genomic biomarkers for drug response and prediction of unexpected

drug-drug interactions [105]. The published biomedical research literature encompasses

most of our understanding of how drugs interact with gene products to produce

physiological responses (phenotypes). Unfortunately, this information is distributed

throughout the unstructured text of over 24 million articles.

Although a great deal of research effort has been directed at the problem of

relationship extraction from biomedical text in pharmacogenomics [11,20,154], and

in the biomedical domain in general [36,74,87,111,113,131], high-quality biomedical

knowledge bases like OMIM [40], DrugBank [152] and PharmGKB [150] still rely

almost entirely on human curators, who comb the literature manually in search

of new relationships. The authors of BioGraph, a new biomedical knowledge base

incorporating data from 21 different sources, recently decided to exclude databases

that were not manually curated, citing data quality issues [75].

Here we focus on the problem of drug-gene relationship extraction and character-

ization from unstructured biomedical text, using statistical dependency parsing to

extract descriptions of drug-gene relationships from Medline sentences and applying

92
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EBC (Chapter 5) to recognize when two drug-gene pairs share a similar relationship,

even when they are described differently in the text. We show that EBC significantly

improves our ability to extract both pharmacogenomic (PGx) and drug-target re-

lationships, and use it to discover new drug-gene relationships for PharmGKB and

DrugBank.

Finally, we combine EBC and hierarchical clustering to map the global landscape of

drug-gene interactions, revealing much unforeseen complexity in how these relationships

are described in text.

As in Chapter 5, much of the text of this chapter was borrowed from our published

paper [106] and its supplementary material.

6.1 Extracting Biomedical Relations by Analogy

Relationships can be extracted from the biomedical literature in two ways:

1. Matching to known relationships. If we have a small set of known information,

such as a few drug-gene pairs that share a relationship, we can look for other

drug-gene pairs that share that relationship.

2. Unsupervised clustering. If we have a way to assess how similar the relationship

between one drug-gene pair is to the relationship between any other drug-gene

pair, we can employ unsupervised clustering to discover relationship classes

without specifying what they are.

If we look closely, neither of these approaches requires that we explicitly map

any particular pattern (way of describing a relationship in text) to any well-defined

relationship class. In both cases, our concern is with the drug-gene pairs. We simply

want to know how likely it is that two drug-gene pairs share a relationship, either so

we can match new pairs to our template pairs (1) or so the similarity scores we input

to our unsupervised clustering algorithm will be accurate (2).

Unfortunately, we cannot directly assess how similar two drug-gene pairs’ relation-

ships are if they are described differently in the text. However, it turns out that EBC

(Chapter 5) provides a key to this dilemma.

The backbone of EBC is a biclustering algorithm called Information-Theoretic
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Co-Clustering (ITCC; [27], Section 5.2). Figure 6.1 shows the result of one ITCC

run on a small sample dataset consisting of patterns1 that connect different drugs

to the gene CYP3A42 at least five times in Medline 2013. This dataset contains 62

drug-gene pairs (where the gene is always CYP3A4) and 14 unique patterns. These

are arranged in a pair-pattern matrix, M , where an element Mij is “1” if drug-gene

pair i is connected by pattern j somewhere in Medline, and “0” otherwise. We used

ITCC to bicluster this matrix into four row clusters and six column clusters. Besides

biclustering the matrix, the q(x, y) approximate distribution from ITCC (Section 5.2)

creates a smoothed version of the matrix where certain elements that were not observed

in the original dataset are filled in.

Figure 6.1 illustrates that the rows fragment into four clusters that reflect distinct

ways that drugs can interact with CYP3A4. Row cluster 1 contains CYP3A4 inhibitors,

a few of which are also substrates. Row cluster 2 contains CYP3A4 inducers. Row

clusters 3 and 4 contain substrates of CYP3A4 that are not known inhibitors.

However, in looking at Figure 6.1, we notice that some drug-gene pairs, such as

ciprofloxacin/CYP3A4 and quinidine/CYP3A4, end up in the same row cluster even

though they share no dependency paths in common. This happens because at the

same time the rows are being clustered, the columns are also being clustered, so

the rows’ similarity is assessed with respect to the column clusters, not the columns

themselves3.

What about the column clusters? Figure 6.1 shows that they naturally fragment

into clusters reflecting known biomedical properties. All of the paths referring to

inhibition, for example, appear together in column cluster 2. The sole path referring to

induction appears by itself in column cluster 6. The other four clusters include paths

describing situations where the drug is a substrate of CYP3A4, or is metabolized by

1Dependency paths; we explain how these are extracted below.
2CYP3A4 is a liver cytochrome involved in the pharmacokinetic pathways of many drugs.
3Another quote from Dhillon and Modha’s original paper is relevant here. Speaking of biclustering

a word-document matrix, they state: “Word-document matrices that arise in information retrieval
are known to be highly sparse. For such sparse, high-dimensional data, even if one is only interested
in document clustering, our results show that co-clustering is more effective than a plain clustering of
just documents. The reason is that when co-clustering is employed, we effectively use word clusters as
underlying features and not individual words. This amounts to implicit and adaptive dimensionality
reduction and noise removal leading to better clusters” [27] (p. 9, emphasis mine).
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Figure 6.1. Example of ITCC output for a small matrix consisting of drug-CYP3A4 pairs
and their associated dependency paths. The top heatmap shows the original data after the
clustering was performed. An orange square represents an observed path (column) between
a given drug-gene pair (row). The bottom heatmap shows the approximate distribution
arising from a single ITCC run.
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it. In other words, paths that cluster together appear to be semantically related.

EBC combines information from thousands of different biclusterings like this one

to assess the relationship similarity of any two drug-gene pairs (rows) in the matrix,

by looking at how frequently they cluster together. As we have seen in this example,

EBC gives us a way to implicitly reason about drug-gene relationships “by analogy”.

If two drug-gene pairs are connected by similar sets of patterns, EBC infers that they

are related. Similarly, if two dependency paths connect similar sets of drug-gene pairs,

EBC infers that the meaning of those paths is similar. Over several iterations, EBC is

able to quantitatively estimate the relatedness of two drug-gene pairs, even when they

share no dependency paths in common. A similar idea forms the basis of the technique

distant supervision, commonly applied to relationship extraction problems [90], as well

as the algorithms LRA [146] and DIRT [77] (Section 3.2.2).

6.2 Building a Pair-Pattern Matrix

The matrix in Figure 6.1 provides a nice illustration of the method, but in reality we

want to bicluster much larger matrices. We therefore created matrices of drug-gene

pairs and their connecting patterns for all of Medline. To create these matrices, we

did the following:

1. Identify all drug-gene pairs co-occurring in sentences in Medline. Call the

number of drug-gene pairs m. See Section 6.2.1 for details.

2. Extract all dependency paths connecting these drug-gene pairs in the corpus. Call

the total number of observed paths n. See Section 6.2.2 for details.

3. Arrange the data in an m× n matrix where the rows represent drug-gene pairs

and the columns dependency paths. A cell with coordinates (i, j) in this matrix

contains “1” if drug-gene pair i has been connected by path j somewhere in the

corpus, and “0” otherwise.
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6.2.1 Named Entity Recognition of Drugs and Genes

We identified drug and gene entity names in the text using simple string matching to

lexicons, though any type of named entity recognition software could be incorporated

at this stage [69, 70]. We obtained drug and gene lexicons from PharmGKB [150] and

filtered them against a dictionary of common English words to remove promiscuous

terms (such as “CAT”, which is both a gene name and an animal). We included only

drug and gene entities with one-word names, as these names mapped to single nodes

in the dependency graphs. The final drug lexicon contained 4008 unique terms, and

the final gene lexicon contained 109,597 terms (many genes/proteins had multiple

names).

6.2.2 Extraction of Dependency Paths from Medline Abstracts

We used the Stanford Parser [25] to generate dependency graphs for all sentences

in Medline 2013 between 4 and 50 words in length (roughly 95% of all sentences in

Medline). The input to the parser is a raw Medline sentence, and the output is a

dependency graph. A dependency graph (see Figure 6.2) is one way to represent

the grammatical architecture of a sentence; the nodes are words, and the edges

are grammatical dependencies (grammatical relationships between pairs of words,

described in detail in [24]).

A dependency path is a path through a dependency graph that connects two

entities of interest. Considering a dependency path, instead of an entire sentence, can

help prune out irrelevant terms and phrases and focus our attention on the part of

the sentence directly relevant to the relationship between the two entities.

It is possible for a single sentence to generate more than one dependency path if

multiple drug or gene names are present in the sentence. We oriented our paths so

that they always started at the drug and ended at the gene, and we eliminated edge

directions4. We eliminated paths containing dependencies of type conj [24], because

4We never observed a single situation where we accidentally collapsed paths with different meanings
in doing so, since most pairs of words can only be connected by a particular dependency type, like



98 CHAPTER 6. THE STRUCTURE OF DRUG-GENE RELATIONSHIPS

Figure 6.2. Example of a dependency graph for a Medline 2013 sentence. (a) The raw
sentence. (b) The complete dependency graph for the sentence. (c) The dependency path
connecting the gene CYP3A4 with the drug rifampicin. (d) A more compact representation
of the dependency path.
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these were usually errors arising from inadequacies in how the dependency parser

represents lists. Note that because the dependency graphs are trees, there is one

unique dependency path for each drug-gene pair in a sentence.

6.2.3 Results

The full set of abstracts from the 2013 edition of Medline contains approximately

184, 000 sentences in which at least one drug name and at least one gene name are

present. Many of these sentences contain multiple drug and gene names; the total

number of unique drug-gene-sentence combinations is approximately 236, 000.

As described in Section 6.2.2, we use dependency parsing to extract dependency

paths between drugs and genes. Figure 6.2 illustrates how dependency paths are con-

structed from raw sentences. Table 6.1 provides some common drug-gene dependency

paths and associated example sentences. Details about the meanings of the individual

grammatical dependencies, with examples, can be found in [24].

We can quantitatively estimate the diversity of drug-gene descriptions in Medline

by considering the space of all unique drug-gene dependency paths. The vast majority

of dependency paths are rare, indicating high variability in how drug-gene relationships

are described. The total number of unique drug-gene dependency paths in Medline is

approximately 197, 000, of which 7, 272 (4%) connect at least two different drug-gene

pairs. The total number of unique drug-gene pairs co-occurring in Medline sentences

is 49, 564, of which 14, 052 (28.4%) share a dependency path with at least one other

drug-gene pair.

Table 6.2 describes the two final datasets used in this project, which consist of

matrices, M , created as described at the beginning of Section 6.2. Both of these

datasets are over 99% sparse.

amod or nn, in one direction.
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Table 6.1. Selected dependency paths and representative sentences. The drug and gene
names flanking each path are bolded. Some key abbreviations are listed here: appos:
appositional modifier, amod : adjectival modifier, prep: prepositional modifier (if prep of, the
specific preposition used is “of”), nsubjpass : passive nominal subject, agent : complement of
passive verb, dobj : direct object of active verb, nsubj : noun subject of active verb.

Dependency path Example sentence (PubMed ID) Frequency

[1] [appos, inhibitor, amod ] Geldanamycin (GA), an HSP90 inhibitor, is able to sup-
press 1,25-induced differentiation of HL60 cells. (20138989)

1181

[2] [appos, inhibitor, prep of ] The mNQO activity was insensitive to dicoumarol, a po-
tent inhibitor of cytosolic NQO1. (10683249)

452

[3] [appos, antagonist, amod ] The recommended therapy for stage III disease, based on
clinical trials and by the Israeli Ministry of Health for 2006,
includes bosentan (Tracleer), an endothelin-1 antago-
nist. (18686806)

338

[4] [nsubjpass, metabolized, agent ] Amodiaquine is mainly metabolized hepatically towards
its major active metabolite desethylamodiaquine, by the
polymorphic P450 isoform CYP2C8. (18855526)

204

[5] [nsubj, inhibits, dobj ] Salbutamol inhibits IFN-gamma and enhances IL-13
production by PBMCs from asthmatics. (20523061)

118

[6] [nsubj, inhibited, dobj, activity, amod ] Clonidine noncompetitively inhibited acetylcholinesterase
activity in vitro and after in vivo administration at protec-
tive doses. (3761196)

73

[7] [appos, antibody, prep against ] Trastuzumab, a monoclonal antibody against HER2,
has shown survival benefits when given with chemother-
apy in all setting of HER2-positive breast cancer patients.
(21129604)

71

[8] [nsubj, increased, dobj, expression,
amod ]

Carbachol significantly increased VEGF expression in
TMps, and this effect was totally reversed by methoc-
tramine and pirenzepine. (15987429)

64

[9] [nsubj, substrate, prep of ] Cyclosporin, an immunosuppressant with a narrow ther-
apeutic window, is a substrate for both CYP3A4 and P-
glycoprotein (Pgp). (12427482)

57

[10] [agent, activated, nsubj pass] These results suggest that TRPV2 is specifically activated
by probenecid and that this chemical might be useful for
investigation of pain-related TRPV2 function. (17850966)

53

[11] [nsubj, binds, prep to] Pertuzumab binds to ErbB2 near the center of domain II,
sterically blocking a binding pocket necessary for receptor
dimerization and signaling. (15093539)

51

[12] [nsubj, induces, dobj ] Tadalafil is mainly metabolized by cytochrome P450 (CYP)
3A4, and as bosentan induces CYP2C9 and CYP3A4,
a pharmacokinetic interaction is possible between these
agents. (18305126)

30

[13] [nsubj, increased, dobj, levels, amod ] When cells were cultured in a medium containing estrogen,
resveratrol increased the ErbB2 protein levels in a dose-
dependent manner. (16488535)

29

[14] [prep of, metabolism, prep in, involved,
nsubjpass]

The results of preclinical studies demonstrated that
CYP3A4 is involved in the metabolism of gefitinib and
that gefitinib is a weak inhibitor of CYP2D6 activity.
(16176119)

21

[15] [nsubj, inhibits, dobj, activation,
prep of ]

Imatinib also inhibits the activation of c-Abl, which is
a key downstream molecule of transforming growth factor-
beta signaling, and PDGF receptors. (17603257)

17
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Table 6.2. Summary of datasets for the PGx and drug-target relation extraction tasks.
In the dense dataset, the drug-gene pairs and dependency paths represented must have
occurred at least five times in Medline. In the sparse dataset, the dependency paths must
have occurred at least twice, and all drug-gene pairs connected by these paths were included,
even if they only occurred once.

Dataset Task Drug-gene Dependency Nonzero matrix Known Optimal row
elements relationships and column

pair paths (sparsity) in dataset cluster numbers

Dense PGx 3514 1232 10,007 (99.8%) 290 k = 30, ` = 125
Drug-target 410

Sparse PGx 14,052 7272 29,456 (99.97%) 545 k = 7, ` = 25
Drug-target 779

Table 6.3. Some dependency paths that cluster together with relatively high frequency.

First pattern Second pattern Frequency of
co-clustering

[nsubj, antibody, partmod, directed,
prep against ]

[nsubj, antibody, partmod, targeting, dobj ] 0.59

D is an antibody directed against G. D is an antibody targeting G.
[prep such as, inhibitor, amod ] [prep including, inhibitors, amod ] 0.31
G inhibitor such as D G inhibitors, including D
[prep such as, agonists, nn] [amod, activators, nn] 0.12
G agonists, such as D, . . . G activators, D and . . .
[nsubjpass, metabolized, agent ] [dep, substrates, nn] 0.11
D is metabolized by G G substrates (D, . . . ) . . .
[nsubj, blocked, dobj, activation, amod ] [nsubj, inhibited, dobj ] 0.07
D blocked G activation D inhibited G
[nsubj, increased, dobj, expression, prep of,
mRNA, nn]

[nsubj, induces, dobj, activity, amod ] 0.03

D increased the expression of G mRNA D induces G activity

6.3 Examining Similar Dependency Paths

As in Section 6.1, we can also examine which columns of the pair-pattern matrix cluster

together, as this provides insight into how the method is working. In Section 6.1, we

observed that dependency paths with similar semantics clustered together. We see a

similar pattern emerge when we examine co-clustering frequencies of the columns on

a larger dataset: the dense dataset from Table 6.2. Table 6.3 shows some dependency

paths from this dataset that frequently cluster together over 2000 separate runs of

ITCC. Paths that frequently cluster together, again, appear to be semantically related.
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6.4 Mapping the Drug-Gene Relation Landscape

Unsupervised EBC provides a measure of relationship similarity between every drug-

gene pair and every other pair (the frequency with which each pair of rows in the data

matrix cluster together). By combining these assessments with hierarchical clustering

as described in Section 6.1, we created the dendrogram shown in Figure 6.3, the details

of which are described in the figure caption. Section A.1 summarizes the general

“themes” of the clusters from Figure 6.3 and includes the size of each cluster and the

density of known PGx and drug-target relationships within that cluster.

6.4.1 Clustering drug-gene pairs based on EBC

EBC provides a natural measure of similarity for each drug-gene pair and every other

pair: the number of times the rows corresponding to those two pairs clustered together

over the N ITCC runs. However, as we have seen, these raw values are not fair

measures of distance for all pairs, since some drug-gene pairs tend to cluster frequently

with many other pairs, and others cluster less frequently. EBC’s rank-based scoring

function accounts for this by normalizing to ranks: each drug-gene pair ranks all

other pairs by co-clustering frequency, and these ranks are used in place of the raw

co-clustering values in the scoring function.

To implement EBC’s scoring function in an unsupervised manner to construct our

dendrogram, we started with our m×m matrix of co-occurrence values, C, in which

Cij was the number of runs (out of N total) in which drug-gene pair i co-clustered with

drug-gene pair j. We then converted C into a correlation matrix, ρ, also m×m, where

ρij contained the Spearman correlation of Ci· and Cj·, the ith and jth rows of C (note

that C is symmetric, so we could just as easily have used columns). These correlations

are, as in EBC’s scoring function, measures of how similarly drug-gene pair i and pair

j rank all other pairs in the matrix, and are not biased in favor of promiscuous pairs.

We then used 1− ρ as the distance measure for hierarchical clustering using minimax

linkage [5] to produce the dendrogram shown in Figure 6.3. Using a different linkage

function or distance metric, obviously, would produce a different-looking dendrogram.

We used several R packages to produce the dendrogram figures, including ape
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(a library for making phylogenetic trees), and protoclust (a library for hierarchical

clustering using minimax linkage). To achieve the radially-spaced tip markers, we

used a separate package5.

6.4.2 Results

Figure 6.3 shows the dendrogram that we produced using the coclustering frequencies

from unsupervised EBC along with hierarchical clustering using minimax linkage.

Cluster 8, the largest cluster, contains drug-gene pairs whose descriptions mainly refer

to inhibition. This cluster is highly enriched for both PGx and drug-target relationships.

When cluster 8 is subdivided by cutting the dendrogram at a lower height, a subcluster

(8a) of antagonists and their protein targets splits off from the main cluster. EBC

has learned that antagonism is a subclass of inhibition. Cluster 10, which is a close

relative of cluster 8 in the dendrogram, contains drug-gene pairs where the drug is

both an inhibitor and a substrate of the protein, such as verapamil/P-glycoprotein.

Cluster 3, another large cluster, is almost exclusively devoted to metabolism and

substrate relationships, and is highly enriched for PGx relationships, though not

drug-target relationships. Cluster 3 contains three subclusters with slightly different

properties. Cluster 3a involves mainly substrate relationships where the concept of

“metabolism” is not mentioned. These include, for example, transport relationships like

aminopterin/hOAT1. Cluster 3b contains most of the metabolic relationships, many

of which involve liver cytochromes like CYP3A4 and CYP2D6. Cluster 3c includes

substrate relationships where the drug is often also described as having an effect on

the activity of the protein.

Other clusters enriched for drug-target relationships include cluster 12, where

the protein is described as the receptor for the drug, cluster 14a, where the drug is

described as an agonist of the protein, and cluster 15, which refers to protein binding.

Notably, cluster 14a (agonists) is part of a larger cluster, cluster 14, that encompasses

activation and stimulation relationships. Here, EBC has learned that agonism is a

subclass of activation. Interestingly, cluster 14b, the part of cluster 14 that refers to

5https://github.com/willpearse/willeerd/blob/master/R/phylo.plots.R
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Figure 6.3. Dendrogram illustrating the semantic relationships among 3514 drug-gene
pairs. In this dendrogram, the leaves represent 3514 drug-gene pairs that co-occur in Medline
sentences at least 5 times, and we have cut the dendrogram at various levels (illustrated
by the red lines in the interior of the dendrogram) to produce the colored clusters shown
around the edges. Drug-gene pairs that are known drug-target relationships from DrugBank
are denoted by blue dots, and those that are known PGx relationships from PharmGKB
are denoted by orange dots. The heights of the turquoise bars are proportional to how
often the corresponding drug-gene pairs co-occur in Medline sentences (a proxy for how
well-documented they are).
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activation more broadly and does not specifically refer to agonism, is not enriched for

drug-target relationships.

Clusters 1-16, which comprise 3 of the 4 main high-level groups within the dendro-

gram, are relatively easy to interpret: in general, each displayed a consistent theme.

Clusters 17-25, however, involve descriptions of experimental methods or results about

drug effects on gene expression or protein activity. Here, the dendrogram reveals a

distinction between past and present knowledge. Drug-gene pairs that are already

well-studied are often reported in a static context - D is an inhibitor of G, or D is

a G agonist whereas other pairs are reported primarily in an experimental context:

we investigated the effect of D on G expression, G was activated by D, or exposure to

D significantly increased G activity. Depending on the relative frequency of different

types of descriptions, a drug-gene pair exemplifying an inhibitory relationship might

end up in cluster 8 (mostly static descriptions) or cluster 21 (mostly experimental

descriptions). Interestingly, drug-gene pairs from cluster 21 appear together in the

literature significantly fewer times than drug-gene pairs from cluster 8 (median 9

times for cluster 21 vs. 16 times for cluster 8; maximum 66 times for cluster 21 vs.

