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Spatial Information Extraction from Radiology Reports
ABSTRACT

Radiology reports contain a radiologist’s interpretations of images, and these images frequently
describe spatial relations between radiological entities. Important radiographic findings are mostly
documented in the reports in reference to an anatomical structure along with other clinically-relevant
contextual information through spatial expressions. The spatially-grounded radiological entities
mainly include clinical findings and medical devices. Although much work has focused on radiology
information extraction, spatial language understanding in the radiology domain has remained less
explored. The language used for representing spatial relations is complex and varied. Therefore, we
aim to encode granular spatial information in the reports and automatically extract this important
information using natural language processing (NLP) methods. Structured representation of this
clinically significant spatial information has the potential to be used in a variety of downstream
clinical applications. Such applications include fine-grained phenotyping for clinical trials and
epidemiological studies, automated tracking of clinical findings and devices, and automatic image
label generation. The three broad aims of this dissertation are to—1) build a robust spatial representation
schema that can encode detailed spatial information of findings and devices, 2) develop state-of-
the-art deep learning-based NLP methods to automatically extract the spatial information, and 3)
develop clinical informatics applications using the spatial information extracted from reports. First,
we define two spatial representation schemas, Rad-SpRL and Rad-SpatialNet, that are based on
spatial role labeling and frame semantics, respectively. We construct manually annotated radiology

report datasets following these schemas. We then propose transformer-based language models to
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automatically identify the spatial information from these reports where we frame the extraction
problem as both sequence labeling and question answering. To enable downstream applications,

we also propose normalization methods to map the radiological entities in the reports to standard
concepts in RadLex, a publicly available radiology lexicon. In addition to this, we also propose

a weak supervision method to automatically create a large radiology training dataset for spatial
information extraction without using any manual annotations. Further, we extend the Rad-SpatialNet
schema to encode spatial language in a different domain, i.e., ophthalmology notes. Finally, we use

the information extracted from radiology reports to develop an ischemic stroke phenotyping system
and an automated radiology tracking system that aims to track the same radiological findings and

medical devices across reports.
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Introduction

Radiology is a field of medicine that uses medical images to diagnose diseases and guide their
treatments. Medical imaging is used for disease prevention through screening, identifying abnormalities,
disease staging, facilitating decision support, evaluating patient’s progress during treatment, and
prognosis (Brady et al., 2021). The market size of the medical imaging industry is more than 100
billion dollars, and there is a growing number of imaging procedures conducted annually, which is
close to 700 million in 2021 (Levin & Janiga, 2021). As a result, a large volume of radiology reports
are generated per year.

Radiology reports are one of the most important sources of medical information about a
patient and are thus one of the most-targeted data sources for natural language processing (NLP)
in medicine (Pons et al., 2016). These reports describe a radiologist’s interpretation of one or more

two-, three- or four-dimensional images (e.g., X-7ay, computed tomography, magnetic resonance



imaging, ultrasound, positron emission tomography). As a consequence, these reports are filled
with spatial relationships between medical findings (e.g., tumor, pneumonia, inflammation) or
devices (e.g., tube, stent, pacemaker) and anatomical location (e.g., 7ight ventricle, chest cavity, T4,
femur). Besides radiology-specific knowledge and experience, interpreting spatial relations from
radiological images requires good spatial ability skills on the part of radiologists as it often involves
mental visualization of complex 3D anatomical structures to describe the locations of radiographic
findings. In this context, a few studies have highlighted the possible requirement of these skills

in prospective radiologists to perceive and understand the spatial relationships between different
objects in radiology practice (Birchall, 2015; Corry, 2011).

The spatial relations encountered in radiology text provide sufficient contextual information
related to the findings and devices. Moreover, some of these spatially-grounded findings demand
immediate action by the physician ordering the imaging examination. Therefore, it is important to
understand the spatial meanings from the unstructured reports and generate structured representations
of the spatial relations for various downstream clinical applications. Such applications include easy
visualization of the important actionable findings, predictive modeling, cohort retrieval, automated
tracking of radiological findings, and automatic generation of more complete annotations for
associated images containing spatial and diagnosis-related information of findings. Although numerous
work has focused on information extraction (IE) from radiology reports (Cornegruta et al., 20165
Hassanpour & Langlotz, 2016; Annarumma et al., 2019; Wang et al., 2017), spatial language understanding
in the radiology domain has still remained less explored and forms the focus of this dissertation.

For this, we aim to first define spatial representation schemas that can capture various spatial and
contextual information from the report text and later use these schemas to build natural language
processing (NLP) systems for automatically extracting such spatial information.

Table 1.1 shows an example radiology report. The example demonstrates the large number of

findings and the relationships with various anatomical entities found within radiology reports.



Table 1.1: Example radiology report containing spatial language. This report is publicly available
without restriction from openi.nlm.nih.gov (image ID: CXR1000_IM-0003-1001). Findings are
in , anatomical locations are in blue, while the spatial expressions are in cyan. Note: XXXX

corresponds to phrases stripped by the automatic de-identifier.

Comparison: XXXX PA and lateral chest radiographs

Indication: XXXX-year-old male, XXXX.

Findings: There is XXXX within the right upper lobe with
possible and associated or

The cardiac silhouette is within normal limits.

XXXX in the left midlung overlying the posterior left 5th rib may represent

No or
No acute bone

Impression: 1. in the right upper lobe with XXXX associated
may represent or with

Recommend chest CT for further evaluation.

2. XXXX overlying the left 5th rib may represent

In this dissertation, we propose two spatial representation schemas to encode spatial language
in radiology text. The first is based on the Spatial Role Labeling (SpRL) scheme, which we refer
to as Rad-SpRL. In Rad-SpRL, common radiological entities tied to spatial relations are encoded
through four spatial roles: TRAJECTOR, LANDMARK, D1aGNos1s, and HEDGE, all identified in
relation to a spatial preposition (or SPATIAL INDICATOR). The second schema is based on the
principle of frame semantics. Frame semantics provide a useful way to represent information in
text and has been utilized in constructing semantic frames to encode spatial relations (Petruck &

Ellsworth, 2018). Specifically, we extend the SpatialNet framework in the general domain (Ulinski

etal., 2019) that utilizes FrameNet (Baker, 2014) with the aim to generate more accurate representations

of spatial language used by radiologists. We refer to this schema as Rad-SpatialNet. Thus, Rad-



SpRL is a basic schema and captures four main spatial roles that different radiological entities play
in a sentence, whereas Rad-SpatialNet is an advanced representation that incorporates more spatial
details in the text.

As described above, there exists spatial relations between findings/devices and anatomical
locations in the reports. There are also mentions of other clinically relevant contextual details
associated to the spatial relations such as potential diagnoses and a device’s distance from the anatomical
structure. Moreover, there are spatial and other descriptors describing a radiological entity (e.g.,
finding, anatomy) that enhance the richness of the labels for the corresponding medical images. The
spatial descriptors represent both spatial (e.g., laterality, size, morphology) and other properties
of an imaging observation (e.g., composition, distribution pattern, density) described in reports.
Other descriptors include status, quantity, temporality, and negation. Our second schema-Rad-
SpatialNet organizes all these clinically important information following frame semantics. In frame
semantics, a lexical unit (LU) is the word or phrase that invokes a frame and the participants of a
frame constitute the frame elements (FEs). In the context of spatial relation frames, an LU is either
a spatial preposition/verb (which we refer to as a “trigger”) or a radiological entity, and all the spatial
roles and descriptors linked to the LU form the FEs. We refer to the spatial roles (connected to a
spatial trigger) and the spatial descriptors (connected to a radiological entity) as “Spatial Frame
Elements” (SFEs). The other entity-specific descriptors are referred to as “Descriptive Frame Elements”
(DFEs). Some of these frame elements are illustrated in Figure 1.1.