2722 times for cluster 8; p < 0.0001, Mann-Whitney test), which seems to corrobo-

rate our assertion that the drug-gene pairs from cluster 21 represent more tentative

experimental findings as opposed to well-established static knowledge.

Finally, the dendrogram reveals that PGx and drug-target relationships do not

constitute distinct classes of relationships, but are chimeras. PGx relationships are

composed of relatively distinct subgroups corresponding to (a) situations where the

drug inhibits the gene/protein (and therefore, mutations in the gene could be expected

to impact response to the drug), and (b) situations where the protein is involved in the

metabolism or transport of the drug. Drug-target relationships overlap with (a) but

not (b), and include other non-PGx subclasses, such as receptor binding and agonism.

6.5 Recognizing Drug-Gene Relations in Text

We evaluated EBC’s ability to mine the literature for drug-gene pairs exemplifying

two specific types of drug-gene relationships. The algorithm was given only the full,



106 CHAPTER 6. THE STRUCTURE OF DRUG-GENE RELATIONSHIPS

unlabeled text of Medline and a small number of drug-gene pairs that exemplified

each type of relationship. We refer to the small sets of labeled drug-gene pairs (sizes

1, 2, 3, 4, 5, 10, 25, 50, and 100) as seed sets. No text was annotated and no specific

sentences were marked as “evidence” for any particular type of relationship. The two

relationship types we examined were:

1. Pharmacogenomic (PGx) relationships. PharmGKB’s relationships database

[150] contains 6283 manually-curated drug-gene associations in which polymor-

phisms in the gene are known to impact drug response.

2. Drug-target relationships. DrugBank [152] maintains a list of known drug-gene

relationships in which the protein product of the gene is a known target of the

drug. This list contains 14,594 known relationships.

6.5.1 Evaluating PGx and Drug-Target Relation Rankings

For both the PGx and drug-target tasks, and for seed set sizes |S| = 1, 2, 3, 4, 5, 10, 25, 50,

and 100, we generated 1000 random seed sets and 1000 corresponding test sets, ensur-

ing that the seed sets and test sets did not overlap. The test sets were all composed

of 100 drug-gene pairs, 50 of which had known PGx or drug-target relationships and

50 of which did not. All of the ranking methods from Section 5.4.1 were used to rank

the members of each test set, using its associated seed set for scoring.

We also explored the impact of data sparsity by performing these evaluations on

two separate datasets. In the “dense” dataset, we included only drug-gene pairs and

dependency paths that occurred at least five times in Medline. In the “sparse” dataset,

we included dependency paths occurring at least twice, and any drug-gene pairs they

connected (even if they only co-occurred in a single sentence). More information about

the two datasets can be found in Table 6.2.

We evaluated the quality of each ranking by calculating the area under the receiver

operating characteristic curve (AUC) [9], a measure of how likely it is that a positive

element of the test set will be ranked higher than a negative element. We elected to

use AUC instead of precision or recall because we wanted a threshold-independent

measure of the overall quality of the ranking. We used R’s ROCR package to calculate
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Figure 6.4. On the dense matrix, a histogram of the values of the AUC for the PGx task
as a function of seed set size. The distribution is skewed (bimodal, actually, in the case of
small seed set sizes), which is why we do not report mean values in our evaluation.

the AUCs.

From a practical standpoint, we were concerned mainly with the following scenario:

Given that I have a seed set about whose quality I know nothing, what is the chance I

can accurately prioritize the knowledge I am looking for within my [unlabeled] corpus?

Our evaluation metric was, therefore, the fraction of the 1000 seed sets that ranked

their corresponding test sets with AUC > 0.7. We did not use the median or mean

AUC because the AUC distributions were highly skewed. In the case of small seed

sets, they were actually bimodal: some seed sets steered the classifier in precisely the

wrong direction; see Figure 6.4.

6.5.2 Results

Figure 6.5 shows EBC’s performance extracting PGx and drug-target drug-gene pairs

on the two datasets described in Table 6.2, and compares EBC to two alternative

classifiers that do not account for the semantic relatedness of different dependency
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paths.

On both datasets, and on both tasks, EBC outperforms the other classifiers by a

significant margin. On the dense dataset, using seed sets of only 10 labeled drug-gene

pairs as input, EBC accurately (AUC > 0.7) ranks 89.6% of test sets for the PGx task

and 96.5% of test sets for the drug-target task. In comparison, using the same seed

and test sets, the best-performing non-EBC classifier accurately ranks only 31.3%

of test sets for the PGx task and 49.6% for the drug-target task. On the sparse

dataset, EBC’s increased performance is even more pronounced. Again using only 10

labeled pairs, EBC accurately ranks 54.4% of test sets on the PGx task and 90.4% on

the drug-target task, compared to 1.1% and 6.3% for the best-performing non-EBC

classifier.

6.6 New Relations for PharmGKB and DrugBank

EBC reliably detects new drug-gene pairs reflecting relationships of interest to Phar-

mGKB and DrugBank, so we attempted to discover new examples from our corpus.

We built seed sets containing all known relationships from PharmGKB and DrugBank

and incorporated these into EBC to rank the remaining drug-gene pairs according

to EBC’s certainty that they represented PGx or drug-target relationships. There

was 13.6% overlap between the two seed sets, with 84 drug-gene pairs in both, 206 in

PharmGKB only, and 326 in DrugBank only, and 2898 pairs that were unknown to

both.

The dendrogram shown in Figure 6.6 is identical to that in Figure 6.3, except

that the clusters are replaced by vertical bars, the heights of which correspond to

EBC’s relative certainty that the pairs in question represent PGx relationships (shown

in orange) or drug-target relationships (shown in blue). Known PGx or drug-target

pairs are excluded from the bar graphs, but are denoted beneath the bars with

orange or blue dots. As expected, we see high prediction certainty for drug-target

and PGx relationships among the inhibitors in cluster 8, and high certainty for PGx

relationships among the metabolic/substrate relationships in cluster 3. We also observe

an interesting area of high enrichment for both types of relationships among clusters
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Figure 6.5. Classifier performance at the task of recognizing (a) PGx relationships (dense
matrix), (b) drug-target relationships (dense matrix), (c) PGx relationships (sparse matrix)
and (d) drug-target relationships (sparse matrix).
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21-23, where inhibition is mostly reported in an experimental context, but the density

of known PGx and drug-target relationships is quite low. These could represent new

experimental findings that will be discussed as static knowledge in a few years.

Table 6.4 shows the top 20 predictions of new PGx candidate pairs for PharmGKB,

and Table 6.5 shows the top 20 candidate drug-target pairs for DrugBank. Among

the top 20 PGx predictions, five are already known to PharmGKB and have been

demonstrated experimentally (one or more variants of the gene have been shown

to impact response to the drug), but were coded in the PharmGKB relationships

file in such a way that they were not included in the seed set. One is brand new:

polymorphisms in ABCB1 (P-glycoprotein) do impact clinical response to fentanyl,

but this relationship is currently unknown to PharmGKB. An additional eight pairs

represent likely PGx relationships, such as known inhibitory or metabolic relationships,

but no experiments have yet been conducted that might relate polymorphisms in the

gene to drug response. And finally, in five cases, the potential for a PGx association

was considered likely enough that it was investigated experimentally, but no significant

clinical association between genotype and drug response was found.

Among the top 20 predictions for new drug-target relationships for DrugBank,

four are already known but were listed in DrugBank under alternate gene names. An

additional seven are new, proven drug-target relationships. Of these, five involve drugs

that are themselves unknown to DrugBank (there are not yet entries for ketanserin,

cangrelor, nutlin-3, or tropisetron in DrugBank). There are also several interesting,

yet erroneous findings arising from parser and lexicon errors in which a molecule, such

as IL-1, is mistaken for its receptor, and that receptor is the true target of the drug.

These are explored further in the Discussion.

6.7 Comparing EBC to LSA

Several authors before us (Section 3.2.2) have pointed out that patterns co-occurring

with similar entity pairs have similar meanings [77], and that entity pairs connected

by similar patterns have similar semantic relations [145]. These ideas form the basis

for distant supervision, a technique commonly employed in traditional relationship
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Figure 6.6. Dendrogram illustrating predictions of novel PGx and drug-target relationships
among 3514 drug-gene pairs. The height of the bars corresponds to EBC’s certainty that
the pair in question represents a relationship of the corresponding type (orange: PGx
relationships, blue: drug-target relationships). The dots represent known PGx and drug-
target relationships, as in Figure 6.3.
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Table 6.4. Top 20 predictions of new drug-gene relationships for PharmGKB, and whether
a PGx relationship has been documented in the literature. ∗ ∗ ∗ indicates that an association
has been demonstrated experimentally between changes in the expression/activity of the
gene/protein and the efficacy of the drug, ∗∗ indicates that such an association is likely, but
has not yet been studied, and ∗ indicates that the association has been studied experimentally,
and the experiment has refuted the association. Here we include only associations between
pharmaceutical compounds and single genes; predicted associations involving endogenous
compounds and/or groups of genes are included in the supplementary material for the paper,
however.

Candidate Relative Literature Comment
drug-gene certainty reference
pair (PMID)

[1] omeprazole, CYP2C19 1.000 11069321 *** Individual polymorphisms of CYP2C19
already associated with omeprazole in
PharmGKB.

[2] mexiletine, CYP1A2 0.995 9690950 **
[3] fentanyl, P-gp 0.994 17192767 ***
[4] voriconazole, CYP3A4 0.986 17433262 **
[5] cyclosporine, CYP3A4 0.983 18978522 *** Association listed in PharmGKB as

“ambiguous”.
[6] duloxetine, CYP1A2 0.983 18307373 **
[7] fluconazole, UGT2B7 0.982 16542204 **
[8] montelukast, CYP2C8 0.973 21838784 **
[9] dydrogesterone, AKR1C1 0.968 20727920 **
[10] voriconazole, CYP2C9 0.966 16940139 *
[11] imipramine, FMO1 0.962 19262426 *** Experiment conducted in mice.
[12] ticlopidine, CYP2C19 0.961 21178986 *
[13] moclobemide, MAO-B 0.960 7586937 In this article, MAO-B activity was

studied in relation to moclobemide
response, but specific polymorphisms
were not investigated.

[14] ritonavir, P-gp 0.958 16184031 *** Association listed in PharmGKB as
“ambiguous”.

[15] cyclosporin, MDR1 0.955 15116055 *
[16] cyclosporin, P-gp 0.952 15116055 * Same gene as [15].
[17] vinblastine, P-gp 0.951 16917872 *** Association listed in PharmGKB as

“ambiguous”.
[18] amprenavir, CYP3A4 0.950 9649346 **
[19] perazine, CYP1A2 0.945 11026737 **
[20] lopinavir, ABCB1 0.939 21743379 *
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Table 6.5. Top 20 predictions of new drug-target relationships for DrugBank. ∗ ∗ ∗
indicates that the drug has been shown experimentally to have modified the activity of the
gene/protein, ∗∗ means that the interaction is known to DrugBank but is listed under an
alternate drug or gene name, ∗ means the interaction has been studied and is unlikely. P
refers to a particular type of parser error in which the ligand of a receptor is mistaken for
that receptor; L refers to a lexicon error.

Candidate Relative Literature Comment
drug-gene certainty reference
pair (PMID)

[1] ketanserin, 5-HT2A 1.000 16615363 *** Ketanserin not in DrugBank.
[2] losartan, A-II 0.998 24807206 ** “A-II” refers to the angiotensin type II

receptor. In DrugBank this is listed as
“Type-1 angiotensin II receptor”.

[3] cangrelor, P2Y12 0.993 20048234 *** Cangrelor not in DrugBank.
[4] phencyclidine, nAChR 0.992 9862757 *** Phencyclidine is a noncompetitive in-

hibitor of nAChR.
[5] anakinra, IL-1 0.991 P
[6] bosentan, endothelin-1 0.987 P
[7] imatinib, EGFR 0.985 15887238 * Imatinib’s effect on EGFR is ambigu-

ous. It is not likely to be a direct tar-
get.

[8] propanolol, Beta2 0.984 P
[9] carvedilol, Alpha1 0.984 P
[10] MK-571, leukotriene 0.983 L MK-571 is unknown to DrugBank.
[11] zafirlukast, leukotriene 0.981 L
[12] degarelix, GnRH 0.980 ** GnRH receptor listed in DrugBank

as “Gonadotropin-releasing hormone
receptor”. Complicated because de-
garelix often referred to as “GnRH an-
tagonist” but the target is actually the
GnRH receptor.

[13] nutlin-3, Mdm2 0.980 18646312 *** Nutlin-3 disrupts the p53-Mdm2 com-
plex. Nutlin-3 is unknown to Drug-
Bank.

[14] genistein, EGFR 0.979 21603581 *** Interestingly, authors found that genis-
tein promotes cancer progression and
increases EGFR signaling.

[15] montelukast, leukotriene 0.977 L
[16] aprepitant, NK-1 0.977 ** NK-1 listed in DrugBank as

“Substance-P receptor”.
[17] staurosporine, calmodulin 0.975 1846174 * Staurosporine inhibits calmodulin-

dependent protein kinase, not calmod-
ulin.

[18] nutlin-3, Hdm2 0.975 19696166 *** Nutlin-3 is unknown to DrugBank.
Hdm2 refers to the human version of
the Mdm2 protein ([13], above).

[19] tropisetron, 5-HT4 0.974 11243577 *** Tropisetron is unknown to DrugBank.
[20] basiliximab, CD25 0.972 12591363 ** CD25 is listed in DrugBank as

“Interleukin-2 receptor subunit alpha”.
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extraction tasks, and Latent Relational Analysis [146] (which is in turn based off of

the famous distributional semantics method Latent Semantic Analysis (LSA) [26]).

To compare EBC’s performance to a more established method designed to solve a

similar problem, we used the singular value decomposition (SVD) [137] to decompose

the sparse and dense data matrices, creating “compressed” feature vectors of reduced

dimensionality (of various lengths) for each drug-gene pair and incorporating these,

rather than the raw row vectors, into the two non-EBC ranking methods described

in the Methods (AvgCosine and RankSum). This approach is virtually identical to

(LRA; [146]), except that our matrices are binary while the original matrices in the

LSA and LRA papers used weighted counts.

The results of the PGx relationship extraction task on the dense and sparse

matrices are shown in Figure 6.7. The RankSum ranking method appeared to work

the best for LSA. We include the results for the RankSum method used on the original

feature vectors (denoted by “RankSum”) and on various lengths of compressed vectors

(denoted by their vector lengths). For comparison, we also include the results for EBC.

We see that the performance of classifiers that rely on the SVD for dimensionality

reduction strongly depends on the length of the compressed feature vectors, and the

best-performing vector length varies with the size and structure of the data matrix.

For the dense matrix, the optimal vector length was somewhere between 5 and 10

(depending on the size of the seed set), while for the sparse matrix, vectors of length 5

or 10 performed horribly, and the optimal length was somewhere between 1000 and

7272 (the uncompressed vector length). For the dense matrix, if the correct vector

length was chosen, the results came close to those of EBC, but for the sparse matrix

(unless there was a specific vector length between 1000 and 7272 that led to a rapid

increase in performance) the results never approached EBC’s.

More importantly, in a real curation scenario, the vector length would need to

be chosen using a development set (necessitating additional training data beyond

the seed set) or via some other heuristic, and the strong relationship between vector

length and classifier performance means we would be unlikely to choose optimal values

randomly. The authors of the original LSA paper specifically mentioned the choice of

vector length as one of the major challenges facing their algorithm, so the heuristic in
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Figure 6.7. Comparison of EBC’s performance to Latent Semantic Analysis (LSA).
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Section 5.3 turns out to be a key advantage for EBC.

6.8 Rethinking the Relation Extraction Problem

Why is biomedical relationship extraction so challenging? Why don’t more databases

like OMIM, DrugBank, and PharmGKB incorporate NLP-curated relationships? We

believe that one key stumbling block lies in how the problem has historically been

defined. Biomedical relationship extraction is usually thought of as a sentence-level

problem: does a particular sentence describe a specific type of relationship or not?

However, as we have seen, sentence-level descriptions are highly erratic. Faced with

a bewildering array of possibilities for how similar relationships can be described,

sentence-level relationship extraction algorithms often rely on manually-constructed

rules or ontologies that map diverse surface forms onto common semantics6 [20,35,114].

These systems require a non-trivial amount of human maintenance and must be rebuilt

for each new domain. Machine learning algorithms for sentence-level relationship

extraction avoid rules but face another serious problem: the need for annotated

training sentences. Recently, researchers have begun to produce annotated training

sets for the biomedical domain [47,59] but manual annotation is almost as expensive

as manual curation, both in time and human effort. As a result, little to no annotated

training data exist for many classes of biomedically interesting relationships.

These are important problems for NLP, but they only exist because we think

of biomedical relationships at the level of individual sentences. From a biomedical

research standpoint, there is no need to do so. We are most interested in the true

relationship between a drug and a gene, not in the meaning of any particular sentence.

As a result, we have taken a corpus-level approach where all of the information

about a drug-gene pair from all of its available sentence-level descriptions is combined.

Latent connections among different-looking descriptions are then discovered in an

unsupervised fashion from structure inherent in the raw text, requiring no human

effort and boosting our ability to extract relationships of interest.

6http://www.technologyreview.com/news/523411/facing-doubters-ibm-expands-plans-for-
watson/
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6.8.1 Support for Corpus-Level Inference

We contend that biomedical relationships should be considered properties of biomedical

entities like drug-gene pairs, not individual sentences. A description like D decreased

G levels does not constitute an inhibitory relationship; it is simply an experimental

finding that increases the likelihood of such a relationship. This allows the same

sentence to provide evidence for or against multiple types of relationship, the exact

definitions of which are application dependent. It also allows drug-gene pairs to exhibit

multiple relationship types at once.

We see evidence for such an approach when we contrast EBC’s performance at

extracting PGx relationships with its performance extracting drug-target relationships.

EBC was uniformly worse at extracting PGx relationships, even though these two sets

of experiments used the same data matrices. We see why in Figure 6.3: it turns out

that what we originally considered to be well-defined relationship classes (PGx and

drug-target relationships) are actually composites of several finer-grained sub-classes.

A high percentage of PGx relationships reside in cluster 3, the metabolism/substrate

cluster, which inhabits a region of the dendrogram far from the inhibition clusters. In

cases where the seed set consists mostly of metabolic relationships and the test set

mostly of inhibition relationships, we would not expect EBC to perform well, even

though both groups are still technically PGx relationships.

We initially believed that PGx relationships would be expressed in sentences

relating specific polymorphisms to changes in drug efficacy, such as, The CYP3A4

C3435T polymorphism influences rifampicin exposure in human hepatocytes. In reality,

however, relatively few such sentences exist. Most evidence for PGx relationships

comes instead from descriptions of other types of relationships, such as inhibition and

metabolism. So we see that although a PGx relationship can be considered a property

of a drug-gene pair, it is not generally a property of any particular sentence describing

that pair.
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6.9 Study Limitations

In our analysis of drug-gene relationships, we made several choices about (a) how to

identify drugs and genes in text, (b) the type of text to use as our corpus, and (c)

what constitutes a pattern (a single column in the data matrix). In all cases, we made

the simplest choices possible, both to enable others to reproduce our results, and to

distinguish EBC’s own limitations from errors/omissions in the preprocessing steps

and text itself.

We identify drugs and genes in the text based on simple string matching to single-

word drug and gene names from PharmGKB [62, 150]. Named entity recognition

(NER) is its own area of NLP, and identifying biomedical entity names in text is itself

a nontrivial proposition. We can see one obvious disadvantage of this approach in

cluster 24 of Figure 6.3 and Section A.1, which include “gene names” like COPD (a.k.a.

chronic obstructive pulmonary disease) and NIDDM (non-insulin-dependent diabetes

mellitus). Table 6.5 also reflects a lexicon error where the term “leukotriene” is listed

as a synonym for the leukotriene B4 receptor. Some such errors might be avoided if

we used a more elaborate NER system [69,70], though such systems themselves are

not perfect and can introduce new sources of error. Our stipulation that the entity

names be single words also led to errors in cases (see Table 6.5) where a molecule,

such as IL-1, is mistaken for its receptor, the IL-1 receptor, because “IL-1 receptor” is

a multi-word phrase not allowed in the lexicon, while “IL-1” is allowed.

We also made no attempt to normalize gene names, so in our results, ABCB1, MDR-

1, and P-gp are all different. Again, this was done to avoid introducing normalization

errors, and because genes and their corresponding proteins are often described in

different contexts.

To construct dependency paths from raw Medline sentences, we used the Stanford

Parser [25], a free and open-source statistical parser. The Stanford Parser was trained

using labeled text from newswire corpora, so it sometimes fares poorly on biomedical

text. For example, the parser often mistakes gene names for adjectives (“CYP3A4”

in the phrase “CYP3A4 polymorphism” is frequently mislabeled as an adjective).

We used the out-of-box implementation of the Stanford Parser and did not perform
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any manual review or correction of parses to improve its performance (again in the

interest of simplicity). Because EBC operates at the level of drug-gene pairs and not

individual sentences, its performance is generally robust to parsing errors as long as

the parser makes the same errors consistently.

There are some errors that do lead to incorrect conclusions, however. For example,

we observe some situations where dependency paths bypass important details about

relationships, such as a sentence where a drug is described as transcriptionally up-

regulating G expression and the dependency path only captures the effect on expression,

not its directionality. These are usually generalizations rather than errors, but they

do result in some loss of information from the sentence.

Finally, our corpus consisted of all abstracts from the 2013 edition of Medline.

Including information from the full text of the research articles could help discover

relationships not mentioned in the abstracts, but many journals do not provide access

to the full text, and we did not wish to bias our results in favor of relationships

reported in a subset of journals. Our approach would remain the same regardless of

the corpus.

6.10 Extensions and Future Applications

The combination of EBC and dependency path features described here allows us to

reliably extract biomedical relationships of interest from Medline sentences, smoothing

over differences in how these relationships are described. This finding opens the

door to many interesting possible future applications. For example, EBC could be

used to extract relationships spanning multiple sentences or entire abstracts by using

features such as individual dependencies, words, or phrases in place of dependency

paths. As new gold-standard sets of biomedical relationships become available (such

as all drug-gene pairs reflecting inhibitory relationships or specific collections of drug-

gene pairs relevant to particular laboratories’ research efforts) these can seamlessly

be incorporated into EBC to extract these relationships at scale. EBC could also

potentially be used for lexicon or ontology expansion in a manner similar to LSA or

random indexing [104,120].
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At its core, EBC is not relationship extraction-centric. The algorithm itself is

agnostic to the type of data contained in its input matrix. EBC simply allows us to

use latent structure in large, unlabeled datasets to boost our ability to extract new

information from those datasets, even when our access to labeled training examples is

limited. Datasets like these occur throughout biomedical research, even beyond NLP.

We look forward to seeing how EBC fares on some other classes of related problems,

in NLP and elsewhere.



Chapter 7

A Global Network of Biomedical

Relationships

In Section 6.4, we saw how unsupervised clustering of drug-gene pairs, based on

the similarities of their connecting dependency paths as assessed by EBC, could be

used to discover characteristic “modes” by which drugs and genes interact. In this

chapter, we extend the ideas from Chapter 6 to four different classes of biomedical

relationships: chemical-gene (which encompasses both chemical-gene and chemical-

protein relationships, and is similar to Chapter 6), chemical-disease (which encompasses

relationships both with diseases and with non-disease phenotypes such as drug side

effects), gene-disease (which includes all combinations of gene/protein and disease/non-

disease-phenotype), and gene-gene (also protein-protein). Our finished product is a

network of labeled biomedical relationships of these four different classes, produced

entirely from the structure of relationship descriptions in the literature.

7.1 Dependency Paths and Datasets

7.1.1 Named Entity Recognition using PubTator

The PubTator annotations (see Section 4.3.2), which were released after the initial

development of EBC, provide high-quality named entity annotations of chemicals,

121
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genes, and diseases for all of Medline. Whereas in Chapter 6 we were forced to resort to

simple string matching of single-word lexicon terms for drugs and genes, the PubTator

annotations extend our coverage to multi-word terms, which has proved especially

valuable for relationships involving diseases and side effects.

PubTator annotations for a single abstract consist of the full text of the abstract,

its title, and a series of annotated concepts for which it provides: the location and

string in the raw text that matched the concept, its entity type (chemical, gene,

disease, etc.) and its closest database identifier1. There are approximately 16.5 million

Medline abstracts annotated by PubTator as of this writing. Annotations are updated

monthly. Our version of the PubTator annotations was downloaded on April 30, 2016.

7.1.2 Extraction of Dependency Paths

As in Chapter 6, we extracted all dependency paths connecting two recognized

biomedical entities within a single sentence. This was a two-step process:

1. We used the PubTator annotations to concatenate phrases corresponding to

annotated biomedical entities; for example, the phrase cytochrome p450 3A4,

if identified as an entity by PubTator, was changed to cytochrome p450 3A4

(using the underscore). This concatenation step was performed first, before any

parsing was done.

2. We divided the annotated and concatenated abstracts into sentences and parsed

each sentence using the Stanford Dependency Parser [25]. From there, we found

the dependency paths connecting (a) chemicals and genes, (b) chemicals and

diseases, (c) genes and diseases, (d) genes and genes, using the method from

Section 6.2.2.

The extraction of the gene-gene paths introduced an additional layer of complexity,

since there is no natural way to order the paths (since both the start and end entities

are proteins). We therefore extracted two paths for a sentence connecting G1 and G2:

the path from G1 to G2, and the path from G2 to G1.

1PubTator matches strings to a variety of databases, including NCBI Gene (Gene), MEDIC
(Disease), the NCBI Taxonomy (Species), MeSH (Chemical), and NCBI dbSNP (Mutation). For
more information about its performance, please see Table 1 of [149]
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7.1.3 Creating the Data Matrices

To prepare the data for unsupervised clustering using EBC, we selected the most

frequent ≈ 700 dependency paths connecting (a) chemicals and genes, (b) chemicals

and diseases, (c) genes and diseases, (d) genes and genes, and sampled 2000 entity

pairs from the total set connected by one or more of those paths. Descriptions of the

full datasets and these downsampled datasets can be found in Table 7.1.

Table 7.1. Descriptions of datasets for all four interaction types. The top four datasets
were used with EBC to obtain similarity scores for the different dependency paths, which
were then combined with hierarchical clustering to uncover likely relationship classes.

Matrix Type Dependency Entity Minimum Path Nonzero Row Column
Paths Pairs Occurrences Elements Clusters Clusters

(K) (L)

Chemical-Gene 697 2000 5 6276 100 100
Gene-Gene 636 2000 5 6022 150 170
Gene-Disease 739 2000 12 6450 190 150
Chemical-Disease 693 2000 100 7903 90 70

Chemical-Gene (full) 215,732 167,018 1 275,200
Gene-Gene (full) 278,616 263,336 1 376,292
Gene-Disease (full) 465,103 406,707 1 682,048
Chemical-Disease (full) 4,594,012 1,900,501 1 6,078,346

7.2 Creation of Relationship Classes

The analysis in this chapter differs from that in Chapter 6 in one important regard:

we perform hierarchical clustering on the dependency paths, rather than the entity

pairs, to create labeled relationship classes. This idea was inspired by our finding in

Section 6.3 that semantically similar dependency paths tend to cluster together during

EBC. It was also inspired by practicality: labeling the dendrogram in Figure 6.3 relied

upon a human annotator (read: me) who manually examined drug-gene pairs in the

different clusters, along with their connecting dependency paths, to assign labels to

the clusters. It is much easier for a human without extensive prior knowledge of

pharmacology to assign labels to clusters of dependency paths, which represent real

textual patterns (e.g. “D is an inhibitor of G”), than it is to assign labels to clusters

of entity pairs.
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Figure 7.1. Dendrogram of dependency path classes among chemical-gene pairs, using
PubTator annotations to identify chemical and gene names in the text. Each leaf node
represents one dependency path.

We applied the same basic method as described in Section 6.4.1 to the downsampled

data matrices from Table 7.1 to produce the dendrograms shown in Figures 7.1, 7.2,

7.3, and 7.4. In these dendrograms, each leaf node represents one dependency path,

rather than one entity pair.

7.2.1 Cluster Labeling

We cut the dendrograms in Figures 7.1, 7.2, 7.3, and 7.4 at a level that produced

30 clusters. Any clusters of 10 or fewer dependency paths that emerged were not

examined further, and upon visual inspection, very large clusters with obvious internal
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Figure 7.2. Dendrogram of dependency path classes among chemical-disease pairs, using
PubTator annotations to identify chemical and disease names in the text. Each leaf node
represents one dependency path.
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Figure 7.3. Dendrogram of dependency path classes among gene-disease pairs, using
PubTator annotations to identify gene and disease names in the text. Each leaf node
represents one dependency path.
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Figure 7.4. Dendrogram of dependency path classes among gene-gene pairs, using PubTator
annotations to identify gene names in the text. Each leaf node represents one dependency
path.
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structure were cut further down to produce smaller subclusters. For each cluster, a set

of 10 dependency paths was selected at random, and a human annotator (again: me)

examined the paths and several associated example sentences from the literature to

deduce a label. The full results of this labeling process occupy 16 pages in Appendix A.

7.2.2 Simplified Relationship Themes

As expected, nearby clusters sometimes shared similar themes. Occasionally, clusters

that were not close together in the dendrograms also shared similar themes. This most

often occurred when the same relationship type was described in slightly different

ways within distinct groups of entity pairs. For example, clusters 6, 15, and 16 in

Figure 7.2 all referred to descriptions of side effects or adverse events related to the

administration of a chemical, yet cluster 6 was also closely related to clusters 8 and 9,

which described investigations of experimental agents.

We simplified the clusters from the tables in Section A.2 into thematically-related

groups and assigned each group a symbol. The complete list of groups can be found in

Table 7.2. Two of the groups in the chemical-gene dendrogram contained relationships

where we perceived the directionality to be important for future applications: activation

(agonism vs. antagonism, cluster 6) and changes in expression (up, down, or neutral,

clusters 8-10). By cutting the clusters further down, we could potentially have

separated some of these directional changes, but the clusters were small enough that

we decided to simply label the positive and negative directional dependency paths

manually to ensure perfect separation. This is what the “+” and “-” signs refer to in

Table 7.2.

7.3 Properties of the Relationship Clusters

7.3.1 Chemical-Gene Relationships

Figure 7.1 shows the hierarchical clustering of the chemical-gene dependency paths.

Full descriptions of the labeled clusters can be found in Table A.2 and simplified

themes are in Table 7.2.
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Table 7.2. Simplified relationship themes derived from the clusters shown in Figures 7.1,
7.2, 7.3, and 7.4. A symbol is bolded if it refers to a theme that appears in multiple
dendrograms. Complete descriptions of the individual clusters can be found in Appendix A.

Type Symbol Theme Relevant Supporting
Dendrogram Cluster(s)

Chemical-Gene A+ agonism, activation Figure 7.1 6+
A- antagonism, blocking 6-
B binding, ligand (esp. receptors) 14-16
E+ increases expression/production 8+,9+
E- decreases expression/production 8-,9-,10
E affects expression/production (neutral) 8,9,11a
N inhibits 3

Gene-Chemical O transport, channels Figure 7.1 19,21
K metabolism, pharmacokinetics 11c
Z enzyme activity 20

Chemical-Disease T treatment/therapy (incl. investigatory) Figure 7.2 8g,8h,9
C inhibits cell growth (esp. cancers) 2,3
Sa side effect/adverse event 6,15,16
Pr prevents, suppresses 1,9,21,24,28
Pa alleviates, reduces 26,30
J role in pathogenesis 20

Disease-Chemical Mp biomarkers (progression) Figure 7.2 18,19

Gene-Disease U causal mutations Figure 7.3 14
Ud mutations affect disease course 13
D drug targets 10,12
J role in pathogenesis 2h,4,6,8,9
Te possible therapeutic effect 2j,3
Y polymorphisms increase risk 22,26,27
G promotes progression 29

Disease-Gene Md biomarkers (diagnostic) Figure 7.3 5,7
X overexpression in disease 15,17,30
L improper regulation linked to disease 18,19,21

Gene-Gene B binding, ligand (esp. receptors) Figure 7.4 10
W enhances response 13
V+ activates, stimulates 14,16
E+ increases expression/production 21,22
E affects expression/production (neutral) 7,17
I signaling pathway 24
H same protein or complex 25
Rg regulation 28,30
Q production by cell population 1,2,6
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The first major cluster, cluster 3, refers to inhibition (the chemical, C, is an

inhibitor of the protein, G). This is mostly reported in a static context in patterns

such as “C, a G inhibitor” and “G inhibition by C”. The mechanism behind the

inhibition is usually unclear from these descriptions - is C inhibiting the activity of

the protein G or the expression of G’s mRNA? It’s difficult to tell.

Clusters 5 and 6 specifically describe effects on protein activity, with 6, the larger

cluster, referring mainly to situations where C is an agonist or antagonist of G.

Antagonists are often referred to as “blockers” or “inhibitors”, while agonists are

referred to as “activators” or “ligands”.

Clusters 8, 9, 10 and 11a all describe effects on mRNA and protein levels, rather

than protein activity. Cluster 10 specifically refers to inhibition, while the effects in

clusters 8 and 9 were mixed: some positive, some negative, some neutral. Cluster

11a sometimes refers to a treatment response, as though C is being administered in a

therapeutic manner or G’s response to C is being specifically investigated.

Clusters 14-16 all describe the binding of C to a protein, G, which is usually a

receptor for C. Many of the chemicals connected to proteins via these dependency

paths are endogenous compounds, such as amino acids and hormones.

Clusters 11c and 19-21 reverse the directionality of the relationship. Until this point,

most of the relationships we have described involve situations where the chemical, C,

acts on the protein, G, perhaps by inhibiting it, inducing its activity, or raising or

lowering its expression/synthesis. But there are also relationship classes where the

protein acts on the chemical: enzymes that modify chemical structures, transporters

that shuttle chemicals across cell membranes, and a variety of other pharmacokinetic

relationships.

Cluster 11c contains most of the pharmacokinetic relationships, including the effect

of G on C’s metabolism and situations where C is actually a metabolite produced by

G after acting on some other chemical. Some transport relationships, which are also

pharmacokinetic relationships but are described more specifically in clusters 19 and 21,

are also found here; note that pharmacokinetic relationships are a superset of these.

Cluster 20, the last of the clusters assigned a theme, refers to enzymatic modification

of a chemical, usually by an enzyme that specifically targets that chemical and thus
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has the chemical’s name as part of its own name.

While cluster 11c contained some fine-grained local structure – paths specifically

referring to metabolism or secretion tended to cluster close together in the dendro-

gram, for example – it was surprisingly difficult to distinguish different classes of

pharmacokinetic relationships from within this cluster. We comment on this issue

further in the discussion.

We did not assign themes to the last major group of clusters in the dendrogram

(clusters 23− 30) because these mainly reflected a major error where part of a protein

(an amino acid or a particular binding domain such as a zinc finger) was misidentified

as a chemical. While amino acids and elements such as zinc are chemicals, the

relationships reflected here are whole-part, not interactions between distinct entities.

7.3.2 Chemical-Disease Relationships

Figure 7.2 shows the hierarchical clustering of the chemical-disease dependency paths.

Full descriptions of the labeled clusters can be found in Table A.3 and simplified

themes are in Table 7.2.

By far the largest set of chemical-disease relationships (from clusters 8g, 8h and 9)

are treatment relationships, in which a chemical is described as a treatment or potential

treatment for a disease. Similar to cluster 3 from Figure 7.1, these relationships are

mostly described in a static context: we don’t know why C is a useful treatment for

D, but it is described as such without further elaboration. While we did not choose to

differentiate clusters 8g, 8h and 9 in terms of their relationship theme, there are subtle

differences among these three clusters. Cluster 8g mostly refers to evaluation of efficacy,

where C is being investigated as an experimental agent for treating D, or patients

are described as receiving C for D without an indication as to whether C is useful.

Dependency paths in cluster 8h tend to go further, indicating that the treatment was

efficacious for D. Finally, cluster 9, a small cluster with only 14 dependency paths,

includes statements about using C to prevent or reduce D, which is slightly different

than treating D. However, due to the substantial similarities of paths among these

three clusters (some variant of the phrase “treatment for” appears in all three), we
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labeled all of them with the same theme.

The word “treat” (treated, treatment, etc.) also appears quite often in clusters

3 and 6, but its meaning here is different. Cluster 3 refers not to the treatment of

patients, but the treatment of cell lines, usually cancer cell lines. Clusters 2 and

3 reflect a theme where a chemical reduces the proliferation of cells exhibiting a

particular disease phenotype.

Cluster 6, which also involves the word “treat”, refers mainly to the evaluation

of side effects in C-treated patients. Despite its proximity to clusters 8 and 9 in the

dendrogram, it is semantically more related to clusters 15 and 16, which describe side

effects. In these clusters, D is not a disease that C is used to treat, but a side effect

or adverse event resulting from treatment with C.

Cluster 20, which is close in meaning to clusters 15 and 16, includes statements

implicating C in the pathogenesis of D. Here C is most often an endogenous compound.

Whereas in clusters 15 and 16 we tend to see situations where a drug is intentionally

administered to a patient or animal, causing an adverse event, cluster 20 refers

to cases where levels of C (most often in serum or tissue) are associated with the

risk or progression of D. These levels may result from external supplementation or

overproduction of an endogenous compound by the body.

Related to cluster 20 are clusters 18 and 19, which describe biomarkers. In these

situations, the chemical C is not implicated in the pathogenesis of D, but is instead

referred to as an indicator, or marker, of disease progression. There is considerable

overlap with the patterns used in cluster 20, but again the shift in meaning is subtle -

a substance can be an indicator of D without causing D.

Finally, several clusters are closely related to the idea of disease treatment, but

rather than stating, simply, “C is a treatment for D”, they indicate observations

about what C, exactly, is doing. Clusters 1, 9, 21, 24, and 28 all refer to situations

where C prevents D, or reduces the risk of D (note that cluster 9 appears both in

the “prevents” theme, Pr, and in the “treatment/therapy” theme, T, in Table 7.2). In

contrast, clusters 26 and 30 refer to cases where C alleviates D, or reduces its effect.

The implication here is that C is being used after D has already occurred.
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7.3.3 Gene-Disease Relationships

Figure 7.3 shows the hierarchical clustering of the gene-disease dependency paths. Full

descriptions of the labeled clusters can be found in Table A.4 and simplified themes

are in Table 7.2.

Cluster 20 in Figure 7.2 contains relationships that are quite similar in character

to those in clusters 2h, 4, 6, 8, and 9 in Figure 7.3. All of these clusters describe

situations where a protein (or chemical, in Figure 7.2 cluster 20) is implicated in the

pathogenesis of a disease. Clusters 4 and 6 refer simply to increased levels of G in D,

whereas clusters 8 and 9 more directly implicate the protein in the pathogenesis of

the disease. Cluster 29 reflects a slightly different theme, where the protein promotes

disease progression, rather than disease onset. The two themes share some overlap

but are subtly different; cluster 29 focuses on cancers, discussing proteins promoting

cell invasion, proliferation, and progression.

Clusters 5 and 7 in Figure 7.3 are similar to clusters 18 and 19 in Figure 7.2 in that

they do not ascribe a pathogenic role to the protein (or chemical) but instead refer

to it as a biomarker. Cluster 7 contains statements where a protein, G, is described

as “a robust diagnostic biomarker for D”, or “an indicator of D”, without insinuating

that it causes D. Cluster 5 is very closely tied to cluster 6, but cluster 6 contains a

few statements with causal implications, such as “G is a mediator of D”.

Clusters 2j and 3 include therapeutic relationships, where G is described as a

treatment or potential treatment of D. Cluster 3 mostly describes trials of G in the

treatment of D. While there are a few statements that could perhaps imply efficacy,

such as “G therapy for patients with D”, the treatment relationships here are not

described with anywhere near the definiteness of clusters 8 and 9 in Figure 7.2.

In clusters 10 and 12, the protein, G, is described as a drug target or potential

target for the treatment of the disease, D. Often this description does not include the

word “target”, but it is implied - the statement refers to the utility of G inhibitors in

treating D, for example.

Some statements in clusters 10 and 12 refer to mutations in G that have an effect

on D. It’s implied that disruptions in the activity of G can impact the course of D.

Clusters 13 and 14 address the issue of mutations more directly, either by describing
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studies that investigate the role of G mutations in the progression of D (cluster 13) or

by directly implicating mutations in G as causal risk factors in D (cluster 14).

While clusters 5 and 7 refer specifically to biomarkers, clusters 15, 17 and 30 refer

to overexpression of proteins in disease, usually in patient serum. These proteins could

represent potential biomarkers as well, although they are not described in that way.

Clusters 18, 19 and 21 focus on regulation, specifically cases where improper

regulation of a gene is linked to disease. There is substantial overlap between these

ideas and those of overexpression, biomarkers, etc. but again the focus is subtly

different.

The last set of clusters, 22, 26 and 27, focus explicitly on polymorphisms that

increase disease risk. The terms “polymorphism”, “mutation”, and “variant” are all

present. Cluster 22 focuses almost exclusively on tumor suppressor genes, which, when

mutated, can cause cancers. Note that in this case it is mutations in the gene (the

DNA) that are increasing risk, rather than the level or activity of a protein. There is

some semantic overlap with clusters 13 and 14.

7.3.4 Gene-Gene Relationships

Figure 7.4 shows the hierarchical clustering of the gene-gene dependency paths. Full

descriptions of the labeled clusters can be found in Table A.5 and simplified themes

are in Table 7.2.

The cluster themes in Figure 7.4 were the most difficult to parse among all the

dendrograms. The vast majority of protein-protein relationships reflect some kind of

change in activity or expression in the second protein based on the action of the first

protein. Many of the relationships are similar to chemical-gene relationships in that a

protein binds to another protein (cluster 10), increases its expression (clusters 21 and

22), or affects its expression in some other way that is not stated (clusters 7 and 17).

All of these themes also appear in Figure 7.1.

However, there are a few other themes that are specific to protein-protein inter-

actions. One protein can enhance the response of another to some stimulus (cluster

13), or activate or stimulate another protein by itself (clusters 14 and 16). A protein
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can be produced by a cell population expressing another protein, as in the case of

lymphocytes (i.e. proteins produced by CD4-bearing T-cells), which is reflected in

clusters 1, 2 and 6.

Clusters 24, 25, 28 and 30 all reflect similar relationships involving regulation and

pathways, but are subtly different. Cluster 24 explicitly refers to signaling, with both

protein members forming part of the same signaling pathway. Cluster 25 is a cluster of

patterns reflecting abbreviations, where the two proteins involved are literally identical

or part of the same protein complex. Clusters 28 and 30 speak more specifically of

regulation, but contain several patterns that also refer to co-membership in the same

pathway. All of these concepts are related.

7.4 Creating a Global Relationship Network

7.4.1 Assigning Remaining Paths to Themes

The themes in Table 7.2 are based on only the most frequent ≈ 700 connecting

dependency paths for each combination of entity types. From here on, we will call the

paths represented in Table 7.2 the flagship paths for each theme. However, from the

full datasets described in Table 7.1, we can see that there are vastly more dependency

paths than this in the full dataset. The distributions of dependency path frequencies

are Zipfian, meaning that there are a large number of paths that occur only once or

twice. We would like to make intelligent guesses about the theme memberships of

these remaining paths.

To obtain an estimate of how much each path supports each theme, we counted

the number of times each path cooccurred with the flagship paths in Figures 7.1, 7.2,

7.3, and 7.4. We define a co-occurrence as a situation where both the unassigned

path and a flagship path connect the same entity pair. We calculated cooccurrence

frequencies for the flagship paths as well as the non-flagship paths.