The second broad focus of this dissertation is to develop advanced NLP methods that can
automatically identify the spatial information from the reports with high performance. We propose
two methods for IE - the first is based on sequence labeling approach and the second is based on
framing the extraction task as question answering (QA). Owing to its promising performance both
for sequence labeling and QA, we predominantly use the transformer-based pre-trained language

model BERT (Devlin et al., 2019) in our proposed methods for spatial IE.
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Enhancing metastatic disease in the occipital region .

STATUS DESC \-[R.EASON]—/ \—( GROUND ]—f

Figure 1.1: Spatial and descriptive frame elements in radiology text. Figure, Ground, Hedge, and

Reason are the spatial frame elements of the frame instantiated by the spatial trigger in. Enbhancing
denotes a status descriptor and is a descriptive element of the frame evoked by the finding entity
hemorrbagic foci whereas right is the laterality and is a spatial frame element of the frame evoked by

the anatomical entity occzpital region. The underlined and italicized texts indicate the lexical units of

the frames.

More specifically, for the sequence labeling approach, we perform spatial IE in two steps. In
the first step, we identify the spatial indicators (in Rad-SpRL) or spatial triggers (in Rad-SpatialNet)
from a report sentence. In the second step, we identify the corresponding spatial roles (in Rad-
SpRL) or frame elements (in Rad-SpatialNet) given an indicator/trigger in that sentence. Both
these steps are formulated as sequence labeling task where each sentence is fed into the BERT model
as input and the contextual representations from the BERT encoder output is used to get the final
predicted labels for each word in a sentence. For the second approach, that is, IE as QA, we propose
a multi-turn QA method (specifically, two-turn) to identify the spatial information. This is inspired
by the recent studies (Levy et al., 2017; Li et al,, 2020b; Liu et al,, 2020) that demonstrated the
advantages of employing a QA framework over other traditional methods for IE problems as well
as by studies (Li et al., 2019, 2020a; Wang et al., 2020) that highlighted the advantages that multi-
turn QA provides. Our two-turn QA approach identifies spatial and descriptor information by
answering queries given a radiology report text. We frame the extraction problem such that all
the main radiology entities (e.g., finding, device, anatomy) and the spatial trigger terms (denoting

the presence of a spatial relation between finding/device and anatomical location) are identified



in the first turn. In the subsequent turn, various other contextual information that acts as spatial
roles with respect to a spatial trigger term are extracted along with identifying the spatial and other
descriptor terms qualifying a radiological entity. The queries are constructed using separate templates
for the two turns and we employ two query variations in the second turn.

In order to enable the use of the extracted radiological entities in downstream clinical applications
that can work across multi-institutional reports, it is crucial to map the entities to concepts in a
standardized vocabulary of radiology terms. This process of mapping the entity spans in text to
standard concepts in a vocabulary is known as concept normalization. There is limited research
in this direction, and, therefore, in this dissertation, we attempt to to normalize a diverse set of
radiological entities to RadLex (Langlotz, 2006) terms. For this, we first manually construct a
normalization corpus by annotating entities from three types of radiology reports. This corpus
contains a total of 1706 entity mentions. We then propose two BERT-based methods for automatic
normalization.

To examine the generalizability of Rad-SpatialNet, we extend this schema to a different domain,
that is, ophthalmology, to represent spatial language in ophthalmology notes. We update the Rad-
SpatialNet schema with additional frame elements and this resulted in a new schema for ophthalmology—
Eye-SpatialNet. We annotate 600 ophthalmology notes with detailed spatial and contextual information
of ophthalmic entities and apply our previously described two-turn QA approach to automatically
extract spatial information from the notes.

Supervised deep learning methods rely on a large amount of labeled data to provide satisfactory
performance. However, manual annotations are expensive, time-consuming, and requires domain
expertise. To this end, weak supervision approaches provide ways to automatically create large
labeled data without any manual involvement (Ratner et al., 2020; Shang et al., 2018; Safranchik
et al., 2020). More specifically, we propose a data programming-based weak supervision method to

automatically create a large labeled dataset of radiology reports for spatial IE.



The final aspect of this dissertation is to use the important clinical information including
spatial information extracted from the radiology reports to develop useful clinical informatics
applications. We particularly develop two applications—phenotyping and automated tracking.

For the phenotyping application, we focus on ischemic stroke phenotypes with location-specific
information: brain region affected, laterality, stroke stage, and lacunarity. We first use our BERT-
based Rad-SpatialNet NLP system to identify the clinically important spatial information and then
apply simple domain rules on top of the extracted information to classify the stroke phenotypes.

Our automated tracking problem is framed as cross-document coreference resolution (CDCR)
task. For this, we propose a new CDCR dataset to identify the co-referring radiological findings and
medical devices across a patient’s radiology reports. Our annotated dataset contains 5872 mentions
(findings and devices) spanning 638 MIMIC-III radiology reports across 60 patients, covering
multiple imaging modalities and anatomies. We propose two methods—string matching (used as
the baseline method) and a BERT-based method to identify the cross-report coreferences.

The following chapters in this dissertation are organized as follows. Chapter 2 provides a
detailed description of previous work on information extraction in the radiology domain, normalization
and weak supervision in the medical domain, as well as applications that use radiology report information.
Chapter 3 discusses our two proposed spatial representation frameworks (Rad-SpRL and Rad-
SpatialNet) designed to encode spatial information in radiology text along with descriptions of
the annotated datasets and the annotation processes. This chapter largely corresponds to work
published in Datta et al. (2020a,b). Chapter 4 describes our proposed deep learning-based NLP
methods to extract spatial information from report text. This chapter also includes the evaluation
setup and the performance (average of 10-fold cross validation in most cases) of our proposed
methods and corresponds to three published studies (Datta et al., 2020a,b; Datta & Roberts, 2022).

Chapter s, that corresponds to work published in Datta et al. (202.12), describes our radiology

normalization corpus, our proposed BERT-based systems developed for automatic normalization
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of radiological entities to RadLex concepts as well as the system performance. Chapter 6 describes
the Eye-SpatialNet schema and the results of our two-turn QA method on ophthalmology notes.
Chapter 7 provides a detailed description of our proposed weak supervision approach for radiology
spatial IE. Chapters 8 and 9 correspond to work in Datta et al. (2021b) and Datta et al. (2022),
respectively, where the former discusses the ischemic stroke phenotyping application and the latter
discusses the automated tracking system. The organization of the chapters in this dissertation is

shown in Figure 1.2.



Background

This chapter summarizes the prior work related to natural language processing (NLP) in the
field of radiology with specific focus on spatial information extraction. The following sections
describe existing studies on spatial representation frameworks to encode spatial language in text,
NLP methods for information extraction, medical entity normalization, weak supervision for
information extraction, and a few informatics applications that leverage the important clinical
information from radiology reports. Each section also highlights the research gaps and limitations in

existing work that serve as the motivation behind the proposed work for the subsequent chapters.