We refer to the number of cooccurrences of each path with flagship paths for a

particular theme as that path’s support for that theme. For example, one of the
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dependency paths2 corresponding to the pattern “the G agonist C”, co-occurs with

paths from the B theme (Table 7.2) 18 times. It also co-occurs with flagship paths from

the A+ theme (agonists/activators) 18 times, but never co-occurs with a path from

any other theme. In this way, the same path can support both theme B and theme

A+. And in fact, an agonist does both bind to and activate a protein. In general,

although we have assigned different symbols to the different themes in Table 7.2, the

semantics of these themes are not mutually exclusive.

In the end, we were able to assign theme distributions to 37,491 chemical-gene de-

pendency paths (13.6% of total), 2,021,192 chemical-disease dependency paths (33.3%),

136,206 gene-disease dependency paths (20.0%), and 41,418 gene-gene dependency

paths (11.0%) to themes. The rest of the dependency paths never co-occurred with a

single flagship path for any theme, so we could not make a call as to their meaning.

7.4.2 Description of the Final Network

Our final dataset contains two parts. Part I of the dataset contains the sup-

port of each dependency path toward each theme. Each record contains a [low-

ercased] dependency path, followed by a set of columns that is 2× as long as

the number of themes for that relationship type. For example, the record for the

Chemical-Gene path trial|appos|START ENTITY trial|nmod|inhibitor

inhibitor|amod|END ENTITY contains 21 fields (10 possible themes; see Ta-

ble 7.2). The record contains the dependency path, followed by the supports (co-

occurrence frequencies with flagship paths) for each theme, and an indicator of whether

or not the path itself is part of the flagship path sets for that theme. This particular

path is not a flagship path for any theme; it has a support of 3 for theme N (inhibition)

and zero support for any other theme.

Part II consists of four sets of dependency paths, along with the original sentences

from which they derive and associated metadata. A single record contains the following

information:

2[nummod, agonist, nummod ]
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15161679 PubMed ID

0 Sentence number (0 = title)

zosuquidar trihydrochloride First entity name, formatted

54,81 First entity name, location in abstract

P-glycoprotein Second entity name, formatted

28,42 Second entity name, location in abstract

zosuquidar trihydrochloride First entity name, raw string

P-glycoprotein Second entity name, raw string

MESH:C095179 First entity, database identifier(s)

5243 Second entity, database identifier(s)

Chemical First entity, type

Gene Second entity, type

trial|appos|START ENTITY trial|nmod|inhibitor

inhibitor|amod|END ENTITY

Dependency path

A Phase I trial of a potent P-glycoprotein

inhibitor , zosuquidar trihydrochloride -LRB-

LY335979 -RRB- , administered intravenously

in combination with doxorubicin in patients

with advanced malignancy .

Sentence, tokenized

Part II contains 4,451,661 records, of which 92,465 (2.1%) represent chemical-gene

dependency paths, 3,875,209 (87.1%, i.e. the vast majority) are chemical-disease paths,

338,306 (7.6%) are gene-disease paths, and 145,681 (3.3%) are gene-gene paths. We

have arranged the paths in alphabetical order of the entity pairs, so that different

sentences referring to the same two entities appear next to each other in the file.

7.5 Summary, Limitations & Future Work

We have shown how EBC can be used in conjunction with hierarchical clustering to

uncover semantically-related sets of dependency paths, and developed an approach

that produces thematic labels for dependency paths both within and outside of these

clusters. One important property of our approach is that a single dependency path

can provide support for multiple themes, so the themes can be reconfigured, and

new themes can be introduced at any time, without altering the support for existing

themes. The dependency paths for different themes can also overlap each other.
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7.5.1 The Limits of Co-occurrence

One downside of this approach, and of EBC more generally, is that it relies on the co-

occurrence of different dependency paths within entity pairs to establish the meaning

of rarer paths. But there are a large number of dependency paths that (a) never

co-occur with another path, and (b) occur with only one entity pair. These orphan

paths are impossible to assign to themes using the current method. Out of 556,487

chemical-gene dependency path connections in the literature, we are currently able to

assign theme supports to only 92,465 (16.6%). For chemical-disease connections, of

which there are 13,658,821 in Medline, we can assign themes to only 3,875,209 (28.4%).

For gene-disease connections, we can assign themes to 338,306 out of 1,071,043 (31.6%),

and for gene-gene, we can assign themes to 145,681 out of 1,274,010 (11.4%).

Depending on the application, it is possible that the missing paths do not matter.

After all, we are capturing the paths and entity pairs that have the most support in

the literature. However, this does imply that if we need to capture these rarer paths,

we need to have some way of connecting them to the more frequent dependency paths

that does not rely on co-occurrence within entity pairs.

7.5.2 Common Sources of Error

We have observed several sources of error that can lead to incorrect or misleading

theme assignments. We plan to improve these iteratively in future releases of this

network.

One common source of error arises from the use of dependency paths as features. A

dependency path can only capture the relationship between two entities in a sentence,

but many relationships involve more than two entities. An example would be a

situation where the levels of a chemical in a cell culture (C1) affect the ability of a

drug (C2) to exert its effect on a particular receptor (G). Thus, we may choose to flag

sentences where > 2 entities (and thus, dependency paths) are present and analyze

these separately.

An issue particular to gene-gene relationships, or any type of symmetric relationship,

is that our method treats each direction separately. We were interested to see
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whether the dendrogram in Figure 7.4 would fragment into two halves, each containing

relationships of a particular directionality, but this did not occur. Many of the gene-

gene relationships in Table 7.2 are symmetric (binding, for example), but at this time,

we are unable to distinguish directionality in, for example, activation relationships.

All we can say is that one of the proteins increases (or decreases) the activity of the

other protein, which is somewhat unsatisfying.

The named entity recognition provided by PubTator, while state-of-the-art, is also

not perfect. While the multi-word entity recognition provided by PubTator is a huge

improvement over our earlier method (see Chapter 6) and captures many more entities,

we have also observed several situations where only parts of entity names are captured,

or where entities are assigned to the wrong type (proteins labeled as chemicals, etc.).

As long as we continue to rely on PubTator for NER, this will be an issue, but we

expect that NCBI will continue to refine their algorithms as we refine ours.

7.5.3 On Evaluation and Applications

In building this network, we have created a resource that we hope will prove useful for

biomedical scientists in a variety of disciplines. Each edge in this network represents

one discovery, made by some scientist in a particular time and place. By combining

the discoveries of thousands of scientists, we can potentially predict new drug-drug

interactions, uncover pathways for new drugs, break down complex biochemical inter-

actions mechanistically, and begin to understand the genetic and chemical similarities

underlying complex phenotypes.

It is impossible to evaluate the quality of the network itself without specifying

an application. For example, we have chosen not to obsess over the gene-gene

bidirectionality “error” at this point because we don’t know whether fixing it would

have any impact. In the next two chapters, we present two applications of the network

to real biomedical problems: curating pharmacogenomic pathways, and predicting

(and explaining) drug-drug interactions.



Chapter 8

Building Pharmacogenomic

Pathways

Here we describe how the global relationship network from Chapter 7 can be applied

to learn pharmacogenomic pathways from the raw text of the biomedical literature, a

task that is currently performed by human curators at PharmGKB [62]. We discuss

the benefits and limitations of this approach and provide examples of how text mining

can be used to expand existing pathways and discover new ones.

8.1 Pharmacogenomic Pathways

8.1.1 Pharmacokinetic and Pharmacodynamic Pathways

A pharmacogenomic pathway contains the complete set of biochemical reactions,

transport and catalysis events that happen to a drug once it enters the body.

A pharmacokinetic (PK) pathway is the subset of these events through which a

drug is absorbed, distributed, metabolized, and excreted. In other words, it represents

what the body does to the drug. Examples of PK pathway components include

metabolic reactions in which enzymes alter the chemical structure of the drug or

break it down into multiple smaller components. They also include the binding and

transport events by which a drug is transferred out of cells and eventually, excreted

140
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Figure 8.1. The pharmacokinetic pathway for cyclophosphamide, an anti-cancer agent.
Copyright PharmGKB and Stanford University (2016). Reprinted with permission.

from the body.

A pharmacodynamic (PD) pathway, in contrast, is the set of events through which

the drug acts on the body. The drug may, perhaps, bind to a receptor, either on a

cell within the body or on a microorganism (bacteria, virus, fungus, etc.) or parasite

within the body. It may be transported across the nuclear membrane into the nucleus

or it may bind to proteins or other molecules within the cytoplasm. These are just a

few of the possible types of events that constitute the pharmacodynamic pathway.

Pathways consist of much more than just chemical-protein or protein-protein

interactions, but these form two important components of pathways. For example,

Figure 8.1 shows the pharmacokinetic pathway for cyclophosphamide, an important

anticancer compound. In the figure, the liver cytochrome CYP2B6 is depicted as

part of the initial step in the metabolism (PK pathway) of cyclophosphamide. Once

cyclophosphamide enters a liver cell through an unknown transport mechanism,
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CYP2B6 and other liver cytochromes work together to convert it to 4-hydroxy-

cyclophosphamide. The interaction of CYP2B6 with the cyclophosphamide molecule

represents an important step in its metabolism, and it constitutes one type of drug-

protein interaction that we would like to uncover automatically through text mining.

Protein-protein interactions represent another important component of pharma-

cogenomic pathways. For example, Figure 8.2 shows the pharmacodynamic pathway

for selective serotonin reuptake inhibitors (SSRIs), an important class of drugs widely

used in the treatment of depression. The two cells shown are neurons, one of which

is releasing the neurotransmitter serotonin (5HT) into the synaptic cleft (the space

between neurons, though which they communicate using neurotransmitters). The

serotonin molecules then bind to a set of receptors on the postsynaptic neuron - for

example, the HTR1 receptor. Once the serotonin molecule binds to HTR1, it activates

a signaling cascade that begins with coupling of the internal part of the HTR1 receptor

and the Gi/o protein alpha subunit (GNAI) [126]. This is a direct protein-protein

interaction that is important for serotonin’s effect on neurons, and in turn, SSRIs’

clinical effects on humans.

8.1.2 The PharmGKB Pathways

The PharmGKB pathways database1 [62] contains, as of this writing, 108 unique

pharmacodynamic and pharmacokinetic pathways for drugs or drug classes. Pictures

of two of these pathways are shown in Figures 8.1 and 8.2.

The PharmGKB pathways are constructed manually by PharmGKB’s curators and

are limited to drugs with relevant (or potential) pharmacogenetic (PGx) associations2.

The drugs for which pathways are built are chosen after careful review of the FDA’s

biomarker list3 and the Clinical Pharmacogenetics Implementation Consortium (CPIC)

nominations4. Pathway interactions are supported by manually curated evidence from

the biomedical literature, and relevant PubMed IDs are provided for each pathway

1https://www.pharmgkb.org/view/pathways.do
2As mentioned in Chapter 6, PGx associations are situations where mutations in the gene are

known to affect a patient’s clinical response to a drug.
3http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm
4https://www.pharmgkb.org/page/cpic
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component.

8.2 Identifying Pathway Candidates

The global relationship network from Chapter 7 contains labeled relationships among

a large number of chemicals and genes. Our hypothesis is that certain types of

relationship patterns among chemicals, genes, and phenotypes in the network will

occur preferentially between chemicals and genes that are connected within a pathway.

If this is true, we want to learn to recognize these patterns so we can begin building

pathways for new drugs.

8.2.1 Binarizing Pathway Interactions

A pathway file contains several lines of information, each of which includes the

following fields: From, To, Reaction Type, Controller, Control Type, Cell Type,

PubMed Id, Genes, Drugs, and Diseases. The Reaction Type can be one of the

following: Biochemical Reaction, Complex Assembly, Conversion, or Transport. Each

line in a pathway file represents a single biochemical event, but can include more than

two entities.

Although multiple entities can be present in each event, the network from Chapter 7

contains edges that connect pairs of entities. To extract the relevant pairwise interac-

tions among drugs, chemicals and genes in each pathway, we applied the following

steps to each line in a pathway file:

1. Preprocessing. We preprocessed the line to remove extra whitespace and quotes,

which surrounded some of the entity names. We split fields containing multiple

entity names so we could handle each name separately.

2. Extracted the Genes, Drugs, From, To, and Controllers fields. The From and

To fields were most likely drugs, metabolites, or chemicals, while the Controllers

could be drugs/chemicals or proteins. We removed all recognized drug and gene

names from the From, To and Controllers fields and added the rest to both the

chemical list and the gene list.
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3. Converted multiple entities to sets of pairs. We took all binary combinations of

chemical and gene entities and created a separate record for each.

4. Obtained synonyms from PharmGKB lexicons, and restricted to strings in net-

work. Using the drug and gene lexicons from PharmGKB, we added synonyms

for each drug or gene name if any were available, keeping only those strings that

were present in the network5.

The end result was a list of chemical-gene and gene-gene interactions for each of

the 108 pathways. Each interaction was labeled with its type, its unique identifier

(since multiple pairs of strings could correspond to the same interaction), and (if it was

a chemical-gene interaction) whether or not the chemical in question was a recognized

drug or another type of chemical.

For example, here are some interactions for the gemcitabine pathway, which in-

cludes both pharmacokinetics and pharmacodynamics:

entity 1 type 1 entity 2 type 2 interaction type id is drug

gemcitabine Chemical cda Gene BiochemicalReaction 0 1

gemcitabine Chemical cytidine deaminase Gene BiochemicalReaction 0 1

gemcitabine Chemical dnt1 Gene Conversion 7 1

rrm2b Gene rrm2 Gene Conversion 9 NA

cnt1 Gene ent2 Gene Transport 24 NA

cnt3 Gene ent1 Gene Transport 25 NA

8.2.2 A Strategy for Building Pathways

Pathways contain both nodes (biomedical entities) and edges (relationships). To build

a pathway for a new drug, we need to be able to identify both. To identify likely

pathway nodes, we begin at the drug for which the pathway is being built (the origin)

and traverse the network radially to a fixed distance. Based on the patterns of labeled

edges connecting the origin to its neighbors, we build a classifier to distinguish likely

pathway candidates from other chemicals and genes. Once the likely pathway nodes

are identified, we use the network to identify relationships among all of the pathway

5We ignored entities not found in the network because it is a priori impossible to identify pathway
entities using text mining if they are not in the network at all. Even a perfect text mining algorithm
could not find these. This problem will be addressed naturally in the future as more and more new
discoveries are reported, and as we move beyond abstracts to full text articles.
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entities and label them with their most likely interaction types.

Because each pathway has a different character (pharmacokinetic vs. pharmacody-

namic, for example), we do not necessarily expect the patterns connecting the origin

to other pathway chemicals and genes to be the same for all pathways. We therefore

build separate classifiers for each of the 103 pathways for which at least one origin

drug was listed and present in the network.

This strategy reflects the practical use case for these classifiers. If I want to

build a pharmacokinetic pathway for an anticancer drug, I might expect to choose

different candidates than if my goal is to build a pharmacodynamic pathway for an

antidepressant. I might therefore choose to use the classifier for pathway PA2001

(irinotecan pharmacokinetics) to predict new candidates for my novel agent, or some

combination of classifiers relevant to cancer and pharmacokinetics. Any increased

ability to narrow down the pool of possible pathway candidates is worth it, since there

are potentially tens of thousands of new pathway candidates within a certain radius

of the origin drug in the network.

8.2.3 Pathway Representation in the Network

Before we begin building our classifiers, it is important to establish a baseline for

performance based on the representation of pathway nodes and edges in the Chapter 7

network. We need to know how far out to search from the origin, as well as the

fraction of pathway edges that are likely to appear in the network.

Table 8.1 shows the fraction of pathway nodes connected to the origin within an

edge radius of 1, 2, or 3. Nearly all chemical and gene pathway entities in the network

are reachable within a radius of 3, but then again, so are most of the chemicals and

genes in the network at large. At least half of all pathway genes are reachable from

the origin at a radius of 2 for 98/103 pathways (95.1%). We therefore elected to build

our classifiers for pathway entities by considering only those entities at a radius of

≤ 2 from the origin.

Table 8.2 shows the fraction of pathway edges directly connected within the
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Table 8.1. Pathway nodes connected to the origin drug in the network at a radius of 1,
2, and 3 edges from the origin, for all 103 pathways. The pathways are sorted in order of
the frequency of pathway gene nodes that occur within a radius of 2 from the origin, from
greatest to smallest. PD = pharmacodynamics, PK = pharmacokinetics. Note that a radius
of 1 is impossible for chemicals, because there are no direct chemical-chemical interaction
edges in the network.

Genes Chemicals

Pathway Total r1 r2 r3 Total r1 r2 r3

PA145011113-Warfarin PK 8 0.12 1.00 1.00 0 - - -

PA145011120-Aromatase Inhibitor Breast Cell PD 6 0.17 1.00 1.00 1 0.00 1.00 1.00

PA152325160-Gefitinib PK 9 0.11 1.00 1.00 0 - - -

PA152530846-Proton Pump Inhibitor PK 1 0.00 1.00 1.00 0 - - -

PA154426155-Taxane PK 13 0.31 1.00 1.00 0 - - -

PA161749012-Fluoxetine PK 6 0.50 1.00 1.00 0 - - -

PA162359940-Imipramine Desipramine PK 4 0.25 1.00 1.00 0 - - -

PA164713429-Citalopram PK 5 0.20 1.00 1.00 0 - - -

PA165291507-Fluoropyrimidine PD 1 0.00 1.00 1.00 4 0.00 1.00 1.00

PA165816736-Celecoxib PK 7 0.00 1.00 1.00 0 - - -

PA165816969-Rosiglitazone PK 3 0.33 1.00 1.00 0 - - -

PA165884757-Caffeine PK 7 0.14 1.00 1.00 1 0.00 1.00 1.00

PA165980774-Uric Acid Lowering Drugs PD 5 0.80 1.00 1.00 4 0.00 1.00 1.00

PA165986114-Tacrolimus Cyclosporine PK 3 1.00 1.00 1.00 0 - - -

PA166014758-Venlafaxine PK 5 0.00 1.00 1.00 0 - - -

PA166121347-Paroxetine PK 7 0.14 1.00 1.00 0 - - -

PA2034-Cyclophosphamide PK 7 0.14 1.00 1.00 2 0.00 1.00 1.00

PA165292163-Doxorubicin Cancer Cell PD 21 0.19 0.95 1.00 0 - - -

PA2042-Sympathetic Nerve Neuroeffector Junction 21 0.38 0.95 1.00 0 - - -

PA153627758-Potassium Channel Inhibitors PD 36 0.22 0.94 0.97 1 0.00 1.00 1.00

PA2025-Etoposide PK PD 18 0.22 0.94 1.00 3 0.00 1.00 1.00

PA166121942-Ibuprofen PD 34 0.24 0.94 1.00 8 0.00 1.00 1.00

PA2023-ACE Inhibitor PD 31 0.29 0.94 1.00 2 0.00 1.00 1.00

PA165110622-Renin Angiotensin Agents PD 30 0.30 0.93 0.97 2 0.00 1.00 1.00

PA2039-Methotrexate Cancer Cell PD 14 0.29 0.93 1.00 10 0.00 1.00 1.00

PA150981002-Vinka Alkaloid PK 13 0.00 0.92 0.92 0 - - -

PA165291575-Antimetabolite Folate Cycle PD 13 0.31 0.92 1.00 9 0.00 1.00 1.00

PA165980399-Oxidative Stress Reg Erythrocyte 13 0.54 0.92 1.00 6 0.00 1.00 1.00

PA165959584-Sorafenib PD 40 0.12 0.90 0.95 0 - - -

PA145011109-Atorvastatin Lovastatin Simvastatin PK 19 0.26 0.89 0.95 0 - - -

PA165817070-Carbamazepine PK 19 0.21 0.89 1.00 0 - - -

PA145011114-Warfarin PD 18 0.06 0.89 0.94 0 - - -

PA164713427-Imatinib PK PD 16 0.31 0.88 0.94 0 - - -

PA145011110-Pravastatin PK 15 0.13 0.87 1.00 0 - - -

PA165378192-Artemisinin and Derivatives PK 7 0.00 0.86 1.00 0 - - -

PA165948259-Metformin PK 7 0.29 0.86 1.00 0 - - -

PA2037-Ifosfamide PK 7 0.00 0.86 1.00 1 0.00 1.00 1.00



148 CHAPTER 8. BUILDING PHARMACOGENOMIC PATHWAYS

PA2031-Statin PD 34 0.12 0.85 1.00 7 0.00 1.00 1.00

PA154444041-Platelet Aggregation Inhibitor PD 66 0.23 0.85 0.98 7 0.00 1.00 1.00

PA2030-Sympathetic Nerve Pre/Post Ganglionic Jct 13 0.62 0.85 0.92 0 - - -

PA166041114-Ibuprofen PK 19 0.11 0.84 1.00 0 - - -

PA2032-VEGF Signaling Pathway 81 0.14 0.84 0.99 1 0.00 1.00 1.00

PA164713428-Losartan PK 6 0.33 0.83 1.00 1 0.00 1.00 1.00

PA165292177-Doxorubicin PK 30 0.17 0.83 0.97 0 - - -

PA146123006-Codeine and Morphine PK 11 0.09 0.82 0.82 2 0.00 1.00 1.00

PA154426903-Erlotinib PK 11 0.18 0.82 1.00 0 - - -

PA165292164-Doxorubicin Cardiomyocyte Cell PD 22 0.18 0.82 0.95 0 - - -

PA165816270-Methotrexate Brain Cell PK 11 0.09 0.82 1.00 0 - - -

PA165964265-Valproic Acid PK 16 0.12 0.81 1.00 0 - - -

PA162356267-EGFR Inhibitor PD 91 0.07 0.80 0.90 3 0.00 0.33 0.67

PA145011108-Statin Generalized PK 30 0.00 0.80 1.00 0 - - -

PA165947317-Leukotriene modifiers PD 10 0.10 0.80 1.00 5 0.00 1.00 1.00

PA165950411-Nevirapine PK 5 0.00 0.80 1.00 0 - - -

PA165958541-Theophylline PK 5 0.00 0.80 1.00 2 0.00 1.00 1.00

PA165985892-Tacrolimus Cyclosporine PD 57 0.02 0.79 1.00 0 - - -

PA162355621-Nicotine Dopaminergic Neuron PD 52 0.19 0.79 0.92 1 0.00 1.00 1.00

PA145011118-Estrogen Metabolism Pathway 14 0.14 0.79 1.00 2 0.00 1.00 1.00

PA165986279-Acetaminophen therapeutic doses PK 28 0.18 0.79 1.00 1 0.00 1.00 1.00