2.1  SPATIAL REPRESENTATION FRAMEWORK FOR TEXT

Different representation frameworks have been proposed to encode spatial knowledge in
textual data for various use cases. Among the early works, Hayward & Tarr (1995) investigated
the structural similarities between visual and linguistic representations of space. Mani et al. (2010)
proposed Spatial ML to represent geographical location information including geo-coordinates
and orientation and annotated ACE English documents as per SpatialML. This representation
encodes the spatially-related entities through contextual information such as direction and distance
as well as the actual physical connection between the related entities (using the Region Connection
Calculus). However, this representation is specific to the geographical aspects of the spatial language.
At the same time, Kordjamshidi et al. (2010) proposed Spatial Role Labeling (SpRL) that involves
extracting spatial arguments of the spatial relations in a sentence. This framework is an improvement
over representations such as Spatial ML and STM spatio-temporal markup (Pustejovsky & Moszkowicz,
2008) as this is more generalizable in terms of spatial language expressiveness and handles a greater
number of spatial concepts (both static and dynamic). This has also been utilized on biomedical
(Kordjamshidi et al.,, 2015) and consumer health data (Roberts et al., 2015). Later, Guadarrama
etal. (2013) proposed a system where users can interact with robots by issuing commands or asking
queries. Here, the system learns to both recognize the objects in a shared environment and identify
the spatial relationships between the objects. Fasola & Mataric (2013) also devised methods to
represent dynamic spatial relations for facilitating interactive instruction of robots. For text-to-
scene generation, Coyne & Sproat (2001) and Coyne et al. (2010) developed and improved the
WordsEye system that automatically converts natural language text into 3D scenes. Later, Chang
etal. (2014) proposed a representation that converts an input text describing a scene to output a
3D scene by transforming the text to a set of constraints consisting of the objects and the spatial

relations between them as well as by learning priors on how the objects occur in 3D scenes. Yuan
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(2011) applied a shortest path dependency kernel for support vector machine (SVM) to identify
spatial relations from text for geographic information retrieval. Kergosien et al. (2015) designed

a framework to extract relevant spatial information from web textual data (newspaper articles)

to annotate satellite images with additional meaningful information for use cases such as image
annotation and land use planning. Collell & Moens (2018) used both visual and linguistic features
to generate distributed spatial representations by feeding them into a neural network model that
learns to predict 2D spatial arrangements of objects provided their instances and the relationship
between them. More recently, Ulinski et al. (2019) designed the SpatialNet framework to encode
spatial language based on frame semantic principles and additionally proposed ways to incorporate
external knowledge sources for disambiguating the spatial expressions. All these highlight some

important works relevant to spatial information representation in text.

2.2 INFORMATION EXTRACTION FROM RADIOLOGY REPORTS

A range of existing work has focused on extracting isolated radiological entities (e.g., findings/locations)
utilizing NLP in radiology reports (Hassanpour & Langlotz, 2016; Hassanpour et al,, 2017; Cornegruta
etal., 20165 Bustos et al,, 2019; Annarumma et al.,, 2019). There exists recently published radiology
image datasets labeled with important clinical entities extracted from corresponding report text
(Wang etal,, 2017; Irvin et al., 2019). In Table 2.1, we compare the specific information types or
the radiology entities extracted in the previous studies from chest radiology reports using NLP. We
primarily pay attention to the clinically-important entities which are common across various types
of radiology reports. We also do not take into account the cases where uncertainty and negation
information were used to detect the presence or absence of a particular finding or a disease (Wang
etal., 2017). For example, Hedge is not considered as extracted in Table 2.1 when the uncertainty

levels are classified into negative, uncertain or positive for each finding term extracted (Irvin et al.,
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Table 2.1: Comparison of our corpus with the studies extracting clinically-relevant radiological

entities from chest X-ray and chest CT reports.

Paper Finding Anatomy Descriptor Diagnosis Device Hedge Negation Relation
Hassanpour et al. Hassanpour & Langlotz (2016) v v 4 4 v

Cornegruta et al. Cornegruta et al. (2016) v v v v v

Bustos et al. Bustos et al. (2019) v v v

Hassanpour et al. Hassanpour et al. (2017) v

Irvinetal. Irvinetal. (2019) v v v v

Annarumma et al. Annarumma et al. (2019) v v v

Wang et al. Wang et al. (2017) v 4

2019). Further, in Table 2.1, we have not considered studies dealing with specific body locations
(e.g., mammography reports containing breast imaging information, and head CT reports) as
the entities of interest are usually very domain-specific such as ‘Clock face’, ‘Depth’, ‘BI-R ADS
category’ etc. in the case of mammography reports. We also do not take into account the works
which focused on detecting a specific disease such as pneumothorax (Wang et al., 2019b) or pulmonary
lesion (Pesce et al., 2019) from chest radiographs. Note that most of these studies have targeted
toward entity extraction from text without focusing on recognizing relations among these entities.
Among the studies that extracted relations, Friedman et al. (1994) proposed a formal model
(MedLEE) based on grammar rules to map clinical information in radiology reports, including
central findings and their contextual information like body location, degree, and certainty modifiers
into a structured format utilizing controlled vocabulary and synonym knowledge base. They also
worked toward providing an interface for using MedLEE for different applications (Friedman et al.,
1995). In another work, Friedman et al. (2004) adapted MedLEE to generate the most specific
Unified Medical Language System (UMLS) code based on a finding and its associated modifier
information. Later, Sevenster et al. (2012) built a reasoning engine to correlate clinical findings
and body locations in radiology reports utilizing the Medical Language Extraction and Encoding

System (MedLEE). However, the major limitation of this work is the system’s poor recall. Yim et al.
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Table 2.2: Studies focusing on spatial relations in radiology reports.

Paper Finding Anatomy Diagnosis Hedge
v

Roberts etal. Roberts etal. (2012)  — — _

(Spatially related to a finding)
v v

(Linked with finding) o (Not linked with finding/location)

Rink etal. Rink etal. (2013) v

(2016) worked on extracting relations containing tumor-specific information from radiology reports
of hepatocellular carcinoma patients. Steinkamp et al. (2019) extracted facts representing clinical
assertions and recognized contextual information such as location, image citation, and description
of change over time related to a target entity (e.g., finding) identified for that fact. However, this
system does not necessarily capture the related entities from a spatial perspective and does not
identify all the fine-grained spatial information. Another work (Alex et al., 2019) identified relations
between observation entities with their location (deep/cortical) and recency (old/recent) modifiers
from brain imaging reports. However, the location information includes two broad categories and
is relevant to two specific observations (stroke and microbleed). In Table 2.2, we present the two
works relevant to spatial information extraction from radiology reports. The main limitations of
Rink et al. (2013) are the usage of appendicitis-specific lexicons and the requirement of manual
effort in crafting rules based on syntactic dependency patterns to identify the spatially-grounded
inflammation description. Besides being domain-specific, another limitation of Roberts et al. (2012)
is that the study extracts only the location entities associated with an actionable finding and this
required relying on heavy feature engineering. Thus, we see that relatively few studies have focused
on relation extraction from radiology text. Moreover, the datasets were limited to specific report
types (e.g., hepatocellular carcinoma) and the relations extracted do not capture spatial information.
An important dataset for radiology NLP is the Open-i radiology report dataset (Demner-

Fushman et al., 2016). Open-i is a biomedical image search engine®. One of its data collections

“https://Open-i.nlm.nih.gov/
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Indication: Abdominal pain and distention.

Findings: Frontal and lateral views of the
chest show an unchanged cardiomediastinal
silhouette. There is bibasal interstitial opacity
and left basal platelike opacity XXXX due to
discoid atelectasis and/or XXXX scarring.
There are emphysematous changes,
particularly within the right upper
lobe. No XXXX focal airspace consolidation
or pleural effusion.

Impression: 1. COPD. Basilar probable
pulmonary fibrosis and scarring. 2. No acute
cardiac or pulmonary disease process
identified.

Manual Annotation

*  Opacity/lung/base/bilateral/ interstitial
*  Pulmonary Atelectasis/base/left

*  Cicatrix/lung/base/left

¢  Pulmonary Emphysema

*  Pulmonary Disease, Chronic Obstructive
*  Pulmonary Fibrosis/base

Figure 2.1: A sample of radiology report annotations in Open-i dataset.

is a public chest X-ray dataset containing 3955 de-identified radiology reports from the Indiana

Network for Patient Care released by the National Library of Medicine. We have presented an

example of the manual annotation of a sample report in the Open-i dataset in Figure 2.1 (the annotations
are inspired by MeSH terms). Although most of the Open-i annotations embody the relationship
between finding and location, there are, however, a few missing relations. For example, note that in
Figure 2.1 the Open-i manual annotations contain the normalized finding Pulmonary Emphysema
corresponding to the phrase emphysematous changes’ in the report, but do not annotate the associated
location 7ight upper lobe’. Although many studies have used the Open-i dataset, most of them

focused on the extraction of only the disease/finding (Wang et al., 2017, 2018; Peng et al., 2018;

Daniels & Metaxas, 2019; Zech et al., 2018). Two studies worked on automatically annotating
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both disease and disease descriptions (e.g., location, severity) (Shin et al., 2016; Huang et al., 2019)
similar to the human annotations in Demner-Fushman et al. (2016). However, all these works
ignored distinguishing diagnosis terms from findings (except for Peng et al. (2018)), and annotating

correlations between them. We describe annotation-specific limitations of each of these works in

Table 2.3.
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Table 2.3: Studies who have used Open-i manual annotations.

etal. (2016) and considered images labeled
with a single disease using unique MeSH
term combinations (this accounted for
around 4o percent of the full Open-i
dataset and 17 unique disease annotation
patterns). Generated image annotations
including disease as well as its contexts such
as location, severity, and the affected organs
by taking into account image/text contexts

while training CNNs.

Paper How Open-i chest X-ray dataset is Limitation (Radiology entities
involved annotated/considered for model
evaluation)
Demner- Manually annotated or coded the collected | This is 2 manual annotation process
Fushman reports with findings, diagnoses, body relying on MeSH terms and standard
etal. parts using MeSH terms supplemented by qualifier terms. The coded terms were not
(2016) RadLex codes. Automatic annotation was well-distinguished between findings and
also produced by the Medical Text Indexer diagnoses. Moreover, the annotation lacks
(MTTI). other information such as relation between
findings and diagnoses. The automatic
labeling does not include the related body
parts for the labeled finding. (Positive
Findings/Diagnoses and Body parts)
Shinetal. | Trained CNNs using existing image Although the annotation includes disease
(2016) annotations from Demner-Fushman context and that way it generates different

image captions based on severity/location
contexts, it is limited to one major disease
provided an image. (Findings/Diagnoses
and their context such as location and

severity)
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Wang et al.

(2017)

Used text mining, DNorm Leaman et al.
(2015) and MetaMap Aronson & Lang
(2010), to label disease names using
reports. Evaluated their image labeling
method on Open-i reports using the key
findings/disease names coded by human
annotators as gold standard (Demner-
Fushman et al,, 2016). Note that additional

datasets are also used.

Only used the available annotations
for evaluating their proposed method.

(Findings/Diagnoses)

Wang et al.

(2018)

Evaluated a text-image embedding auto-
annotation framework on the Open-i
dataset using the key findings/disease names
coded by human annotators as the gold
standard (Demner-Fushman et al., 2016).

Additional datasets are also used.

Used the annotated Open-i dataset
for evaluating proposed disease
classification method for 14 diseases.

(Findings/Diagnoses)

Peng et al.

(2018)

Defined rules utilizing universal
dependency graphs to identify negation

or uncertainty related to findings. Manually
checked the annotations in Open-i and
organized the findings into 14 domain-
important and generic types of medical

findings.

Used the Open-i dataset both for designing
the patterns and testing. Although they
mentioned that organizing the findings
into fine-grained categories can facilitate

in correlating findings with the diagnosis,
the terms distinguished as diagnoses or
body parts were not utilized in the study for

showing any correlation. (Findings)

Daniels &

Metaxas

(2019)

Proposed a deep neural network that
predicts one or more diagnoses given an
image by jointly learning visual features and

topics from report findings.

Used the Open-i dataset and their
corresponding ‘findings’ annotations
both for fine-tuning and evaluating the

model. (Findings/Diagnoses)
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Huang Proposed a neural sequence-to-sequence Although this generated annotations
etal. model by leveraging “indication” for multiple diseases per image and also
(2019) information of the report which includes aimed to improve the results of Shin et al.
annotating the relationship between the (2016) in annotating disease along with
positions where the finding term appears. context such as location and severity, they
They used the Open-i manual annotations did not annotate other useful contexts
as a reference annotation for evaluating the | including spatial information of the
model. finding as well as the associated diagnosis.
(Findings/Diagnoses and their context
such as location and severity)
Zechetal. | To assess the generalizability of a deep Used Open-i only for evaluation.
(2018) learning model for screening pneumonia (Findings/Diagnoses)
across 3 hospital systems. Used human-
annotated pathology labels of the Open-i
dataset for testing.
Candemir | Fine-tuned several deep CNN architectures | Manually annotated each Open-i image
etal. to detect presence of cardiomegaly. Used into one of the following severity categories:
(2018) Open-i dataset both for training and borderline, mild, moderate, severe, and

testing.

non-classified using the corresponding
reports having cardiomegaly. (Findings,
specifically cardiomegaly and their

severity levels)
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2.3 MEgDICAL CONCEPT NORMALIZATION

2.3.1  DATA

The NCBI disease corpus, consisting of 793 PubMed abstracts, was annotated for disease
name normalization (Dogan et al., 2014). There exists an annotated dataset of narrative clinical
reports for the normalization task of disorders as part of ShARe/CLEF eHealth 2013 challengeT.
Disorder normalization corpora constructed from MIMIC clinical notes are also available through
SemEval-2014 Task 7* and SemEval-2015 Task 14°. A few studies created medical concept normalization
corpora for mapping user generated text on social media to standard vocabularies like SNOMED.
CADEC consists of annotated concepts from 1253 social media posts taken from AskaPatient
associated with adverse drug events (ADEs) of patients (Karimi et al,, 2015). PsyTAR, also constructed
from AskaPatient, contains 887 patient posts annotated with ADE:s related to psychiatric medications
(Zolnoorietal.,, 2019). Sarker et al. (2018) developed an annotated corpus for normalizing expressions
denoting adverse drug reactions (ADRs) from Twitter to MedDR A (Brown et al., 1999) (Medical
Dictionary for Regulatory Activities) Preferred Terms (PTs), which was released in the shared task
— Social Media Mining for Health (SMM4H). Roberts et al. (2017) also released an annotated
dataset of 200 drug labels for TAC2017 where the ADR expressions in the labels were mapped to
MedDRA Lower Level Terms and PTs. Luo et al. (2019b) has also released an annotated corpus of
100 discharge summaries in a 2019 shared task covering entities corresponding to medical problems,
treatments, and tests. Previous works have mapped the concept mentions to ontologies such as
the Unified Medical Language System (UMLS) (Bodenreider, 2004), SNOMED, RxNorm, and

MedDRA. Thus, we note that no work has focused on constructing normalization corpus from

TI'1‘ctps://S‘H:es.google.(:om/S‘i’ce/shareclefeheal‘ch/
thttp://alt.qcri .org/semeval20l4/task?7/
Shttp://alt.qcri.org/semeval2015/taskl4/
Shttps://www.askapatient.com/
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radiology reports and mapping the important radiological entity spans to RadLex codes.