PA145011115-Phenytoin PK 18 0.06 0.78 1.00 0 - - -

PA152241951-Celecoxib PD 63 0.17 0.78 0.90 5 0.00 1.00 1.00

PA165984799-Diuretics PD 36 0.11 0.78 0.94 1 0.00 1.00 1.00

PA152530845-Proton Pump Inhibitor PD 44 0.11 0.77 0.93 5 0.00 0.80 0.80

PA153627759-Repaglinide PK 4 0.25 0.75 1.00 0 - - -

PA154423659-Nateglinide PK 4 0.25 0.75 1.00 0 - - -

PA154424674-Clopidogrel PK 12 0.33 0.75 1.00 0 - - -

PA162355620-Nicotine Chromaffin Cell PD 4 0.00 0.75 1.00 0 - - -

PA150653776-Fluoropyrimidine PK 22 0.09 0.73 0.95 1 0.00 1.00 1.00

PA165964832-Mycophenolic acid PK PD 11 0.09 0.73 1.00 1 0.00 1.00 1.00

PA2038-Ifosfamide PD 18 0.06 0.72 0.94 4 0.00 1.00 1.00

PA161749006-SSRIs PD 32 0.19 0.72 1.00 5 0.00 1.00 1.00

PA145011119-Tamoxifen PK 21 0.19 0.71 0.95 0 - - -

PA165816349-Methotrexate PK 21 0.10 0.71 1.00 0 - - -

PA165946349-Tramadol PK 7 0.14 0.71 0.86 0 - - -

PA165959537-Sorafenib PK 7 0.14 0.71 1.00 0 - - -

PA165971634-Pentose Phosphate Erythrocyte 7 0.29 0.71 0.86 6 0.00 1.00 1.00

PA165860384-Lamivudine PK PD 27 0.00 0.70 0.96 0 - - -

PA165948566-Metformin PD 43 0.14 0.67 0.81 0 - - -

PA145011117-Aromatase Inhibitor PD 6 0.17 0.67 1.00 1 0.00 1.00 1.00

PA165111375-Benzodiazepine PK 12 0.25 0.67 0.92 0 - - -

PA165960076-Clomipramine PK 6 0.00 0.67 1.00 0 - - -

PA165981686-Doxepin PK 6 0.00 0.67 1.00 0 - - -

PA165980050-Vemurafenib PD 62 0.02 0.66 0.92 0 - - -

PA2029-Irinotecan PD 17 0.12 0.65 1.00 1 0.00 1.00 1.00

PA165859361-Zidovudine PK PD 25 0.00 0.64 1.00 0 - - -
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PA166114721-Uricosurics PD 11 0.00 0.64 1.00 1 0.00 1.00 1.00

PA2001-Irinotecan PK 19 0.21 0.63 1.00 1 0.00 1.00 1.00

PA145011111-Fluvastatin PK 16 0.06 0.62 0.88 0 - - -

PA155028030-Tenofovir Adefovir PK 8 0.12 0.62 0.88 0 - - -

PA166117881-Acetaminophen toxic doses PK 26 0.12 0.62 1.00 1 0.00 1.00 1.00

PA145011112-Rosuvastatin PK 5 0.00 0.60 1.00 0 - - -

PA2024-Beta agonist Beta blocker PD 57 0.04 0.60 0.91 3 0.00 1.00 1.00

PA166123135-Efavirenz PK PD 17 0.00 0.59 0.88 0 - - -

PA2036-Gemcitabine PK PD 12 0.17 0.58 0.92 1 0.00 1.00 1.00

PA165374494-Busulfan PD 14 0.00 0.57 0.93 3 0.00 0.67 0.67

PA165959313-Valproic Acid PD 14 0.07 0.57 0.79 4 0.00 1.00 1.00

PA166122732-Succinylcholine PK PD 16 0.00 0.56 0.94 1 0.00 1.00 1.00

PA2011-Nicotine PK 11 0.09 0.55 1.00 0 - - -

PA2026-Glucocorticoid HPA Axis PD 13 0.08 0.54 0.69 0 - - -

PA165980834-Methylene Blue PD 10 0.00 0.50 1.00 5 0.00 1.00 1.00

PA166115250-Gemtuzumab ozogamicin PK PD 27 0.00 0.30 0.67 0 - - -

PA166104634-Abacavir PK PD 16 0.00 0.19 0.94 0 - - -

PA165815256-Amodiaquine PK 4 0.00 0.00 0.75 0 - - -

PA166126086-PegIFN alpha 2a/2b Hepatocyte PD 24 0.00 0.00 0.00 0 - - -

network6. A median 11.0% of chemical-gene pathway edges are connected in the

network (range: 0 to 70.0%) and 16.0% of gene-gene pathway edges are found (range:

0 to 100%). More than half of chemical-gene pathway edges are present in the network

for only 1.9% of pathways, and more than half of gene-gene pathway edges are present

for 16.5% of pathways.

The only way to increase the representation of the pathway edges in the network

is to increase the volume of text used in generating the network (in the hope that it

will provide more edges) and/or to increase the number of dependency paths we are

able to recognize and assign to themes. Until then, it is important to be conscious of

the fact that we will almost certainly do better at recognizing pathway entities than

pathway edges. The entities are at least present in the network and accessible from the

origin, while most of the pathway edges are not represented directly in the network.

6We measured this using unique identifiers, not strings. So if two strings corresponded to the
same chemical entity and only one was connected in the network to a gene, we would count that
interaction as “found”.
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Table 8.2. Pathway interactions connected by network edges. Interactions of type chemical-
gene and gene-gene are reported. The pathways are sorted in decreasing order of frequency
of gene-gene interactions connected by network edges. PD = pharmacodynamics, PK =
pharmacokinetics.

Chemical-Gene Gene-Gene

Pathway Found Total Fraction Found Total Fraction

PA145011120-Aromatase Inhibitor Breast Cell PD 1 13 0.08 1 1 1.00

PA162359940-Imipramine Desipramine PK 1 8 0.12 3 3 1.00

PA165815256-Amodiaquine PK 0 3 0.00 1 1 1.00

PA165960076-Clomipramine PK 0 4 0.00 3 3 1.00

PA165986114-Tacrolimus Cyclosporine PK 15 22 0.68 10 10 1.00

PA166014758-Venlafaxine PK 0 6 0.00 4 4 1.00

PA165981686-Doxepin PK 0 5 0.00 5 6 0.83

PA166121347-Paroxetine PK 1 6 0.17 5 6 0.83

PA161749012-Fluoxetine PK 7 10 0.70 13 16 0.81

PA154426155-Taxane PK 5 17 0.29 22 28 0.79

PA164713427-Imatinib PK PD 7 20 0.35 27 35 0.77

PA152325160-Gefitinib PK 1 12 0.08 3 4 0.75

PA154426903-Erlotinib PK 2 9 0.22 5 7 0.71

PA145011113-Warfarin PK 3 15 0.20 7 10 0.70

PA164713429-Citalopram PK 1 6 0.17 2 3 0.67

PA165111375-Benzodiazepine PK 5 27 0.19 8 14 0.57

PA145011119-Tamoxifen PK 10 27 0.37 26 51 0.51

PA150981002-Vinka Alkaloid PK 0 17 0.00 10 20 0.50

PA165816736-Celecoxib PK 0 3 0.00 1 2 0.50

PA165950411-Nevirapine PK 0 10 0.00 5 10 0.50

PA145011110-Pravastatin PK 2 13 0.15 6 13 0.46

PA2025-Etoposide PK PD 3 22 0.14 4 9 0.44

PA166117881-Acetaminophen toxic doses PK 1 19 0.05 13 30 0.43

PA150653776-Fluoropyrimidine PK 2 20 0.10 3 7 0.43

PA165860384-Lamivudine PK PD 0 18 0.00 9 21 0.43

PA165817070-Carbamazepine PK 3 10 0.30 14 34 0.41

PA165986279-Acetaminophen therapeutic doses PK 3 29 0.10 14 34 0.41

PA165958541-Theophylline PK 0 12 0.00 2 5 0.40

PA2001-Irinotecan PK 6 38 0.16 6 15 0.40

PA145011115-Phenytoin PK 1 2 0.50 23 64 0.36

PA145011118-Estrogen Metabolism Pathway 2 26 0.08 6 18 0.33

PA154424674-Clopidogrel PK 2 5 0.40 6 18 0.33

PA165816349-Methotrexate PK 3 20 0.15 6 18 0.33

PA2026-Glucocorticoid HPA Axis PD 3 7 0.43 4 12 0.33

PA2034-Cyclophosphamide PK 2 20 0.10 8 24 0.33

PA166115250-Gemtuzumab ozogamicin PK PD 0 1 0.00 6 19 0.32

PA165374494-Busulfan PD 0 12 0.00 3 10 0.30

PA146123006-Codeine and Morphine PK 2 27 0.07 6 21 0.29

PA145011108-Statin Generalized PK 0 26 0.00 15 54 0.28
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PA165884757-Caffeine PK 4 22 0.18 6 22 0.27

PA145011109-Atorvastatin Lovastatin Simvastatin PK 8 48 0.17 30 123 0.24

PA165292163-Doxorubicin Cancer Cell PD 4 13 0.31 6 25 0.24

PA2037-Ifosfamide PK 0 15 0.00 4 18 0.22

PA165859361-Zidovudine PK PD 0 21 0.00 6 33 0.18

PA166041114-Ibuprofen PK 1 26 0.04 4 22 0.18

PA165959584-Sorafenib PD 3 16 0.19 25 139 0.18

PA166121942-Ibuprofen PD 8 47 0.17 3 18 0.17

PA165948566-Metformin PD 1 22 0.05 33 202 0.16

PA165292177-Doxorubicin PK 4 25 0.16 8 50 0.16

PA2029-Irinotecan PD 2 31 0.06 4 25 0.16

PA145011111-Fluvastatin PK 1 13 0.08 3 21 0.14

PA165292164-Doxorubicin Cardiomyocyte Cell PD 0 24 0.00 2 15 0.13

PA162356267-EGFR Inhibitor PD 4 28 0.14 88 695 0.13

PA165816270-Methotrexate Brain Cell PK 2 11 0.18 1 8 0.12

PA165110622-Renin Angiotensin Agents PD 7 46 0.15 4 33 0.12

PA2023-ACE Inhibitor PD 6 43 0.14 4 33 0.12

PA165378192-Artemisinin and Derivatives PK 0 18 0.00 2 17 0.12

PA2011-Nicotine PK 4 17 0.24 2 17 0.12

PA165964832-Mycophenolic acid PK PD 2 27 0.07 1 9 0.11

PA153627758-Potassium Channel Inhibitors PD 1 24 0.04 11 100 0.11

PA2038-Ifosfamide PD 1 13 0.08 2 19 0.11

PA165980050-Vemurafenib PD 1 6 0.17 39 387 0.10

PA165985892-Tacrolimus Cyclosporine PD 0 2 0.00 112 1214 0.09

PA2032-VEGF Signaling Pathway 12 97 0.12 35 406 0.09

PA166126086-PegIFN alpha 2a/2b Hepatocyte PD 0 3 0.00 8 108 0.07

PA2031-Statin PD 9 35 0.26 2 27 0.07

PA166123135-Efavirenz PK PD 0 8 0.00 4 75 0.05

PA154444041-Platelet Aggregation Inhibitor PD 12 68 0.18 9 268 0.03

PA166104634-Abacavir PK PD 0 5 0.00 1 31 0.03

PA152241951-Celecoxib PD 8 62 0.13 1 115 0.01

PA162355621-Nicotine Dopaminergic Neuron PD 13 56 0.23 3 405 0.01

PA152530845-Proton Pump Inhibitor PD 3 29 0.10 1 145 0.01

PA145011112-Rosuvastatin PK 0 5 0.00 0 3 0.00

PA145011114-Warfarin PD 1 9 0.11 0 28 0.00

PA145011117-Aromatase Inhibitor PD 1 31 0.03 0 3 0.00

PA153627759-Repaglinide PK 1 11 0.09 0 6 0.00

PA154423659-Nateglinide PK 3 8 0.38 0 5 0.00

PA155028030-Tenofovir Adefovir PK 1 13 0.08 0 5 0.00

PA161749006-SSRIs PD 16 38 0.42 0 61 0.00

PA162355620-Nicotine Chromaffin Cell PD 0 2 0.00 0 5 0.00

PA164713428-Losartan PK 4 13 0.31 0 5 0.00

PA165291575-Antimetabolite Folate Cycle PD 4 47 0.09 0 3 0.00

PA165816969-Rosiglitazone PK 3 7 0.43 0 3 0.00

PA165946349-Tramadol PK 1 4 0.25 0 8 0.00

PA165947317-Leukotriene modifiers PD 2 26 0.08 0 4 0.00

PA165948259-Metformin PK 4 9 0.44 0 2 0.00
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PA165959313-Valproic Acid PD 1 25 0.04 0 6 0.00

PA165964265-Valproic Acid PK 1 20 0.05 0 34 0.00

PA165971634-Pentose Phosphate Erythrocyte 3 19 0.16 0 3 0.00

PA165980399-Oxidative Stress Reg Erythrocyte 6 53 0.11 0 17 0.00

PA165980774-Uric Acid Lowering Drugs PD 7 18 0.39 0 1 0.00

PA165980834-Methylene Blue PD 1 20 0.05 0 6 0.00

PA165984799-Diuretics PD 2 42 0.05 0 87 0.00

PA166122732-Succinylcholine PK PD 0 11 0.00 0 77 0.00

PA2024-Beta agonist Beta blocker PD 1 148 0.01 0 235 0.00

PA2030-Sympathetic Nerve Pre/Post Ganglionic Jct 11 30 0.37 0 22 0.00

PA2036-Gemcitabine PK PD 2 10 0.20 0 12 0.00

PA2039-Methotrexate Cancer Cell PD 3 42 0.07 0 3 0.00

PA2042-Sympathetic Nerve Neuroeffector Junction 7 49 0.14 0 20 0.00

PA152530846-Proton Pump Inhibitor PK 0 1 0.00 0 0 -

PA165291507-Fluoropyrimidine PD 1 5 0.20 0 0 -

PA165959537-Sorafenib PK 1 8 0.12 0 0 -

PA166114721-Uricosurics PD 8 41 0.20 0 0 -

8.2.4 Building Classifiers for Pathway Entities

For each of the 103 pathways for which at least one origin drug was listed and present

in the network, we traversed the network radially from the origin and collected all

chemical and gene entities within a radius of 2. If an entity was part of the pathway,

we labeled it as a positive training example and if it was not, we labeled it as a

negative training example. Since there were many more negative than positive training

examples and we wished to build our classifiers on balanced training sets, we selected

a random sample from the negative training set that was equal in size to the positive

training set.

We used the network from Chapter 7 to extract all network paths of length ≤ 2

connecting the positive and negative training examples to origin, removing the names

of any intervening entities. The theme (and theme combination) scores for these paths

became features for a random forest classifier.

Obtaining theme scores for the various paths often required averaging the scores

for multiple dependency paths. Our procedure for this was as follows:

· Scores in parallel were averaged. Say we had a chemical, C, and a gene, G, that

were directly connected by two different dependency paths. The first path had

a support of 4 for the “N” (inhibition) theme and a support of 2 for the “B”
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(binding) theme (see Table 7.2). The second path had a support of 3 for the “N”

theme. Then the pair (C, G) would have a score of 3.5 for the “N” theme and 2

for the “B” theme.

· Scores in series were also averaged. Say C and G were each connected by a single

dependency path to an intermediate gene, G2. The dependency path connecting

C to G2 had a support of 5 for the A- theme (antagonism/blocking) and 4 for

the N theme (inhibition). The path connecting G to G2 had a support of 6 for

the W (enhances response) theme. Then the length-2 trail between C and G

would receive a score of (5 + 6)/2 = 5.5 for the “A-|W” theme combination and

(4 + 6)/2 = 5.0 for the “N|W” combination. The identity of the intervening gene,

G2, was not recorded.

For each of the 103 pathways, separately for chemical and gene entities, we built

random forest classifiers using the theme scores as features, as long as the number of

training examples was ≥ 20. We used the random forest implementation in Python’s

scikit-learn package and evaluated the performance of the classifiers using 10-fold

cross-validation.

8.2.5 Classifier Performance

There were 79 pathways with sufficient training examples to build a classifier for either

chemical or gene entities. Table 8.3 shows their 10-fold cross-validation average AUC,

which varied substantially by pathway.

Although chemical classifiers could not be built for all pathways, their performance

tended to be better (median: 0.79, range: 0.53-1.00) than that of the gene classifiers

(median: 0.68, range: 0.33-0.92). There were a few pathways in particular for which

classifier performance was high, including the leukotriene modifiers’7 pharmacodynamic

pathway, and the imatinib and methotrexate pharmacokinetic pathways.

7Leukotriene modifiers are a set of anti-asthmatic drugs, including zafirlukast and montelukast.
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Table 8.3. Classifier performance at distinguishing pathway chemicals and genes from
other chemicals and genes close to the origin, based on theme patterns in the network. Only
the best 20 classifiers [at recognizing genes] are shown. PD = pharmacodynamics, PK =
pharmacokinetics.

Chemicals Genes

Pathway Training Set Size AUC Training Set Size AUC

PA165947317-Leukotriene modifiers pathway PD 42 0.95 90 0.92

PA164713427-Imatinib PK PD 0 - 136 0.84

PA165816270-Methotrexate Brain Cell PK 0 - 72 0.81

PA162359940-Imipramine Desipramine PK 0 - 34 0.80

PA2001-Irinotecan PK 6 - 112 0.79

PA165984799-Diuretics PD 22 0.93 398 0.77

PA165110622-Renin Angiotensin Agents PD 8 - 566 0.77

PA161749006-SSRIs PD 110 0.90 558 0.76

PA153627758-Potassium Channel Inhibitors PD 18 - 546 0.76

PA2026-Glucocorticoid HPA Axis PD 0 - 50 0.76

PA166122732-Succinylcholine PK PD 4 - 44 0.76

PA165986279-Acetaminophen therapeutic doses PK 26 0.97 588 0.75

PA162356267-EGFR Inhibitor PD 4 - 1164 0.74

PA145011118-Estrogen Metabolism Pathway 28 0.75 208 0.74

PA145011120-Aromatase Inhibitor Breast Cell PD 26 0.57 192 0.74

PA2023-ACE Inhibitor PD 8 - 328 0.74

PA166114721-Uricosurics PD 36 0.69 136 0.73

PA2038-Ifosfamide PD 16 - 56 0.73

PA165111375-Benzodiazepine PK 0 - 160 0.73

PA150981002-Vinka Alkaloid PK 0 - 136 0.73

8.3 Two Examples of Pathway Building

Although performance estimates are important, the real power of the network from

Chapter 7 is that it allows us to use the scientific literature in a way it has not been

used before - to assist human curators in performing a task that, until now, has been

entirely manual. Two representative examples help illustrate potential use cases. One

uses the classifiers we just developed; the other uses the network directly.

8.3.1 Tyrosine Kinase Inhibitors: Expanding a Pathway

The class of drugs called EGFR inhibitors target the epidermal growth factor receptor,

which is expressed on multiple tissues, including those of the lung. These drugs,
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Table 8.4. The full list of tyrosine kinase inhibitors found in the network from Chapter 7.

afatinib erlotinib hydrochloride nilotinib
alectinib flumatinib oclacitinib
allitinib foretinib pacritinib
amuvatinib fostamatinib pelitinib
apatinib fruquintinib ponatinib
axitinib gefitinib quizartinib
bafetinib ibrutinib rociletinib
baricitinib icotinib ruxolitinib
binimetinib imatinib saracatinib
bosutinib imatinib-mesylate selumetinib
cabozantinib imatinib mesilate semaxinib
canertinib imatinib mesylate sunitinib
cerdulatinib lapatinib sunitinib malate
ceritinib lapatinib ditosylate tandutinib
crizotinib lenvatinib tasocitinib
dacomitinib lestaurtinib telatinib
dasatinib linsitinib tivantinib
dovitinib masatinib tofacitinib
erlotinib masitinib tofacitinib citrate
erlotinib hcl neratinib trametinib

which include the agents Tarceva (erlotinib) and Iressa (gefitinib), are often used

to treat small-cell lung cancer, as well as several other cancers. PharmGKB has

pharmacokinetic pathways for erlotinib and gefitinib, and a pharmacodynamic pathway

for the full class of EGFR inhibitors, which includes erlotinib, gefitinib, and lapatinib,

along with the identifiers used when these were experimental agents (Iressa = ZD1839,

for example).

However, EGFR inhibitors are also part of a broader set of drugs called tyrosine

kinase inhibitors. Tyrosine kinases are a class of enzymes important for the activation

of proteins in signal transduction cascades. The drug name ending “-inib” is represen-

tative of this class of drugs. If we search for the ending “inib” in the network from

Chapter 7, we retrieve a list of 60 different agents (some of which are different forms

of the same active ingredient), which are listed in Table 8.4. PharmGKB currently

does not have pathways for most of these agents.