2.3.2 METHODS

Some of the first deep learning approaches for concept normalization in the medical domain
were based on convolutional neural networks (CNNss) and recurrent neural networks (RINNs)
where a user phrase was converted to a semantic vector representation and eventually a softmax
classifier was used to assign a standard medical concept to that phrase (Limsopatham & Collier,
2016; Tutubalina etal,, 2018; Han et al., 2017). Tutubalina et al. (2018), however, incorporated
additional semantic similarity features by leveraging prior domain knowledge (UMLS) to further
enrich the phrase representations. Miftahutdinov & Tutubalina (2019) used contextualized word
representations such as BERT and ELMo (Peters et al., 2018) for normalizing user generated phrases
and achieved state-of-the-art performance on three benchmark normalization datasets - CADEC,
PsyTAR, and SMM4H 2017. All these papers worked on user-generated text of social media posts
and formulated normalization as a multi-class classification task. Luo et al. (2019a) has proposed a
hybrid system by combining exact match, edit-distance, and deep learning methods for normalizing
entities in the ShARe/CLEF 2013 challenge dataset. Their model architecture additionally integrated
contextual information of an entity mention (left and right context words) and predicted the UMLS
code using a softmax classification layer. Ji et al. (2019) have used BERT as a ranking model in a
normalization task. They ranked the candidate concepts after generating them using the BM25
(Robertson et al,, 1996) information retrieval method. Their BERT-based ranker outperformed
the previous best results on ShARe/CLEF, NCBI, and TAC2017ADR normalization datasets.
Moreover, BERT-based re-ranking has been shown to perform well on other information retrieval
tasks such as passage retrieval (Nogueira & Cho, 2019).

To the best of our knowledge, due to the lack of annotated radiology corpus, no study so far

has applied supervised learning techniques for radiology concept normalization. Tahmasebi et al.
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(2019) has utilized an unsupervised semantic learning approach to normalize the anatomical phrases
in the radiology reports to SNOMED CT anatomical concepts. However, their work was limited
to normalizing only the anatomical terms and did not cover other commonly observed clinically-

significant information such as clinical findings and modifier terms.

2.4 WEAK SUPERVISION IN THE MEDICAL DOMAIN

Numerous work has focused on open-domain NLP tasks using weak supervision. Many studies
(Shang et al., 2018; Fries et al., 2017; Safranchik et al., 2020; Li et al., 2021; Lison et al.,, 2020; Zeng
etal., 20205 Zhao et al,, 2021) have proposed weak supervision methods for named entity recognition,
and a few for other tasks such as natural language generation and understanding (Chang et al.,

202.1) and discourse structures (Badene et al., 2019). Recently, there has been increasing work

on automatically creating training data and adopting weakly supervised machine learning (ML)
methods for NLP tasks in the clinical domain. Wang et al. (2019a) developed a rule-based NLP
method to create labels for training ML models to classify clinical text. Cusick et al. (2021) proposed
a rule-based approach based on NegEx to generate training labels for identifying current suicidal
ideation. Dong et al. (2021) adapted a weak supervision approach with rules and contextualized
representations to identify rare diseases. Shen et al. (2021) adopted a similar weak supervision
approach with BERT where they used a rule-based NLP method to automatically generate training
labels for classifying lifestyle factors for Alzheimer’s disease. Banerjee et al. (2019) proposed a weak
supervision method where domain-specific dictionaries are used to heuristically generate training
labels to classify evidence of urinary incontinence and bowel dysfunction. Callahan et al. (2019)
employed data programming and trained LSTM networks for identifying pain-anatomy and implant-
complication relations from clinical notes. Peterson et al. (2020) trained a BERT model using

weakly labeled data generated through data programming to classify relations (e.g., severity, stage,
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etc.) that can be mapped to FHIR representations. Fries et al. (20212) utilized data programming
with BioBERT to classify medical entities and demonstrated comparable results to fully supervised
models on multiple benchmark datasets. Very recently, Humbert-Droz et al. (2022) developed
a data programming-based weak supervision pipeline using Snorkel to generate weak labels for
identifying the presence or absence of symptoms. Moreover, in the biomedical domain, multiple
studies have used the Snorkel framework for extracting chemical reaction relationships from biomedical
abstracts (Mallory et al., 2020), biomedical relation extraction (Krasakis et al., 2019), and filtering
biomedical research articles as relevant or non-relevant for drug repurposing in cancer (Dua et al,,
2021).

We see that most studies in the clinical domain use a rule-based approach to create weak labels
for binary classification tasks. Although Peterson et al. (2020) identified different relations associated
with a problem description, their approach assumes a single clinical problem in a description. Moreover,
only a few studies (Dunnmon et al.,, 2020; Wang et al.,, 2019a; Eyuboglu et al., 2021) so far have
applied weak supervision on radiology report text, two of those for binary classification problems
(classifying a report as normal vs abnormal (Dunnmon et al., 2020) and identifying hip fracture
from report (Wang et al., 20192)) while another (Eyuboglu et al., 2021) to generate weak anatomical

region labels that are subsequently used for training imaging models.

2.5 APPLICATIONS USING RADIOLOGY INFORMATION

2.5.1 PHENOTYPING

Numerous work has focused on identifying certain subgroups of stroke patients using NLP
techniques with the aim to facilitate timely patient triaging to select appropriate group of patients
highly likely to encounter severe consequences. We highlight the relevant studies by categorizing

them in the following three subsections:
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2.5.1.1 IDENTIFYING STROKE/ISCHEMIC STROKE

Sedghi et al. (2015) converted medical narratives to codified text based on expert provided
sign and symptom phrases and they applied ML algorithms on the codified sentences to predict
the presence of stroke in a patient. Majersik Jennifer J et al. (2018) applied NLP-based approaches
by adding context to n-grams that classified ischemic, hemorrhagic, and non-stroke cases with
high precision by using different combination of clinical report types. Kim et al. (2019) utilized
document-feature matrix vectorization techniques to classify brain MRI reports for identifying
acute ischemic stroke. Govindarajan et al. (2020) developed ML-based NLP approaches to identify
whether the stroke is ischemic or hemorrhagic based on some pre-defined symptoms and patient

factors.

2.5.1.2 CLASSIFYING STROKE SUBTYPES

Two studies focused on automatically classifying stroke patients based on standard stroke
subtype classification systems—the Trial of Org 10172 in Acute Stroke Treatment (TOAST) and the
Oxfordshire Community Stroke Project (OCSP). Garg et al. (2019) developed ML-based approaches
to classify patients according to the TOAST ischemic stroke subtyping using neurology progress
notes and neuroradiology reports for better patient management and outcome prediction. Sung
et al. (2020) constructed features based on the medical entities identified by MetaMap and then
applied traditional ML techniques to classify stroke patients based on four clinical syndromes taken

from OCSP classification system that considers the anatomical location of stroke.

2.5.1.3 IDENTIFYING STROKE FEATURES
5-1.3

A recent study (Ong et al.,, 2020) classified radiology reports based on three outcomes - presence

of stroke, involvement of MCA location, and stroke acuity by using text featurization methods such
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as bag of words, term frequency-inverse document frequency, and GloVe. These are considered as
three separate classification tasks and they employed traditional ML models and recurrent neural
networks to predict the outcomes.

Most of the important information, especially those describing or relating to abnormal findings,
are mentioned as part of the spatial descriptions between brain imaging observations and their
corresponding anatomical structures. Often times, determining granular phenotypes is dependent
on these specific information documented in the reports. Fu et al. (2019) developed both rule-
based and ML methods to identify incidental silent brain infarct and white matter disease patients
from the EHRs. As reported in Fu et al.’s work, some of the false positive errors generated by the
ML-based text classification system are usually contributed by certain disease locations (e.g., right
occipital lobe) that often co-exist with expressions related to the disease/outcome of interest (e.g.,
silent brain infarct in their case). Thus, developing a set of constraints using domain knowledge
on the spatial information in the reports has the potential to diminish such false positive cases.
Moreover, developing constraints based on the spatial relationships between imaging observations
and anatomical locations forms a natural way to predict a stroke-associated outcome of interest.
This also enhances the interpretability of the automatic phenotype construction system as it closely
replicates a clinician’s workflow to select eligible group of patients for treatment plans and clinical
recommendations.

During the same time, Wheater et al. (2019) developed a rule-based NLP system to automatically
label neuroimaging reports with a pre-defined set of 24 phenotypes. Their system incorporates
manually crafted domain lexicons as well as a chunking step for extracting the radiological entities
and relations from the text. Simple rules are then developed based on the presence of certain entities
and relations to construct the final labels for each report.

We see that prior work has mostly focused on classifying relatively broad phenotypes (e.g.,

classifying if a report has evidence of a particular condition like acute ischemic stroke) and there is
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still less research on using detailed spatial information from the reports for more fine-grained stroke
phenotyping. Although Wheater et al. (Wheater et al., 2019) constructed 24 phenotypes, there
is still a lot of reliance on the tedious process of developing manual rules for entity and relation

extraction.

2.5.2 AUTOMATED TRACKING

Most of the prior work using radiology report text has developed NLP systems to extract
important entities such as findings, diagnoses, anatomical locations, and their respective descriptor
terms (Hassanpour & Langlotz, 2016), with some focusing on more comprehensive information
extraction (Steinkamp et al.,, 20195 Sugimoto et al., 2021). Some studies have targeted extracting
information from the reports to automatically generate labels for the corresponding medical images
(Syeda-Mahmood et al., 2020; Bradshaw et al., 2020; Wood et al., 2020).

In the context of automated tracking, existing research has highlighted the requirement of
a tracking system to track radiological findings. Rubin et al. (2014) has extracted tumor-related
quantitative assessments to facilitate automated tracking. More recently, Bozkurt et al. (2019) has
focused on automatically identifying measurements and their corresponding descriptor terms from
the reports with the aim to improve care delivery by tracking the same lesions across multiple patient
encounters. Another study (Steinkamp et al., 2019) that extracted various important contextual
information from radiology reports has also highlighted the benefits of automatic tracking. Two
studies (Mabotuwana et al., 2018, 2019) have concentrated on automated matching of follow-up
imaging recommendations from the reports using contextual information (e.g., recommended
anatomy) and various other features (e.g., text-based similarity features). Interestingly, an earlier
attempt (Son et al., 2004) was made where a probabilistic model was employed to correlate lung
mass or lung lesion-related findings across different computed tomography documents associated

with lung cancer patients. However, the study highlighted limitations such as requirement of more
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refined definitions for locations (a highly weighted feature in the probabilistic model) in order to
handle scenarios where multiple findings are detected around the same location.

One could consider the tracking problem as a cross-document (CD) coreference resolution
task. In the general domain, there has been recent advancements to this relatively less explored
and challenging task (Barhom et al,, 2019; Cattan et al., 2021a,b; Bugert et al., 20215 Cattan et al,,
2021¢). Among the most recent contributions, Cattan et al. (202 1a) developed the first end-to-
end CD coreference resolution model where they applied the model over predicted mentions and
achieved first baseline performances on the standard ECB+ dataset. Another work by Cattan et al.
(2021b) proposed more realistic principles for evaluating CD coreference models (e.g., tackling
lexical ambiguities involved in real-world CD coreferences). Cattan et al. (2021¢) also proposed
a hierarchical CD coreference resolution task where they identify the coreference clusters and
hierarchy between them. In the medical domain, Wright-Bettner et al. (2019) provided insights on
the challenging aspects of this task both from model and annotator perspectives through complex
illustrative examples from a colon cancer dataset. They suggested relying more on schematic rules
and less on annotator intuition to annotate more realistic and consistent CD coreference relations.
Their work also highlighted the difficulties associated with creating human-annotated CD gold
annotations on a sizable dataset and, thereby, restricted their annotation scope (e.g., limit the CD
relations to a set of three notes per patient).

Besides the two works on CD coreference resolution on a medical corpus, (Son et al., 2004;
Wright-Bettner et al,, 2019), a few more studies have targeted within-document task (Apostolova
etal., 20125 Miller et al., 2017). Thus, CD coreference is still under-explored in the clinical domain

and we tackle this challenging problem specifically focusing on all radiological findings and devices.
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2.5.3 AUTOMATED IMAGE LABELING

Numerous work has extracted labels for the images using NLP on their corresponding reports
(Wang et al., 2017, 2018; Peng et al., 2018; Daniels & Metaxas, 2019; Zech et al., 2018). Most of
these studies generated coarse classification image labels for a set of diseases/findings utilizing rule-
based NLP on the associated chest X-ray report text. The labels mainly include whether certain
diseases are present or absent. More recently, two works have directed their focus on generating
fine-grained image labels applying NLP on reports. Yan et al. (2019) extracted semantic labels to
tag lesions in CT images using deep learning-based NLP module on the reports. The labels are
more granular compared to the studies described above and include a lesion’s body part, type, and
attributes. Syeda-Mahmood et al. (2020) proposed an automatic labeling algorithm to generate fine-
grained labels describing chest X-ray findings. The algorithm uses domain vocabulary to identify
the core findings and a natural language parser to identify the finding modifiers from reports. These
fine-grained labels are used to train a image classification model. Later, the labels predicted for a
given image are used to automatically generate a report.

Although the latter two works focus on utilizing the rich information embedded in the reports
with the aim to learn fine-grained descriptions of findings from images, one of the limitations
mainly relates to the narrow scope of findings considered, i.e., CT lesions and chest X-ray findings.
Another limitation is the lack of capturing other crucial information required for facilitating fine-
grained diagnosis. Such crucial information includes fine-grained spatial information of the findings,
for example, location specificity of a lesion as exemplified in—“lesion in the posterior fossa centered

posterior and to the left of the medulla, in the region of the cerebello-pontine cistern.”
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Spatial Representation Schema for
Radiology Language

We propose two representation frameworks, one based on spatial role labeling (SpRL) (Kordjamshidi
etal., 2010) and the other based on SpatialNet (Ulinski et al., 2019), to encode spatial language in

radiology report text. We describe these frameworks in detail in the following sections.

3.1 RADSPRL - RaDIOLOGY SPATIAL ROLE LABELING

In the general domain, earlier studies (Kordjamshidi et al., 2010, 2017) have formulated and
evaluated the spatial role labeling task for extracting spatial information from text by mapping

language to a formal spatial representation. In the SpRL annotation scheme, an object of interest
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(TRAJECTOR) is associated with a grounding location (LANDMARK) through a preposition or spatial
trigger (SPATIAL INDICATOR). For example, in the sentence, “The book is on the table”, the spatial
preposition o7’ indicates the existence of a spatial relationship between the object book’ (TRAJECTOR)
and its location ?able’ (LANDMARK). In the medical domain, a limited number of studies have

utilized the SpRL scheme. Kordjamshidi et al. (2015) extracted relations between bacteria names

and their locations from scientific text. Roberts et al. (2015) utilized SpRL in the extraction of

spatial relations between symptoms/disorders and anatomical structures from consumer-related

texts.

We construct similar spatial roles for radiology texts based on SpRL. For instance, in a radiology
report sentence, “Mild streaky opacities are present in the left lung base”, the location of a clinical
finding ‘opacities’ (TRAJECTOR) has been described with respect to the anatomy 7eft lung base’
(LANDMARK) using the spatial preposition 07’ (SPATIAL INDICATOR). Moreover, radiologists
oftentimes document potential diagnoses related to the clinical findings which are spatially grounded.