We apply the the PD classifier for EGFR inhibitors (PA162356267-EGFR Inhibitor PD

in Table 8.3) to the complete set of genes connected by network paths of length ≤ 2

to at least one drug in Table 8.4. For each drug, we rank all of the genes by the

classifier’s estimated probability that they belong in the pathway for that drug. We

take the top 20 genes for each drug and restrict our set of genes to those nominated

by 3 or more drugs. We then use the network to find all direct connections among the
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set of 35 gene names that fulfill these criteria.

Figure 8.3 shows the result of this process. In it, we see the 35 genes, along

with the connections among them from the Chapter 7, for four different themes: B

(binding), E+ (increased expression), Rg (regulatory), and V+ (activation). Many

of these connections could be verified using informal PubMed searches; for example,

EGFR/ErbB2 are known to bind together to form a heterodimer, and they share a

binding relationship in Figure 8.3a. The gene p53 codes for a protein that regulates

the cell cycle and is important for tumor suppression. It binds to the promoter for

p21, which is probably why the p53-p21 interaction appears in Figure 8.3a (binding)

and 8.3c (regulation). The type of binding represented here is not direct protein-

protein binding, which is what we had envisioned for the “B” theme, but it is binding.

Akt (a serine/threonine kinase) does indeed increase the expression of NFkappaB

(Figure 8.3b). All of these proposed interactions would require checking by a human

curator before they could be incorporated into a pathway, but diagrams like these

reduce the space of tens of thousands of potential interactions down to a few dozen.

One of the most interesting things about the set of genes in Figure 8.3 is not

just that they do, indeed, all appear to interact with tyrosine kinases (whether by

regulating their transcription, activating them, etc.) but that only two of those genes

are directly connected to any of the drugs from Table 8.4 in the Chapter 7 network.

Instead, the classifier is reasoning about longer-range connections. Of the top 5 most

informative features for the trained random forest classifier for the PA162356267-

EGFR Inhibitor PD pathway, 4 describe situations where improper regulation of a

gene (theme L) is linked to a disease, and the origin drug is also connected to that

disease. When the classifier sees that pattern, it will probably nominate the gene to

be part of the pathway for the drug.

A final interesting note: one might assume that many of the genes in the curated

EGFR inhibitor pathway also play a role in the pathways for other tyrosine kinase

inhibitors. If we were only finding genes that already appeared in that pathway, this

process would not be very interesting, as we would only be recapitulating what we

already know. However, despite the fact that the EGFR inhibitor pathway contains

673 unique strings corresponding to gene names, our 35 genes from Figure 8.3 contain
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(a) (b)

(c) (d)

Figure 8.3. The most likely elements of the combined pharmacodynamic pathway for 60
tyrosine kinase inhibitor drugs, and their most likely relationships, based on the network
from Chapter 7. (a) B (binding) relationships; (b) E+ (increased expression) relationships;
(c) Rg (regulatory) relationships; (d) V+ (activation) relationships.
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19 brand new gene candidates for the expanded tyrosine kinase inhibitor pathway that

do not appear in the curated EGFR inhibitor pathway.

8.3.2 NSAIDs: Comparing Pathways for Related Drugs

One of the most commonly-used drugs in the United States is ibuprofen (Advil,

Motrin). Ibuprofen works by inhibiting the enzyme cyclooxygenase (COX), which

is required for the synthesis of prostaglandins (mediators of pain, inflammation and

fever). It is part of a class of drugs called NSAIDs (Non-Steroidal Anti-Inflammatory

Drugs). Other members of this class include aspirin and naproxen (Aleve, Naprosyn),

and celecoxib (Celebrex). Currently, PharmGKB contains PK and PD pathways for

ibuprofen and celecoxib.

One of the things that the network from Chapter 7 allows us to do is quickly

compare related drugs based on their patterns of interaction with genes and other

chemicals. By helping us isolate the differences in how these drugs behave, the network

could tell us why they produce different side effects or treat some diseases more

effectively than others.

For example, the drug celecoxib (Celebrex) differs from the other three in that

it is a selective COX-2 inhibitor. There are actually two forms of COX: COX-1 and

COX-2. Recently, pharmaceutical manufacturers have focused on selective COX-2

inhibitors (anything with the ending “-coxib”), believing that they might reduce the

risk for peptic ulcers that is associated with nonselective COX inhibitors.

Table 8.5 shows the connections for celecoxib, focusing on properties that are not

shared with the other NSAIDs. One connection in particular stands out. Celecoxib

downregulates the expression of MDR1, an important cell membrane transporter. (We

confirmed this fact via literature search.) Bacterial and cancer cells acquire drug

resistance largely through the activity of MDR1, which shuttles drug molecules out of

the cell before they have the chance to act. Because it downregulates MDR1, celecoxib

has recently been tested as an adjuvant in cancer therapy; the hope is that it will

keep cancer cells from evolving resistance to other drugs. Currently, MDR1 is not

part of celecoxib’s PD pathway, but perhaps it should be.
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Table 8.5. Dependency path themes for celecoxib. Interactions that did not include
celecoxib were excluded. If an interaction had the theme “E” and also a more specific theme
(“E+” or “E-”), the “E” was also excluded. The “in pathway” column has a “1” if the gene
is part of the PharmGKB celecoxib PD pathway and a “0” if not.

Gene Theme # Drugs Interacting Drugs (Besides Celecoxib) In Pathway

cox-2 N 3 aspirin,naproxen 1

cox-2 E- 2 aspirin 1
vascular endothelial growth factor E 2 aspirin 0

5-lipoxygenase E- 1 0
akt E+ 1 1
bcl-2 E 1 0
carbonic anhydrase ii E- 1 0
cox-2 K 1 1
cyclo-oxygenase-2 N 1 0
cyclooxygenase-2 E- 1 0
cyclooxygenase-2 K 1 0
cyclooxygenase-2 N 1 0
cyclooxygenase 2 N 1 0
cytochrome p450 2c9 E 1 0
e-cadherin E 1 0
heme oxygenase-1 E+ 1 0
matrix metalloproteinase-10 E- 1 0
mdr1 E- 1 0
rad51 E 1 0
smn E+ 1 0
stat5 E+ 1 0
sulfotransferase 2a1 E- 1 0
urokinase-type plasminogen activator E- 1 0
vegf A+ 1 1
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8.4 Discussion and Future Work

Exploring the use of the Chapter 7 network for pathway building has raised several

important questions and concerns that we will need to consider as we continue with

this work.

First, in Table 8.1, we have established that most of the PharmGKB pathways’

chemical-gene and gene-gene connections are not represented in the network. This

led us to build classifiers that could use longer-range connections to predict pathway

membership, but that practice has the disadvantage of being less transparent. The

meaning of Table 8.5 is very clear: I can see each connection and its associated theme.

But in Figure 8.3, the meaning is less clear. The gene-gene connections and their

themes are present, but where did those genes come from in the first place? They were

selected by the classifier’s examining longer-range connections that are not as easily

interpretable. It is possible that, in the end, we would prefer to focus on expanding our

text corpus to capture more connections, rather than allowing longer-range network

connections to function as features in our pathway classifier.

This chapter has also driven home another difficulty associated with all of the work

in this thesis: the difficulty of evaluating text mining algorithms using sources other

than annotated text. We were fortunate to have the PharmGKB pathways database to

use for evaluation, but the evaluation itself was still difficult, and ambiguous in many

cases. Was a relationship not picked up correctly because the mapping of dependency

paths to themes in Table 7.2 was wrong? Or was it actually described incorrectly, or

vaguely, in the text itself? Or was it simply never mentioned, or mentioned with a

variant of one or both entity names that PubTator’s NER system did not recognize?

Without an annotated corpus, it’s difficult to distinguish these sources of error.

Finally, Figure 8.3 illustrates a subtle complicating factor that is not necessarily

apparent from Table 7.2: whether or not it is worth distinguishing themes at all.

Although B (binding) relationships tend to be described differently in the text from

Rg (regulatory) relationships, as evidenced by their positioning in Figure 7.4, the two

themes are not mutually exclusive. The same goes for “E+” and “V+” relationships:

does it matter if the relationship is described as “activation” or “increased expression”?



8.4. DISCUSSION AND FUTURE WORK 161

Even if the two are semantically distinct, for many applications, we are only interested

in direction: does administering this drug increase or reduce the ability of this enzyme

to do its job? How exactly that happens may not matter. For some applications, we

could actually hurt performance by creating too fine-grained a distinction between

similar themes.



Chapter 9

Drug-Drug Interactions Revisited

At long last, we return to the project that first inspired this dissertation: the prediction

and mechanistic explanation of drug-drug interactions (Chapter 2). In Chapter 2, we

found it remarkably straightforward to predict drug-drug interactions (DDIs) based on

drug-gene relationships described in the biomedical literature. However, our ability to

do so at scale was limited by our use of a manually-constructed ontology to normalize

the drug-gene relationships. That problem inspired the rest of this dissertation.

We begin this final chapter by reexamining our findings from Chapter 2 and

discovering that while they were correct from a technical standpoint, they were

also much less generalizable than we anticipated. We explore the reasons why, the

implications for our pathway results from Chapter 8, and what these findings teach us

about how best to apply the network from Chapter 7 to drive biomedical research

forward. We show how the network can used to create two specific mechanisms for

different types of DDIs, and end the chapter with a summary of our future plans for

the network.

9.1 A Fresh Look at Old Findings

Our approach to DDI prediction in Chapter 2 can be summarized as follows: we

identified several hundred thousand drug-gene-drug connecting paths (potential DDI

mechanisms), we extracted the features along these paths (verbs, context words, gene

162
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name), and we used these features in a random forest classifier, taking the out-of-bag

estimate of prediction accuracy as our measure of success.

Looking at this again, we notice two things, both of which arise because the

training examples were connecting paths and not entity pairs:

· The same entity pair could be represented multiple times.

· Only entity pairs connected by drug-gene-drug paths in the network were

represented.

We chose mechanisms instead of entity pairs for our training examples because the

same drug pair can be connected by multiple paths. We treated each path separately

because we were interested both in predicting whether two drugs would interact and

in finding the most likely mechanism of interaction. However, this could also lead us

to misinterpret the accuracy of our predictions.

For example, as we observed in Chapter 8, most drug-drug pairs are not connected

by genes. This includes drug-drug pairs that interact - we estimate that only about

18% of interacting drug pairs are connected by a gene. Therefore, by restricting our

training examples to paths via a connecting gene, we are implicitly eliminating many

interactions that occur via longer-range paths. In addition, allowing the same entity

pair to be represented multiple times in the training set means we could be overfitting

to features specific to that entity pair (such as unusual connecting genes) that do not

represent true mechanisms of interaction.

9.1.1 Revisiting Prediction

We used the same list that was used in our 2012 project [107] to create a list of 5000

known DDIs and 5000 pairs of drugs that, while both individually present in the list of

DDIs, were not known to interact. Drug pairs did not need to be connected by a path

in the network to be included. We found all network theme combinations between the

two drugs in each pair, as well as all of the entities connecting the pair, binarized all

the features, and built a random forest classifier (again with 100 trees) to distinguish

DDIs from non-DDIs. The results are shown in Table 9.1.

We see that when the analysis is performed at the level of drug-drug pairs rather
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Table 9.1. Performance of several random forest classifiers, each with 100 trees, trained on
10, 000 training examples. The mean AUC from 10-fold cross validation is reported. The
feature definitions are as follows: “themes only” means that if two drugs are connected
by dependency paths with the themes “N” and “B” to a common gene, say CYP3A4, the
feature “N|B” is included but the identity of the gene is not. In contrast, “entities only”
means that CYP3A4 would be included but “N|B” would not. “Entities + themes” means
both types of feature are included separately. “Combined” means that the connecting path
“N|CYP3A4|B” is included as a single feature.

Connecting Entities Feature Type Number of Features Mean AUC

genes + diseases/phenotypes entities only 5943 0.940
themes only 143 0.615
entities + themes 6086 0.798
combined 55,132 0.740

genes only entities only 245 0.552
themes only 94 0.531
entities + themes 339 0.542
combined 1896 0.542

than mechanisms, performance drops considerably, at least when only drug-gene-drug

connecting paths are included. Mainly this has to do with the fact that the majority

of training examples have no connecting drug-gene-drug path whatsoever. When drug-

phenotype-drug paths (which were not available at the time we performed the analysis

in Chapter 2, but were created in Chapter 7) are included, performance increases

dramatically, even surpassing the performance in Chapter 2. However, including

theme information actually hurts performance relative to just including the connecting

entities.

The evidence is clear and corroborates our ordering of feature importance in

Figure 2.6: it is the identities of the connecting entities, much more than the themes,

that determines whether or not two drugs interact. In addition, if no connecting entity

exists, it is impossible for us to make a prediction about the likelihood that the two

drugs interact without considering paths beyond length 2.

9.1.2 From Prediction to Mechanism

If the theme labels in the network do not contribute to our ability to predict DDIs, and

show only a weak correlation with pathway membership for most pathways (Chapter 8),

why bother creating a labeled network at all? Why do I, as a human reader, find the
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diagram in Figure 8.3, and the information in Table 8.5, helpful in predicting pathway

membership, while my computer (apparently) does not?

The answer, I believe, is that I bring a great deal of background knowledge to

my reasoning about biomedical entities. The computer does not. If there is a rare

cell membrane transporter that is responsible for shuttling a drug into the cell, and

another drug inhibits the expression of that transporter, I know that the effect of the

first drug will be reduced. However, it is not the case that every single situation in

which a drug inhibits the expression of a protein that binds another drug will lead

to a DDI - the identity of that protein matters. The problem is, aside from common

proteins that interact with a lot of drugs, it’s difficult to build a training set that

accounts for all of the complex/rare interaction types that mediate DDIs. I can reason

by analogy (“This rare transporter has a similar function to this other transporter...”)

but the computer cannot.

In light of this, it seems to make the most sense to use the network for comparison

and the generation of mechanistic hypotheses, rather than large-scale prediction. We

can find DDIs that share similar mechanisms by examining the drugs’ patterns of

connection with intervening genes or phenotypes. We provide two different examples

of use cases below.

9.2 Two Mechanistic Examples

9.2.1 Metoprolol and Dextromethorphan

In my PhD defense, I presented an example of a drug interaction that had been

predicted by our classifier in Chapter 2 but was not part of our training set. The clas-

sifier predicted that the drug metoprolol, a beta-blocker (used to treat hypertension),

would interact with the cold medicine dextromethorphan (found in Robitussin, for

example), because both drugs were metabolized by the same enzyme, CYP2D6. We

later confirmed this association via literature search [140].

We see this exact relationship reflected in our network from Chapter 7, despite the

fact that it used an entirely different named entity recognition system (PubTator) and
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Figure 9.1. Diagram of the DDI between metoprolol and dextromethorphan, with labels
corresponding to dependency paths in the network from Chapter 7. The edge styles
correspond to different themes, the meanings of which can be found in Table 7.2. Blue with
circle: E, orange dashed arrow: K, red with hash: E-, green with arrow: E+, turquoise with
backward arrows: B.

relationship extraction technique (EBC) from the network in Chapter 2. A diagram of

all of the drug-gene interactions for metoprolol and dextromethorphan, derived from

the labeled edges in the Chapter 7 network, can be found in Figure 9.1. The only

link between the two drugs is their shared metabolic relationship with CYP2D6. In

the diagram, we also see metoprolol’s mechanism of action - its effect on the beta-1

adrenoceptor, to which it binds.

Since our new network includes information on gene-disease relationships, we can

also investigate likely side effects of this DDI. This type of reasoning is important

for recognizing DDIs in the clinic, since we cannot directly observe the inhibition or

induction of proteins, etc.

The paper reporting the interaction between metoprolol and dextromethorphan

[140] stated that a patient who had been taking metoprolol for a long time and was

given dextromethorphan developed a severe case of myoclonus (muscle twitching).
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Looking at all of the genes in Figure 9.1 and their associations in our network, we

observe that tyrosine hydroxylase activity is indeed associated with myoclonus. In fact,

familial tyrosine hydroxylase deficiency is associated with a chronic form of myoclonus

called myoclonus-dystonia syndrome [138].

If the long-term administration of metoprolol had essentially “used up” all of the

available CYP2D6 in the patient’s liver, there would be little left over to metabolize

the newly-administered dextromethorphan. This could cause dextromethorphan to

build up in the body and, in turn, for tyrosine hydroxylase activity to increase, causing

myoclonus1.

The interaction between metoprolol and dextromethorphan is an example of a

pharmacokinetic (PK) DDI, which occurs when one drug modifies the absorption,

metabolism, distribution or excretion of another drug relative to what would happen if

the second drug were administered on its own. Two other examples of pharmacokinetic

DDIs are shown in Figure 9.2.

9.2.2 Melatonin’s Effect on Dopamine

Situations where one drug alters the ability of another drug to perform its function

are called pharmacodynamic (PD) DDIs. This type of DDI is extraordinarily difficult

to uncover, given the multiplicity of effects that drugs typically have on the body,

many of which are unknown. Two examples of pharmacodynamic DDIs are shown

in Figure 9.3. One common situation where PD DDIs occur is when a drug binds to

a receptor that is not part of its intended mechanism of action. That receptor may

be the intended target of another drug, causing an interaction if the two drugs are

coadministered.

Many psychoactive drugs affect the dopamine pathway. For example, rasagiline, an

anti-Parkinsons agent, is an irreversible inhibitor of the enzyme monoamine oxidase B

(maoB), a key player in the breakdown of dopamine. Both of these relationships are

1The effect in the paper on familial tyrosine hydroxylase deficiency actually works in the reverse
direction - a decrease in tyrosine hydroxylase activity causes myoclonus. However, we don’t know
what happens when tyrosine hydroxylase activity increases beyond normal bounds, and we do know
that its activity is associated with myoclonus, so we might reasonably assign it as the culprit.
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Figure 9.2. Two possible mechanisms for pharmacokinetic drug interactions. In the first
example, drug A affects the activity of a protein that is responsible for metabolizing drug B.
In the second example, drug A binds to a receptor on a cell that is responsible for absorbing
or excreting drug B. Drug A’s binding somehow affects the ability of the cell to perform its
absorption/excretory function, which affects the levels of drug B in the body.
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Figure 9.3. Two possible mechanisms for pharmacodynamic drug interactions. In the first
example, drug A induces or inhibits the production (translation, transcription) of a protein
that is the target of another drug. If there more of this protein, the dosage of drug B may
need to be increased to have the same effect. If there is less, we may need to decrease the
dose of drug B. In the second example, drug A affects one member of a genetic pathway
(see Chapter 7) and somewhere down on that pathway is the target of drug B.
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Figure 9.4. Diagram of potential PK DDI mechanisms for melatonin and drugs like
rasagiline, which affect dopamine levels. The only relationships with melatonin that are
included are those that affect the expression of proteins responsible for the pharmacokinetics
of dopamine. Labels correspond to dependency paths in the network from Chapter 7. The
edge styles correspond to different themes, the meanings of which can be found in Table 7.2.
Blue with circle: E, orange dashed arrow: K, red with hash: E-, green with arrow: E+.

captured by our network, and are shown in Figure 9.4.

The drug melatonin, which is also an endogenous compound produced by the body,

has long been known to have a lowering effect on dopamine levels in parts of the brain.

The exact mechanism behind this, however, is unclear [158]. Melatonin, therefore,

is known to engage in a pharmacodynamic interaction with nearly every drug that

affects dopamine levels. Sometimes this effect is synergistic, as in the case of some

first-generation antipsychotics that work by suppressing dopamine, and sometimes,

as with rasagiline, it is antagonistic. As more information about melatonin’s role in

the dopamine pathway becomes known, more edges in Figure 9.4 will be filled in.

The important thing here is that the key relationships underlying melatonin’s PD

interactions with rasagiline and other dopamine-affecting drugs are captured by our
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network.

9.3 Summary and Future Work

It is clear just from these two examples that, due to their relatively predictable and

short-range mechanisms, pharmacokinetic DDIs will constitute the low-hanging fruit

of our network. In the metoprolol-dextromethorphan example, we were able both

to characterize the interaction and to attach likely side effects. Pharmacodynamic

DDIs are less well-defined, and will probably require us to improve and expand the

gene-gene portion of our network.

These two case studies do not prove that the network is broadly useful for identifying

DDIs. However, they do give us confidence that the themes produced by our network

correspond (at least in two cases) to reality. That is both surprising and exciting

given where these themes came from: unsupervised clustering of dependency paths

using similarity scores derived from EBC, using no human annotated text whatsoever.

In the end, we believe that a complete, labeled network of biomedical relationships

derived from the literature will prove a valuable resource to the biomedical research

community, since it allows us to connect facts from across the literature quickly and

easily. The network appears to have more power as a tool for understanding than for

prediction, but that could change as our relationship classes become more well-defined

and as we expand the network to cover ever larger sources of text.
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Explanations of Clusters

A.1 Drug-Gene Clusters from Chapter 6

The following table is a detailed explanation of the clusters of drug-gene pairs shown

in Figure 6.3.

Theme Cluster Key word Example % PGx % Drug- Comment

size /phrase drug-gene Target

pair

1a Synthesis 34 synthase aldosterone,

P450aldo

0.0 17.6 Many of the drugs in this

cluster are endogenous com-

pounds.

11 beta-Hydroxylase (P45011 beta) and aldosterone synthase (P450aldo) were situated in the inner mitochondrial

membrane of the zona fasciculata-reticularis cells and in that of the zona glomerulosa cells, respectively. (9617077)

1b Activation 134 increased

activity

curcumin,

caspase-8

9.0 6.7 In this cluster, activation

is frequently associated with

phosphorylation.

Curcumin also stimulated the activity of caspase-8, which initiates Fas signalling pathway of apoptosis. (11396178)

2 Enzyme ac-

tivity

45 activity estradiol,

E2DH

6.7 6.7 The gene is typically an en-

zyme that chemically modi-

fies the drug. A few trans-

porter pairs are also present,

such as (ornithine, ORNT1).