Consider the following example:

Stable peripheral right lower lobe opacities seen between the anterior 7th and 8th right ribs

which may represent pleural reaction or small pulmonary nodules.

Here, presence of a finding — stable peripheral right lower lobe opacities’ at a specific location —
anterior 7th and 8th right ribs’ may elicit the radiologist to document two possible diagnoses —
plenral reaction’ and Small pulmonary nodules’. As the actual occurrence of a disorder is highly
dependent on various patient factors such as other physical examinations, laboratory tests, and
symptoms, the radiologists usually describe diagnoses with uncertainty phrases or hedges. For
instance, in the example above, the hedge term may represent’ is used to relate a finding and its
corresponding body location with the most probable diagnoses.

In this dissertation, we propose the spatial role labeling-based framework as a preliminary step

29



to understand textual spatial semantics in chest X-ray reports. We define a basic spatial representation
framework that extends SpRL for radiology (Rad-SpRL) involving interactions among common
radiology entities. As most of the actionable clinical findings in all types of radiology reports are
spatially located and represent a probable diagnosis, Rad-SpRL can potentially be extended to other

report types. Consider the following sentence from a head CT report:

A well circumscribed hypodense 1 cm lesion is seen in the right cerebellar hemisphere consistent

with prior stroke.

Here, the spatial preposition 7z’ describes that the finding Zesion’ is located inside the anatomical

structure 7ight cerebellar hemisphere’ which is also consistent with the diagnosis stroke’.

3.1.1 SCHEMA DESCRIPTION

Our spatial representation framework (Rad-SpRL) consists of 4 spatial roles (TRAJECTOR,
LANDMARK, HEDGE, and D1aGNosIs) with respect to a SPATIAL INDICATOR. The spatial roles

and the SPATIAL INDICATOR are defined as follows:

1. SPATIAL INDICATOR: term (usually a preposition, e.g., i, within, at, near) that triggers a

spatial relation
2. TRAJECTOR: object (finding, anatomical location) whose spatial position is being described

3. LANDMARK: location of the TRAJECTOR (may also be chained as a TRAJECTOR to another

LANDMARK)

4. HEDGE: phrase indicating uncertainty (e.g., could be, may represent), generally in reference to

the D1aGNosIs and very rarely in the TRAJECTOR
5. D1agNosis: disease/clinical condition the radiologist associated with the finding
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SPATIAL
INDICATOR

TRAJECTOR LANDMARK
3 ] / [ 1

There are[degenerative changes|throughout the thoracic spine.
(@)

R
e DIAGNOSIS
\
 TRAJECTOR LANDMARK |

There is[airspace opacity| within the/left lung base/which may represent atelactesis or|infiltrate.

HEDGE
SPATIAL - { DIAGNOSIS }
INDICATOR
( TRAJECTOR | LANDMARK ]
¥
Stable|scarring near| the right lung apex along the lateral aspect.
SPATIAL (c1)
INDICATOR

( TRAJECTOR | LANDMARK |

v v
Stable scarring near the right lung apex along the lateral aspect.

(c-2)
SPATIAL
[ LAND m INDICATOR
olumes with streaky left basilar opacity| consistent with subsegmental atelectasis.
INDICATOR - | (—meer }— [ D1aGNosis @

(b)

Figure 3.1: Examples of spatial role annotations: (a) Sentence having TRAJECTOR and LANDMARK,

(b) Sentence having TRAJECTOR, LANDMARK, HEDGE, and D1aGNosIs, (c-1) and (c-2) show
the annotations of the same sentence containing 2 SPATIAL INDICATORs where the same entity
right lung apex acts as a LANDMARK in (c-1) and a TRAJECTOR in (c-2), and (d) Sentence where a

LANDMARK is described with a TRAJECTOR.

In most of the cases where a sentence contains spatial information, a finding (TRAJECTOR) is

usually detected at a particular body location (LANDMARK) where the TRAJECTOR term appears to

the left of the SPATIAL INDICATOR and the LANDMARK to its right. However, there are instances

where a spatial preposition describes the body location (LANDMARK) with its associated abnormality

(TraJECTOR) and the TRAJECTOR term appears to the right of the SPATIAL INDICATOR and

LANDMARK to the left (refer to example in Figure 3.1(d)). We have presented a few specific examples
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to highlight how various spatial roles and SPATIAL INDICATORs are identified in sentences following
the above definitions of Rad-SpRL in Figure 3.1. Please note that we have considered disease/condition
terms as D1AGNOsIs only when they are documented in conjunction with any spatially-located
finding, or in other words are entirely probable diagnoses inferred from the finding. Also note

that there is some ambiguity between a finding and a diagnosis, such that the same phrase may

appear as a DIAGNOSIs in one relation while being a TRAJECTOR in another. Our purpose here

is not to formally distinguish between a finding and a diagnosis, but rather to identify the spatial
relationships in radiology reports where the TRAJECTOR is generally a finding (or artifact in the

image) and the D1aGNoOsIs is generally a well-understood disease term.

3.1.2 DATASET ANNOTATION

A subset of 2000 reports from a total of 2470 non-normal reports as judged by two human
annotators in Demner-Fushman et al. (2016) was used to create our spatial relation corpus. This
newly annotated chest X-ray corpus contains spatial relations between findings and body locations
as well as the correlated probable diagnoses and the hedging terms used in qualifying the diagnoses.
We have presented a simple comparison between the Open-i manual annotations and our spatial
annotations of a sample report in Figure 3.2. Note that we have not annotated other findings appearing
in the report such as Opacity and Pulmonary Fibrosis as their corresponding body locations are not

described through any spatial preposition.

3.1.2.1 ANNOTATION PROCESS

Two annotators annotated the spatial roles for each identified SPATIAL INDICATOR in each of
the 2000 reports independently. They also were the annotators that manually coded the findings/diagnoses
available as part of the Open-i dataset (Demner-Fushman et al., 2016). The spatial relation annotations

were conducted in two rounds and reconciled after each. The first round consisted of annotating
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Indication: Abdominal pain and distention.

Findings: Frontal and lateral views of the
chest show an unchanged cardiomediastinal
silhouette. There is bibasal interstitial opacity
and left basal platelike opacity XXXX due to
discoid atelectasis and/or XXXX scarring.
There are emphysematous changes,
particularly within the right upper
lobe. No XXXX focal airspace consolidation

A T
or pleural effusion. There arelemphysematous changes, particularly| within/the|right upper lobe.

Impression: 1. COPD. Basilar probable
pulmonary fibrosis and scarring. 2. No acute
cardiac or pulmonary disease process
identified.

TRAJECTOR LANDMARK

Finding SPATIAL Anatomy
INDICATOR

(b) Annotation of spatial roles in a sentence containing spatial relation
Manual Annotation
*  Opacity/lung/base/bilateral/ interstitial
Pulmonary Atelectasis/base/left
Cicatrix/lung/base/left
Pulmonary Emphysema
Pulmonary Disease, Chronic Obstructive
Pulmonary Fibrosis/base

(a) A sample of radiology report in OpenI
dataset

Figure 3.2: Examples of manual annotations: (a) Open-i annotations, (b) Our spatial relation

annotations.

the first soo reports and the second round consisted of annotating the remaining 1500. Figure 3.3

shows a sample annotated report from the corpus.