A fraction of the estradiol 17 beta-oxidoreductase (E2DH) activity in the vesicle remained associated to the membrane

after disruption and treatment with 2 M NaCl. (3459941)

172
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Theme Cluster Key word Example % PGx % Drug- Comment

size /phrase drug-gene Target

pair

3a Substrates 64 substrate aminopterin,

hOAT1

29.7 7.8 Relatively few mentions of

“metabolism” compared to 3b

and 3c. Reference to trans-

porters such as P-gp, hOAT1,

SERT.

These findings show that both aminopterin and methotrexate are substrates of hOAT1 and hOAT3, and that there

are differences between the antifolates in terms of their transport characteristics. (20460822)

3b Metabolism 131 metabolized rosiglitazone,

CYP2C8

37.4 0.8 Frequent reference to liver cy-

tochromes such as CYP3A4

and CYP2D6.

Rosiglitazone, a thiazolidinedione antidiabetic medication used in the treatment of Type 2 diabetes mellitus, is pre-

dominantly metabolized by the cytochrome P450 (CYP) enzyme CYP2C8. (15606443)

3c Substrates

that (often)

also affect

activity

70 substrate efavirenz,

CYP2B6

37.1 5.7 The drug-gene pairs in this

sub-cluster are mentioned to-

gether less frequently in the

literature than those in 3a or

3b.

Efavirenz is extensively metabolized by CYP2B6, and associations between CYP2B6 polymorphisms and plasma

efavirenz exposure have been reported. (20639527) Our results confirm that efavirenz induces CYP2B6 enzyme

activity in vivo, as demonstrated by an increase in bupropion hydroxylation after 2 weeks of efavirenz administration.

(18989234)

4 Third party

involve-

ment

28 inhibits...

to/

rapamycin,

PHAS-I

3.6 3.6 All of the drug-gene pairs in

this cluster are connected by

exactly one path, and the

paths are unusual. They of-

ten refer to the involvement

of a third molecule of some

kind, raising the possibility of

three-way interactions among

drugs and genes.

Rapamycin may inhibit translation initiation by increasing PHAS-I binding to eIF-4E. (7629182)

6 Co-

administration

172 in presence

of

sunitinib,

IFN-alpha

0.6 0.6 This cluster illustrates the

blurry line between drugs and

genes (proteins) since many

drugs (in this case, IFN-

alpha) are also proteins.

Herein, we report the results of a phase I dose-finding study of sunitinib in combination with IFN-alpha as first-line

treatment in patients with metastatic RCC. (19213665)
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Theme Cluster Key word Example % PGx % Drug- Comment

size /phrase drug-gene Target

pair

7c Increased

production

141 induced,

production,

increase

PGE2,

VEGF

1.4 1.4 Cluster 7 is distinguished by

the presence of many proteins

that act as drugs. These in-

clude IL-2, gp120, and PGE2.

These findings raise the possibility that endogenous PGE2 stimulates VEGF and bFGF mRNA expression in Mueller

cells in vivo under conditions in which PGE2 production is increased, such as in injury. (9501870)

7d Raised lev-

els

52 levels, pro-

duction

cisplatin,

Rad51

5.8 3.8 Similar in theme to 7a-c, de-

scriptions from this cluster in-

volve drugs that raise protein

levels. Sentences mostly re-

port experimental results.

In addition, gefitinib decreased cisplatin- or MMC-elicited Rad51 protein levels by increasing Rad51 protein instability.

(18544565)

8a Antagonists 101 antagonist,

blocker

plerixafor,

CXCR4

11.9 39.6 Cluster 8 references inhibi-

tion more generally. EBC

learns that antagonism (clus-

ter 8a) is a subclass of inhibi-

tion.

Plerixafor is a selective antagonist of CXCR4 used for mobilization of hematopoietic stem cells (HSCs) for autolo-

gous stem cell transplantation (SCT) in patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL).

(19748593)

8c Inhibition 380 inhibitor of,

inhibits

sildenafil,

PDE5

18.7 37.9 Cluster 8c is large and

includes some interesting

smaller subclusters, such as

antibodies against particular

proteins, and inhibition,

specifically, of protein activ-

ity or phosphorylation.

Although active sites of PDEs are apparently structurally similar, PDE4 is specifically inhibited by selective inhibitors

such as rolipram, while PDE5 is preferentially blocked by sildenafil. (15224132)

9 Specific

drug-

protein

interactions

56 target,

kinase,

protein

hyaluronate,

GHAP

3.6 14.3 These are pairs where the pro-

tein is named for its function,

which involves a particular ac-

tion on the drug in question.

In the second sentence, the

pair is pyridoxal/Pdxk.

Cells were probed with the glial hyaluronate binding protein (GHAP) which was itself then visualized by conventional

indirect immunofluorescence. (2070821) Transcriptome profiling revealed pyridoxal kinase (Pdxk) as a target gene of

PAR bZip proteins in both liver and brain. (15175240)
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Theme Cluster Key word Example % PGx % Drug- Comment

size /phrase drug-gene Target

pair

10 Inhibitors

and sub-

strates

70 inhibitor,

substrate,

metabo-

lized

verapamil,

P-gp

30.0 4.3 Many drugs act as both

inhibitors and substrates

of proteins, includ-

ing ritonavir/CYP3A4,

quinidine/P-gp, and omepra-

zole/CYP2C19, all found in

cluster 10.

It has been reported that verapamil and atorvastatin are inhibitors of both P-glycoprotein (P-gp) and microsomal

cytochrome P450 (CYP) 3A4, and verapamil is a substrate of both P-gp and CYP3A4. (18193210)

11 Inhibition 148 inhibitor

of; G in-

hibitors,

such as D;

inactivator

miglitol,

alpha-

glucosidase

12.2 27.0 There is little difference in

meaning between this cluster

and cluster 8c, except that

there are variations in phras-

ing that are more common to

one or the other cluster.

alpha-Glucosidase inhibitors, such as miglitol, are drugs that have greater affinity towards this enzyme in comparison

to carbohydrates. (19563873)

12 Receptors 80 receptor(s),

gene, antag-

onist

urokinase,

uPAR

1.3 32.5 Cluster 12 contains a sub-

cluster primarily composed

of antagonist pairs, and a

larger subcluster involving

pairs where the gene is de-

scribed as the “receptor” for

the drug.

The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only

focalizing urokinase-type plasminogen activator (uPA) - mediated fibrinolysis to the pericellular micro-environment

but also promoting cell migration and chemotaxis. (22285761)

13 Activation 112 activated,

increased

expression

simvastatin,

Rac1

0.0 0.0 This is the largest cluster

with zero representation of ei-

ther PGx or drug-target rela-

tionships. The pair in the sec-

ond sentence is estradiol/HO-

1.

The small GTPase Rac1 was activated by simvastatin, and this was required for both PKB activation and IL-1beta

secretion. (18684863) Estradiol increased HO-1 expression by 2- to 3-fold, an effect blocked by SU5416, and PPT

mimicked the effects of estradiol on HO-1. (20644008)

14a Agonists 129 agonist,

hormone,

analog

sumatriptan,

5-HT1B

7.0 33.3
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Theme Cluster Key word Example % PGx % Drug- Comment

size /phrase drug-gene Target

pair

We compared the vasoconstrictor effects of 5-HT with those of the selective 5-HT1B/1D-receptor agonists sumatriptan

and rizatriptan in human isolated cranial (middle meningeal) arteries. (9862247)

14b Activation

/ stimula-

tion

138 activates,

induced,

stimulates

resveratrol,

AMPK

1.4 4.3 Focus is similar to cluster

13 but notably, there is rel-

atively little reference to ex-

pression.

Moreover, resveratrol activated AMPK and inhibited phosphorylation of 4E-BP1 and S6 in diabetic rat kidneys.

(20332614)

15 Protein

binding

28 binds to;

binding to

glibenclamide,

SUR1

7.1 35.7

ATP, in the presence of an ATP-regenerating system to oppose hydrolysis during incubation, inhibited glibenclamide

binding to SUR1 and SUR2B (Y1206S) by approximately 60%, to SUR2A (Y1206S) by 21%. (12145099)

17d Experimental

methods

151 treatment,

concen-

tration,

toxicities,

mice, cells

dasatinib,

STAT3

1.8 2.4 This cluster includes many

sentences describing observed

effects on expression/activity,

but not as many as other

nearby clusters. Cluster

17d is also home to one

insidious error: the term

“DLTS” (“dose-limiting toxic-

ities”) identified as a gene.

We hypothesized that the reactivation of STAT3 after dasatinib treatment represents the engagement of a compen-

satory signal for cell survival that blocks the antitumor effects of SFK inhibition. (17634553) Treatment of cultured

cells from WT or Delta 18 COX-2 mice with flurbiprofen, which blocks substrate-dependent degradation, attenuates

COX-2 degradation, and treatment of normal mice with ibuprofen increases the levels of COX-2 in brain tissue.

(19758985)

17e Effect on

expression

148 investigate

effect on G

expression;

alter, affect,

decrease,

regulated

colchicine,

MEFV

1.3 0.0 If directionality of effect is re-

ported in cluster1 17e, it is

most often inhibition.

To investigate the effect of colchicine (the main therapeutic agent for FMF patients) and certain inflammatory

cytokines (IL-1 beta, TNF-alpha, IFN-alpha, IFN-gamma) on MEFV expression and C5a inhibitor activity in neu-

trophils and primary peritoneal fibroblast cultures. (11802319)

18a Induction

of expres-

sion

123 increased /

induced ex-

pression

imatinib,

CXCR4

1.6 1.6 Typically experimental re-

sults reporting a positive ef-

fect of the drug on gene ex-

pression.
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In KBM5 and K562 cells, imatinib, INNO-406, or IFN-alpha increased CXCR4 expression and migration.

(18202009)

18b Effect on

expression,

usually

induction

65 by ex-

pression,

inducer

of, was

induced by

melatonin,

bcl-2

1.5 1.5 In many sentences, we know

only that the effect of the

drug on the expression of the

gene was investigated. If

directionality of effect is re-

ported, it is most often induc-

tion.

Melatonin given before the ischemia enhanced the expression of bcl-2 in the penumbra area and had no significant

effect on the expression of bax. (10678086)

19 Inhibition

of activa-

tion

41 inhibited /

suppressed

activation

(of G)

fluvastatin,

NF-kappaB

4.9 4.9 This is another set of three-

way interactions where the

drug is suppressing activation

of the protein by some other

molecule.

Interestingly, fluvastatin suppressed IFN-gamma-induced NF-kappaB activation in parallel with p38 MAPK phospho-

rylation. (19594754)

20a Effect on

expression,

usually

inhibition

54 expression

by, expres-

sion of,

inhibited

expression,

decreased,

reduced

montelukast,

iNOS

0.0 3.7 There is a fairly even split in

this cluster between methods

and results.

This study investigated the effects of montelukast (a leukotriene receptor antagonist) on iNOS expression and activity

in a Brown Norway (BN) rat allergic inflammation model and in L2 lung epithelial cell. (14559427)

20b Decreased

levels

59 decreased

levels, in-

hibited

expression,

suppression

gefitinib,

Rad51

1.7 0.0 Note that the example sen-

tence here is identical to that

in cluster 7d, but the drug

in question is different. This

single sentence describes two

separate relationships with

different characters.

In addition, gefitinib decreased cisplatin- or MMC-elicited Rad51 protein levels by increasing Rad51 protein instability.

(18544565)

21 Inhibited

activity /

expression

76 inhibited

activity,

inhibited

expression

minocycline,

MMP-2

3.9 10.5 Focus is experimental obser-

vations, as opposed to stated

prior knowledge (the domi-

nant theme in cluster 8c).
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Intraperitoneal minocycline at 45 mg/kg concentration twice a day (first dose immediately after the onset of reperfu-

sion) significantly reduced gelatinolytic activity of ischemia-elevated MMP-2 and MMP-9 (p < 0.0003). (16846501)

22 Inhibition 78 inhibited;

G in-

hibitors,

such as...

trastuzumab,

HER2

10.3 17.9 There are some subtle dif-

ferences between cluster 22

and cluster 8. Most no-

tably, cluster 22 never refer-

ences antagonism. Cluster

22 also contains some descrip-

tions that never occur in clus-

ter 8, such as “inhibited in-

duction of” and “inhibited ac-

tivation”. Similarly, cluster

8 contains some descriptions

(besides those of antagonists)

that never occur in cluster

22, such as “inhibitors of G,

such as...”, “decreased activ-

ity”, and “inhibit activity”.

The humanized anti-HER2 monoclonal antibody trastuzumab inhibits the activation of HER2 and its multiple down-

stream signaling pathways, including the Ras/mitogen-activated protein kinase pathway. (18451248)

23 Protein

binding

(and)

affects

activity

33 activity,

protein,

binds

gp120, DC-

SIGN

0.0 12.1 This small cluster actually

contains two smaller subclus-

ters, one of which focuses on

protein activity and the other

on binding. The descriptions

of these drug-gene pairs in-

clude some different variants

of those in clusters 15 and 25f.

gp120 additionally binds to DC-SIGN, a C-type lectin expressed on immature dendritic cells. (11825572) Moreover,

exposure of hippocampal neurons to dexamethasone significantly increased caspase-3 activity, which was inhibited by

co-treatment with agmatine. (16777341)

24 Patients

with dis-

ease (error)

92 treatment,

patients,

disease

glyburide,

NIDDM

3.3 2.2 This cluster illustrates one

problem associated with us-

ing simple string matching to

lexicons to identify drugs and

genes: COPD and NIDDM

are both gene names. No-

tably, however, these types of

errors are “quarantined” to-

gether in the dendrogram.
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140 NIDDM patients being treated with either glyburide (n = 70) or glipizide (n = 70) were randomly selected from

the populations of patients receiving either drug using computerized pharmacy records. (1421641)

25c Affects

secretion /

release

50 secretion octreotide,

calcitonin

0.0 0.0 Genes (proteins) in this clus-

ter are generally hormones

or cytokines, such as gastrin,

lactogen, IL-1RA, and IL-13.

The inhibitory effect of octreotide on rGRF-induced calcitonin secretion was partially abolished by pretreating the

cells with pertussis toxin. (1355052)

25d Expression 252 on expres-

sion, by

expression,

inhibited /

increased

expression

indomethacin,

MCP-1

2.0 2.0 The directionality of the

drug’s effect on expression

varied within this cluster.

The sentences mostly report

experimental findings.

We found that, in murine podocytes, expression of monocyte chemoattractant protein 1 (MCP-1) in response to

TNF-alpha was suppressed by indomethacin but not by ibuprofen. (18799549)

25f Affects ac-

tivity

38 activity, on

activity

amitriptyline,

EAAT3

2.6 10.5

Our results suggested that amitriptyline at clinically relevant concentrations reversibly reduced EAAT3 activity via

decreasing its maximal velocity of glutamate transporting function. (19405995)



A.2 Dependency Path Clusters from Chapter 7

Table A.2. Chemical-gene clusters from Figure 7.1.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / G)

3 36 inhibition “C, a G inhibitor” ARRY-614 / p38

“G specific inhibitor, C” naringenin / Smad3

“C, an inhibitor of G” PSC 833 / P-glycoprotein

“G inhibition by C” NVP-AUY922 / Hsp90

“effects of the G inhibitor, C, on . . . ” SCH 34826 / enkephalinase

5 12 effect on protein “[chemical]-dependent effects of C on G activity” fenfluramine / renin

activity “effect of C on G activity” donepezil / acetylcholinesterase

“inhibition of G activity by C” plumbagin / Nox-4

“study on interaction of C with G” caffeine / myoglobin

“G activity in patients on C” tacrolimus / CYP3A4

6 29 agonism / antagonism “effect of C, a selective G antagonist” MTEP / mGluR5

“C, a G agonist” roxindole / 5-HT1A

“inactivation of G by C” mitomycin C / DT-diaphorase

“G agonist, C, . . . ” ciglitazone / PPAR-gamma

“study of a G antagonist, C, . . . ” CI-988 / CCK-B receptor

8 42 secretion, production, “effect of G on C metabolism” dopamine / cholecystokinin

synthesis “C inhibits G secretion” Dasatinib / TNF-alpha

“effects of G on C metabolism” steroid / angiotensin ii

“C stimulates G synthesis” prostaglandin e2 / interleukin-1 beta

“C regulates G expression” baicalin / tlr4

9 76 affects expression “C inhibits G expression” AG490 / NFATc1

“effect of C on G production” neopterin / erythropoietin

“C induces the expression of G” Nicotine / C-reactive protein

“C upregulates G expression” Dexamethasone / Kv1



Table A.2. Chemical-gene clusters from Figure 7.1.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / G)

“effects of C on the expression of G” letrozole / HOXA10

10 20 inhibition of “the new G inhibitors, C and . . . ” rofecoxib / COX-2

activity / expression “the effect of G inhibition by C” tolcapone / COMT

“inactivation of G by C” carbodiimides / thrombin

“C effects on G: . . . ” Naloxone / beta-endorphin

“the effect of C on G activity in . . . ” aspartame / acetylcholinesterase

11a 62 response to treatment “G responses to C” cimetidine / Prolactin

“effect of C on G” gossypol / LDH-X

“effect of G with C therapy” ribavirin / interferon alpha 2b

“influence of C on G response” clofibrate / insulin

“effects of C on G release” amines / renin

11c 96 metabolism, “effect of G on C metabolism” dopamine / beta-endorphin

secretion/uptake “effects of G on C formation” cyclic AMP / adrenomedullin

“effect of G on the secretion of C” omeprazole / intrinsic factor

“control of G by C” retinoic acid / c-jun

“G stimulates C uptake” phenylalanine / Insulin

“[chemical] may reduce G concentration via C” catecholamines / leptin

“G stimulates C transport” calcium / Prolactin

“effect of C on G release” fenfluramine / growth hormone

11d 23 binding “C release from G” iron / transferrin

(uptake/release) “binding of C to G”b calcium / troponin C

“C uptake by G” potassium / HKT1

“enhancement of action of G by C” glucose / insulin-like growth factor I

“controlled release of G by C” polyurethane / IGF-1

13 18 modulation of expression, “C modulates [event] through G” Metformin / SIRT1

substrates “C binding to G” cyanide / myeloperoxidase

“C induced by G” nitric oxide / iNOS



Table A.2. Chemical-gene clusters from Figure 7.1.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / G)

“C is a G substrate” caffeine / cytochrome p450 1a2

“C mediates [event] by G” superoxide / c-Src

14 24 receptor binding “antagonist of the G C receptor” tachykinin / NK1

“effect of C receptors, G and . . . ” steroid / pS2

“[chemical] antagonism of a G C agonist” dopamine / D-2

“interaction of G with C receptors . . . ” estrogen / DYX1C1

“a new selective G agonist, C . . . ” procaterol / beta 2-adrenoceptor

15 14 receptors “G, a C receptor . . . ” free fatty acid / GPR40

“deletion of the C G gene . . . ” adenosine / A1 receptor

“G, a major C receptor . . . ” somatostatin / SSTR4

“the C domain of G” zinc / SIP1

“analysis of G C channels . . . ” potassium / KCNQ2

16 16 receptor [subunit] “the C carrier subunit (G) of . . . ” acyl / NDUFAB1

“increased expression of C receptor (G)” benzodiazepine / PBR

“the G subunit of the C receptor” NMDA / GluN2B

“human C receptor subunit (G)” acetylcholine / CHRNA4

“C receptor G subunits” AMPA / GluR1

19 38 channels / transporters “regulation of G transporters C and . . . ” sterol / ABCG5

“G is a C channel that modulates . . . ” chloride / MOD-1

“G C transporter expression” glucose / GLUT4

“C transporter, G” glutamate / VGLUT1

“distribution of G C channel subunits” potassium / Kv4

20 15 synthase, dehydrogenase, “neuronal C synthase (G)” nitric oxide / nNOS

reductase “C transporter (G) polymorphism” serotonin / 5-HTT

“porcine C reductase (G)” thiol / GILT

“C dehydrogenase (G)” Aldehyde / Ald4p



Table A.2. Chemical-gene clusters from Figure 7.1.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / G)

“C synthase (G) gene” 5-aminolevulinate / ALAS1

21 10 transporters “G, a C transporter, ...” ribavirin / ENT1

“low-affinity C cotransporter (G)” sodium glucose / SGLT2

“a C binding protein, G” methyl CpG / Mecp2

“C transfer protein (G) polymorphism” Cholesteryl ester / CETP

“C binding protein (G)” fatty acid / hFABP

24 24 sequence, factor, moiety “complete C sequence of G” amino acid / GSTM4

“G is C exchange factor” guanine nucleotide / Rab3GEP

“binding of [chemical] to the C moiety of G” heme / cytochrome P-450

“structural analysis of the C finger of G” zinc / THAP1

“C binding domains of G” nucleotide / CFTR

27 74 phosphorylation, kinases “expression of receptor C kinase, G” tyrosine / Trk

“G receptor C kinases” tyrosine / ErbB

“[gene name] (G) C phosphorylation” tyrosine / GIT1

“G C phosphorylation pathway” serine / STAT3

“implication of G and C kinase in . . . ” creatine / esterase D

29 13 phosphorylation, phosphatases “G induces C phosphorylation” tyrosine / Oncostatin M

“G C phosphatase” tyrosine / Shp2

“C phosphorylation sites on G” Serine / IRS2

“conserved C residues in G” histidine / lipoxygenase

“a critical C residue in G” lysine / apolipoprotein B-100

30 20 inhibition / activation “[other chemical] inhibits C activation of G” phenylephrine / phospholipase A

(via phosphorylation?) “efficacy of G C kinase inhibitors” tyrosine / EGFR

“surface of G C domain” zinc / TFIIB

“discovery of C G inhibitors” glycine hydrazide / CFTR

“G induces rapid C phosphorylation” tyrosine / Prolactin



Table A.3. Chemical-disease clusters from Figure 7.2.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / D)

1 13 prevents, reduces incidence “C and [other drug] reduce [adverse event] after D” Isoflurane / cerebral ischemia

“C decreased levels of [substance] after D” estrone / brain injury

“D of patients treated with C” triptans / coronary spasm

“[women, men] receiving C to prevent D” nevirapine / HIV-1 vertical transmission

“intravenous C reduces the incidence of D” magnesium / arrhythmias

2 20 inhibits growth / proliferation “C significantly inhibited the growth of D” celastrol / osteosarcoma

“C inhibits proliferation of D cells” Darbepoetin / hepatic cancer

“C inhibited [event(s)] in D cells” NVP / RCC

“C inhibited D growth” sorafenib / tumor

“C inhibits D growth in vitro” Zebularine / acute myeloid leukemia

3 46 induction of effects in cells, “[event] induced by C in D cells” fenretinide / neuroblastoma

esp. resistance; chemotherapy “C therapy for D” cisplatin / thoracic malignancies

“C resistance in D” Tamoxifen / breast cancer

“D resistant to both C and [other drug]” imatinib / GIST

“chemotherapy agents like C in D treatment” doxorubicin / hepatocellular carcinoma

6 15 treatment evaluations “C was measured in patients with D” Glutamic acid / ischemic stroke

(esp. safety) “we evaluated the effects of C on D” diphenidol / chronic constriction injury

“C is indicated for D” Bicillin C-R / streptococcal infections

“C administered before/after D reduced [event]” nicardipine / coronary artery occlusion

“treatment of D with C” sulfasalazine / juvenile spondyloarthropathies

8g 125 treatment of disease “C therapy for the treatment of D” indomethacin / PDA

(esp. evaluation of efficacy) “patients who received C for treatment of D” tigecycline / Acinetobacter infections

“D patients were treated with C” DMSO / amyloid A amyloidosis

“effectiveness of C in D” warfarin / atrial fibrillation

“comparison of C and [other drug] in D” timolol / angle-closure glaucoma

8h 80 treatment of disease “C may be useful for the treatment of D” OPC-18790 / congestive heart failure

(indication of efficacy) “evaluate the protective efficacy of C in D” FTY720 / cerebral ischemia



Table A.3. Chemical-disease clusters from Figure 7.2.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / D)

“C is a promising treatment option for patients with D” bosutinib / CML

“C is approved for the treatment of D” anidulafungin / intra-abdominal abscesses

“C is commonly prescribed for D” Colchicine / gout

9 14 treatment of disease “C may be used for the prevention of D” melatonin / premature aging

(prophylactic) “in [children, patients] with D following C treatment” MPH / ADHD

“C reduces [event] [during, before] D” thiazolidinedione ciglitazone / pneumonia

“C prevents [event] [during, in] D” Mibefradil / atrial tachycardia

“C reduces the risk of D by X%” raloxifene / vertebral fractures

15 37 side effects (association) “D associated with C therapy” clozapine / tachycardia

“the use of C has been associated with D” moxalactam / thrombocytopenia

“C intake was associated with D” caffeine / shorter nocturnal sleep duration

“incidence of D in patients receiving C” oxaliplatin / hypersensitivity reaction

“D occurred after C” alfentanil / hypotension

16 67 side effects (causal implications), “administration of C resulted in D” vincristine / thrombocytopenia

studies inducing effect “C induces D” Taxol / myalgias

“D was induced by administration of C” lidocaine / Hypotension

“D was/were induced by infusion of C” ouabain / Cardiac arrhythmias

“patient developed D after receiving C” ceftaroline / eosinophilic pneumonia

18 12 potential biomarkers “C levels of D patients were significantly [lower/higher] . . . ” homocycteine / hyperthyroid

“monitoring of C in D rats” homocysteine / hypertensive

“reduced C in D subjects” selenium / asthmatic

“significant elevations of C in D subjects” leucine / MSUD

“effect of C on [biomarker level / event] in D patients” clozapine / schizophrenic

19 15 potential biomarkers “effect of C supplementation in D” vitamin D3 / Autism Spectrum Disorder

“we studied the effect of C on D” rosiglitazone / angiogenesis

“C was well tolerated in [patient group] with D” tolterodine / incontinence

“blood C concentrations in patients with D” vitamin C / diabetes mellitus



Table A.3. Chemical-disease clusters from Figure 7.2.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / D)

“examine the C status of our D patients” magnesium / chronic ambulatory peritoneal dialysis

20 63 levels associated with “high C levels are associated with increased risk of D” cholesterol / coronary heart disease

disease risk / progression “C implicated in D” bisphosphonates / osteonecrosis

“effect of D on serum C levels” testosterone / prostate cancer

“patients with D and increased C concentrations” triglyceride / unstable angina

“C has been implicated in the pathogenesis of D” Serotonin / migraine

“C intake may be associated with [lower/higher] risk of D” PUFA / colorectal neoplasia

“C supplementation and incidence of D: . . . ” beta-carotene / cancer

21 13 changed incidence / risk “C use was associated with [increased/decreased] risk of D” Warfarin / ICH

“C reduce(s) the risk of D” Bisphosphonates / osteoporotic fractures

“C may reduce the incidence of D in . . . ” Eicosapentaenoic acid / cardiovascular disease

“C was associated with a [lower/higher] risk of D” Preconception O3 / GDM

“relation of C to risk of D” cholesterol / coronary heart disease

24 22 inhibits, suppresses “C inhibited [other event] in D” Ki23057 / gastric tumours

“the D action of C” diltiazem / hypotensive

“C suppresses D through [mechanism]” Evodiamine / hyperalgesia

“influence of C on D development” histamine / seizure

“C significantly suppressed D” AS1069562 / allodynia

26 48 inhibited / blocked “the effects of C on the progression of D” minocycline / encephalopathy

disease progression “C may protect against D” Eicosapentaenoic acid / atherosclerotic disease

“C blocked D in organ culture” phenethyl caffeiate / hyperplasia

“C antagonized [other drug-induced] D” procyclidine / seizures

“C attenuates D in mice” Simvastatin / pulmonary fibrosis

“C ameliorated D by [mechanism]” EGB / endothelial dysfunction

“C alleviates D in [disease model]” Propentofylline / hypersensitivity

28 17 preventive effects evaluated “examine the effects of C on D” metformin / cytotoxicity

“study was carried out to evaluate the effect of C on D” atorvastatin / inflammation



Table A.3. Chemical-disease clusters from Figure 7.2.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (C / D)

“investigated possible beneficial effects of C on D” AdCbl / atopic dermatitis

“to assess the effect of C on D” nebivolol / endothelial dysfunction

“C effective for the prevention of D” dronedarone / atrial fibrillation

30 23 reduced, abolished, prevented “C prevents D” Itraconazole / fungal infections

“C, a [description], prevented D” AMD3100 / anxiety behaviors

“C is beneficial in D” lithium / tauopathies

“D was reduced by C” gabapentin / Pain

“C was effective in reducing D” buspirone / overall anxiety symptoms



Table A.4. Gene-disease clusters from Figure 7.3.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G / D)

2h 44 therapeutic effects, “G and response to [drug] in patients with D” TCF7L2 / type 2 diabetes

esp. drug sensitivity, resistance “G resistance in patients with D” insulin / systemic lupus erythematosus

“serum G levels are associated with D” leptin / hepatic steatosis

“G sensitivity in D” insulin / hypertension

“comparison of G and [other drug] for detection of D” cardiac troponin I / ischemic myocardial injury

2j 33 influences disease treatment “the use of G in the treatment of D” parathyroid hormone / osteoporosis

(some adjuvant therapies) “D in patients treated with G” interferon alpha 2b / Acute renal failure

“effect of G on [event] in D patients” prolactin / systemic lupus erythematosus

“G therapy in patients with D” Erythropoietin / chronic renal failure

“efficacy of G in D” S-1 / colorectal cancer

3 13 therapy, trial, treatment “G gene therapy of D” Connexin 26 / bladder cancer

“study of G in D” epidermal growth factor / gastric carcinoma

“trial of G in the treatment of D” VP-16 / chronic granulocytic leukemia

“relationship between G and [substance] in D patients” apolipoprotein H / stroke

“G treatment for D” Epoetin / anaemia

4 24 protein causes change “injected G induces D” IL-1 / anorexia

in disease status “G promotes D” VEGF-D / metastasis

“regulation of [event] by G in D” TDP-43 / frontotemporal lobar degeneration

“G inhibits D” High-mobility group box 1 / ulcer healing

“G exacerbates D” VDUP1 / bacteremic shock

5 12 levels / expression in disease “G levels in D patients” Interleukin-6 / headache

“expression of G in D” SFRP4 / primary serous ovarian tumours

“increased G levels in patients with D” thyroglobulin / nontoxic goiter

“[regulation/function] of G system in D” interleukin-6 / stroke

“G level in D” C-reactive protein / atopic dermatitis

6 28 levels / expression in disease “G levels in patients with D” interleukin-6 / glomerulonephritis

“G levels in D patients” Interleukin-2 / multiple sclerosis



Table A.4. Gene-disease clusters from Figure 7.3.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G / D)

“effects of [drug] on G in D patients” insulin / hypertensive

“serum G levels in D” E-selectin / Kawasaki disease

“expression of G in D” E-cadherin / carcinomas

7 26 biomarkers, diagnostic “G is a robust diagnostic biomarker for D” TLE1 / synovial sarcomas

“G is an independent predictor of D” Proinsulin / coronary heart disease

“G as an indicator of D in patients with . . . ” Plasma hyaluronidase / atherosclerosis

“prognostic significance of G in D patients” TGFbeta-1 / breast cancer

“effects of [situation/event] on G levels in D” chromogranin-A / neuroendocrine tumors

“G is a potential marker of D” SERPINA3 / preeclampsia

8 11 role in pathogenesis “association of G with [event] in patients with D” FCGR2A / rheumatoid arthritis

“effects of G on D” interleukin-5 / acute myeloid leukemias

“role of G in the development of D” IL-4 / transplant arteriosclerosis

“role of G in the pathogenesis of D” leptin / thyroid cancer

“a novel gene, G, is associated with D” THSD7A / obesity

9 24 role in disease course / pathogenesis “clinical impact of circulating G in D” miR-18a / oesophageal squamous cell carcinoma

“G attenuates D” Wnt5a / pulmonary arteriolar remodeling

“G predicts [event] in patients with D” LTBP2 / acute dyspnoea

“evidence for role of G in D” BRCA1 / gastric cancer

“G: the link between D and [other disease]” HMGB1 / diabetes mellitus

10 32 inhibitors used as therapies “G inhibitors in D: . . . ” ACE / aortic stenosis

“D with G mutation(s)” TARDBP / amyotrophic lateral sclerosis

“response to G inhibitors in patients with D” EGFR / squamous cell carcinoma

“G testing and management of D” EGFR / NSCLC

“G gene amplification in D” c-erbB-2 / nasopharyngeal carcinoma

12 17 drug targets (esp. cancer) “G signaling in D cells” Akt / colon cancer

“G inhibitors in the treatment of D” MEK1/2 / malignancies

“G as a strategic target in D therapy” ErbB1 / breast cancer



Table A.4. Gene-disease clusters from Figure 7.3.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G / D)

“G: an attractive target for D therapy” Angiopoietin-2 / tumor

“[drug]: a C inhibitor for the treatment of D” tumor necrosis factor alpha / rheumatoid arthritis

13 26 evaluation of role of mutations “G mutations in D” KRAS / lung adenocarcinoma

in disease “mutations in G in D” GUSB / mucopolysaccharidosis VII

“characterization of G expression in D” MUC1 / papillary thyroid carcinoma

“G mutations are associated with [event] in D” KRAS / colorectal cancer

“role of G in D development” RSK2 / osteosarcoma

14 91 causal mutations “mutation of G in a patient with D” STK11 / Peutz-Jeghers syndrome

“G mutation is associated with D” MTHFR / arterial stroke

“novel mutation in G gene associated with D” MYH7 / distal myopathy

“characterization of G mutations causing D” GALC / Krabbe disease

“mutations of the G gene in patients with D” COL1A2 / osteogenesis imperfecta

“D: a novel G mutation . . . ” CISD2 / Wolfram syndrome

“D: novel G mutations and . . . ” NPC1 / Niemann-Pick type C disease

“the recurrent mutation of G in C patients” BRCA1 / breast cancer

“G mutations can cause D” HIBCH / Leigh-like disease

15 13 levels, concentrations, “G levels in patients with D” renin / thoracic neuroblastoma

expression “serum G concentrations in D” leptin / hyperinsulinemia

“G expression in D cell lines” TIMP-1 / prostate tumor

“diagnostic value of G in D patients” interleukin 17 / lung cancer

“prognostic relevance of G in D” CCN3 / Ewing sarcoma

17 12 levels, overexpression “serum G concentrations in patients with D” erythropoietin / anemia

“serum G level in patients with D” thyroglobulin / subacute thyroiditis

“G overexpression in D” cyclin D3 / follicular thyroid carcinoma

“G is overexpressed in D” FOXG1 / hepatoblastoma

“G expression in D patients” SPARC / pancreatic cancer

18 43 expression, mutations correlated “presence of G gene mutation in D patients” BRAF / melanoma



Table A.4. Gene-disease clusters from Figure 7.3.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G / D)

with disease “frequency of G mutations in D” PTEN / thyroid cancer

“association of D with G mutations” PDH / cerebral dysgenesis

“association of G expression with D” FcRn / lung abnormalities

“correlation between G expression and [event] in D” COX-2 / colon cancer

19 32 gene expression, regulation “down-regulation of G in D cells” E-cadherin / breast cancer

“expression of G mRNA in D” CerbB-2 / nasopharyngeal carcinomas

“mRNA expression of G in patients with D” KCNQ1 / long QT syndrome type 1 and 2

“D cells expressing G” P-gp / acute myeloid leukemia

“regulation of G expression in D cells” CYP1A1 / medulloblastoma

21 66 gene expression in cell lines “G expression in D” c-mpl / hematologic disorders

“G expression in patients with D” trypsinogen-1 / ulcerative colitis

“analysis of G expression in D” SLC34A2 / ovarian tumors

“effects of G on D cells” p53 / hepatocellular carcinoma

“G expression in D cells” MMP2 / prostate cancer

22 28 tumor suppressor genes “G as a D suppressor” Caspase-2 / tumour

“G acts as a D suppressor” ECRG4 / tumor

“the gene G is a functional D suppressor” GADD45G / tumor

“G, a novel D suppressor” SynCAM / tumor

“G: a mediator of D” P-glycoprotein / melanoma invasion

26 26 polymorphism “association of variants of G with D” factor V Leiden / thrombosis

“association of the G polymorphisms with D” interleukin-18 / type 1 diabetes

“genetic polymorphisms at G are associated with D” SIRT1 / carotid atherosclerosis

“mutations in the G gene in patients with D” P-protein / encephalopathy

“G polymorphisms are associated with D” Chromogranin A / hypertensive renal disease

27 28 polymorphism “association of G gene polymorphism with D” vascular endothelial growth factor / colon cancer

“polymorphism of G in D” angiotensin-converting enzyme / sarcoidosis

“mutation of the G gene in D” endothelin-3 / Waardenburg-Hirschsprung disease



Table A.4. Gene-disease clusters from Figure 7.3.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G / D)

“G polymorphism is associated with D” tumor necrosis factor a / cystic fibrosis

“mutation in the G gene in a family with D” connexin 32 / Charcot-Marie-Tooth neuropathy

29 20 promotes progression (cancers) “G promotes D cell invasion” DLK1 / lung cancer

“G promotes D cell proliferation” CD97 / gastric cancer

“expression of G in [disease] correlates with D” Apaf-1 / lymph node metastasis

“G promotes D progression by . . . ” HDAC6 / hepatocellular carcinoma

“G expression is associated with D in [disease]” Gli-1 / lymph node metastasis

30 25 overexpression associated “regulation of G gene expression in D” CD44 / neuroblastoma

with disease (cancers) “prognostic value of G in D” Gli-1 / gastric cancer

“secretion of G by D in vitro” cathepsin B / gliomas

“G overexpression in D” TRIB1 / acute myeloid leukemia

“correlation between G expression and D” p27Kip1 / esophageal squamous cell carcinoma



Table A.5. Gene-gene clusters from Figure 7.4.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G1 / G2)

1 90 cell populations “G1 induction of human G2” C5a / interleukin 1

“increased induction of G2 in G1 lymphocytes” CD8 / interferon-gamma

“G1 + G2 T-cell population” CD25 / Foxp3

“G2 induction of G1” NfkappaB / Interleukin-1beta

“G1 expression [on, in] G2 T-cells” CD161 / CD8

“an enriched G1 + G2 T-cell subset” CD4 / CD8beta

“G1-dependent G2 activation” ERK / CREB

2 14 cell populations, regulation “regulation of G2 expression by G1” SOX10 / MITF

“G1 induces G2 gene transcription” TNF-alpha / MUC1

“regulation of G2 by G1” RECK / matrix metalloproteinase-9

“G2 expression in the G1 + cells” CD34 / Bcl-2

“G1 / G2 ratio” CD39 / CD8

6 39 cell populations, protein “G1 production by G2 + T cells” IL-17A / CD146

production / gene expression “G1 producing G2 + T cells” IL-10 / CD8

“G1 signaling in G2 + T cells” IFN-gamma / CD4

“G1 expression on G2 + T cells” CXCR3 / CD8

“the role of G1 in the function of G2 + T cells” CD28 / CD25

7 15 inhibits / induces expression “G1 induces G2 expression” Fos / Neurotensin

“G1 inhibits G2 expression” IL-15 / IL-7Ra

“effect of G2 on G1 production” MMP-9 / calcitonin-gene-related peptide

“G1 secretion in G2 cells” cholecystokinin / STC-1

“G1 induced G2 production” TNF-alpha / TARC

10 76 binding, regulation of activity “G1 binds G2” HJURP / CENP-A

“G2 interaction with G1” Bcl-xL / Clusterin

“G1 is a receptor for G2” CD96 / CD155

“G1 binding to G2” Haptoglobin / apolipoprotein A-I

“G1 mediates activation of G2” Bcl10 / NF-kappaB



Table A.5. Gene-gene clusters from Figure 7.4.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G1 / G2)

13 14 enhances response (esp. hormones) “G1 enhances [event] via G2” Glypican-4 / insulin receptor

“changes in the G1 response to G2” prolactin / thyrotropin-releasing hormone

“G1 and G2 responses to [event]” Prolactin / TRH

“G1 in G2 receptor signaling” Fc gamma RI / p72syk

“exaggerated G2 response of G1” thyrotropin-releasing hormone / prolactin

14 67 activation, stimulation, signaling “G2 activates [protein] via G1” fucosyltransferase 1 / Calreticulin

“G1 stimulates G2” Akt / SREBP1c

“G1 modulates G2 signaling” Hsp27 / p53

“G2 stimulates G1 expression” EGFR / MUC1

“G1 induces phosphorylation of G2” Thrombopoietin / STAT5

16 23 activation, targeting “function of G2 in G1 receptor activation” TNFR1 / Ubc13

“G2 promotes [event] by targeting G1” EPB41L3 / miRNA-223

“G1 phosphorylation by G2” NuMA / CDK1

“role of G1 in the activation of G2” PP4 / JNK-1

“regulation of G1 expression by G2” FGF8 / androgen receptor

17 13 affects production (mostly induces) “G2 induces the production of G1” IgG1 / IL-27

“[protein] stimulates G2 production via G1” ERK1/2 / granulocyte colony-stimulating factor

“regulation of G2 production by G1” IFN gamma / IL-18

“downregulation of G2 by G1” miR-25 / mitochondrial calcium uniporter

“enhancement of G2 by G1” TNF-alpha / IFN-gamma

21 28 induces expression / production “G2 induces G1 production” beta-defensin-2 / Tat

“G1 modulates G2 expression” Stat3 / heat shock 27kDa protein

“induction of G1 expression by G2” iNOS / IL-1beta

“G2 upregulates G1 expression” p16INK4a / p33ING1b

“G1 stimulates G2 secretion in [cell type] cells” Angiotensin II / endothelin-1

22 56 induces release / production “G1 induces G2 expression” CXCL12 / connective tissue growth factor

“G2 stimulates G1 secretion” atrial natriuretic peptide / Thrombin



Table A.5. Gene-gene clusters from Figure 7.4.

Cluster Cluster Theme Selected Descriptive Patterns Entity Pair with Pattern

Number Size (G1 / G2)

“G1 stimulates G2 release” Bradykinin / tissue plasminogen activator

“G2 stimulates G1 production” MCP-1 / Angiotensin II

“effect of G2 on G1 secretion” renin / neuropeptide Y

24 62 signaling, receptor binding “G2 signaling via G1” SMOC-1 / TGF-beta

“G1 / G2 costimulatory interactions” ICAM-1 / LFA-1

“coactivator G1 in G2 transcriptional activation” CBP / p53

“G2 G1 signaling” TCF / beta-catenin

“the G2 G1 receptor” TNF / p55

“binding of G2 to the G1 receptor” interleukin-1 / interleukin-18

25 26 same or related protein: abbreviations “G1 (G2) inhibitor” mammalian target of rapamycin / mTOR

“expression of G1 (G2) protein” pentraxin 3 / PTX3

“G2 (G1) activity” PON1 / paraoxonase-1

“G2 (G1) expression” AURKA / Aurora kinase A

“G1 / G2 complexes” PAI-1 / vitronectin

28 26 regulation of expression / activity “the roles of G1 / G2 in [event]” MMP-2 / TIMP-2

“G2 (G1) expression” M-CSF / macrophage colony-stimulating factor

“binding of G1 / G2 proteins” NF-kappa B / Rel

“G2 regulates G1 activity” RhoA / Shp-2

“synergistic effect of G1 / G2” IL-6 / BSF-2

30 28 regulation of expression / activity “upregulation of G2 activity by G1” CD28 / interleukin-4

“regulation of G1 expression by G2” TNF-alpha / TGF-beta

“G1 regulation of G2” miR-133b / Connective Tissue Growth Factor

“G2 regulation by the G1 pathway” JNK / ATF2

“prognostic significance of G1, G2, . . . ” bcl-2 / PCNA
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