3.1.2.2 ANNOTATION AGREEMENT

The inter-annotator agreement statistics for both SPATIAL INDICATOR and spatial roles are
shown in Table 3.1. The Kappa (x) agreement between the two annotators has been calculated
for SPATIAL INDICATOR (as this is a binary classification task) whereas we report the overall F1
agreement for annotating the spatial role labels (as this is a role identification task). The Kappa
agreement is high for SPATIAL INDICATORS in both annotation rounds. The F1 agreements for
the 4 spatial roles are fairly low in the first round with much improvement in the second round.
This is mainly because it is relatively easy and unambiguous to locate a spatial preposition in a
sentence compared to identifying the spatial roles. All conflicts were reconciled with an NLP expert

following each round of annotation. The moderate agreement rate for TRAJECTOR and DIAGNOSIS
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De-identified text of a le report:

Chest PA-Lat XR

Imaging Study

Xray Chest PA and Lateral

EXAM: Frontal and Lateral view of the chest XXXX/XXXX
at XXXX hours.

INDICATION: XXXX, recent thyroid surgery for thyroid
cancer

COMPARISON: None available.

FINDINGS: The cardiomediastinal silhouette and
vasculature are within normal limits for size and contour.
There is right upper lobe airspace disease. There is a
rounded nodular opacity in the left upper lung
measuring approximately 7 mm which may represent
further sequela of infectious process versus other
pathology. Osseous structures are within normal limits for
patient age.

IMPRESSION: 1. Right upper lobe pneumonia. 2.
Rounded nodular opacity in the peripheral left upper
lung which may represent further sequela infectious

Spatial role annotations:

<RadSpRLRelation text=in>

<Traj text=rounded nodular opacity >
<Landmark text=left upper lung >

<Diagnosis text=sequela of infectious process >
<Diagnosis text=other pathology >

<Hedge text=may represent >

<RadSpRLRelation>

®)

<RadSpRLRelation text=in >

<Traj text=R. ded dul pacity >
<Landmark text=peripheral left upper lung >
<Diagnosis text=sequela infectious process >
<Diagnosis text=other pathology >
<Diagnosis text=metastatic disease >

process versus other pathology including metastatic <Iedge text=may represent >
disease in a patient with thyroid cancer. Follow up to <RadSpRLRelation>
resolution recommended.

©

(€Y]

Figure 3.3: (a) Example of a de-identified report in our corpus, (b) Spatial role label annotations for
the sentence represented by blue text in (a), and (c) Spatial role label annotations for the sentence
represented by green text in (a). RadSpRLRelation indicates the text of the respective SPATIAL

INDICATORs implying the existence of a spatial relation in both the sentences.
roles was likely due to ambiguity in distinguishing the two roles in a sentence, especially when the
language pattern is different from the usual. Consider the examples below:

1. Probably scarring in the left apex, although difficult to exclude a cavitary lesion.

2. There are irregular opacities in the left lung apex, that could represent a cavitary lesion in the

left lung apex.

In the first example, Scarring’ was annotated as a TRAJECTOR after reconciliation as its spatial
location ( Zeft apex’) is described directly, although there is a higher chance of annotating it as a
DiaNosIs since most of the probable diagnoses terms are usually preceded by a HEDGE term

(‘Probably’ in this case). Similarly, tavitary lesion’ is indirectly connected to the same body location
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Table 3.1: Annotator agreement.

Number of Reports S Kappa (x) Overall Fx
PATIAL INDICATOR | TRAJECTOR LaNDMARK Diagnosis HEDGE
First 500 0.88 0.44 0.50 0.25 0.49
Remaining 1500 0.93 0.66 0.71 0.62 0.57
Complete 2000 0.92 0.59 0.64 0.49 0.55
Table 3.2: Descriptive Statistics of the annotations.
Parameter Frequency
Average length of sentence containing spatial relation 13
SPATIAL INDICATOR 1962
TRAJECTOR 2293
LANDMARK 2167
DiaGNosIs 455
HEeDpGE 388
Sentences containing at least 1 SPATIAL INDICATOR 1742
Maximum number of SPATIAL INDICATOR in any sentence 4
Spatial relations containing only TRAJECTOR and LANDMARK 1589
Spatial relations containing only TRAJECTOR, LANDMARK, and D1AGNoOSIs 9
Spatial relations containing only TRAJECTOR, LANDMARK, and HEDGE 70
Spatial relations containing all 4 spatial roles 304
Spatial relations containing more than 1 D1IAGNOSIS 118
Maximum D1aGNosIs terms associated with any spatial relation 4

(7eft apex’) and has been interpreted as an additional finding. So, tavitary lesion’ was also annotated

as a TRAJECTOR and not as a D1aGNosIs. In the second example, tavitary lesion’ was annotated as

a D1AGNOSISs in context to the first ‘in’ in the sentence, whereas the same term tavitary lesion’ was

annotated as a TRAJECTOR when its role was identified in context to the second ‘in’. As previously

noted, this difference where the same term can be both a TrRaJECcTOR and D1aGgNos1s in different

sentences is a consequence of focusing on explicitly representing the spatial language as described

as well as the natural ambiguity between a finding and diagnosis in radiology. As a result, some

downstream processing or interpretation is still required, which we leave to future work.
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3.1.2.3 ANNOTATION STATISTICS

A total of 1962 spatial relations are annotated in our corpus of 2000 reports. Most of the
TRAJECTOR terms were findings. However, 176 out of 2293 terms annotated as TRAJECTORS were
anatomical locations (example shown in Figure 3.1(c-2)). 118 SPATIAL INDICATORS had more
than one probable D1aGNosIs, out of which 98 were associated with 2 D1AGNOSIS terms, 17 were
associated with 3 D1AGNOSIs terms, and 3 had 4 associated D1aGNos1s terms. There are 1052
reports containing at least one sentence triggering a spatial relation. In those reports, there are 1742
sentences each containing at least one SPATIAL INDICATOR (1522 sentences containing exactly one
SPATIAL INDICATOR and remaining 220 containing more than one SPATIAL INDICATOR). We
have highlighted some brief descriptive statistics of our corpus based on the reconciled version of the

annotations in Table 3.2.

3.2 RAD-SPATIALNET - RADIOLOGY SPATIALNET

A flexible way of incorporating fine-grained linguistic representations with knowledge is through
the use of frames for spatial relations (Petruck & Ellsworth, 2018). The Berkeley FrameNet project
(Baker, 2014) contains 29 spatial frames with a total of 409 spatial relation lexical units. Notably,
SpatialNet (Ulinski et al., 2019) extends the use of FrameNet-style frames with enabling the connection
of these frames to background knowledge about how entities may interact in spatial relationships
using resources such as FrameNet (Baker, 2014). We propose an extension of SpatialNet (Ulinski
et al., 2019) for radiology, which we call Rad-SpatialNet. Rad-SpatialNet is composed of 8 broad

spatial frame types (as instantiated by the relation types), 9 spatial frame elements, and 14 entity

tprS.
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3.2.1 SCHEMA DESCRIPTION

Rad-SpatialNet provides a framework description to represent fine-grained spatial information

in radiology reports by converting the linguistic expressions denoting any spatial relations to radiology-

specific spatial meanings. For this, we extend the core design proposed in the general domain SpatialNet

(Ulinski et al., 2019), which is based on FrameNet and VigNet, and tailor the framework specifically
to encode spatial language in the domain of radiology. We have presented an overview of radiological
spatial relations and the main participating entities in Figure 3.4. SpatialNet describes spatial frames
by linking surface language to lexical semantics and further mapping these frames to represent

the real spatial configurations. We update SpatialNet in our work with the aim to disambiguate

the various spatial expressions used by radiologists in documenting their interpretations from
radiographic images.

To build Rad-SpatialNet, we first utilize the language in radiology reports to construct a set of
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spatial frames leveraging linguistic rules or valence patterns. The fundamental principle in forming
the radiology spatial frames is the same used for constructing frames in FrameNet/SpatialNet.
However, the main difference is that the target words (lexical units) of the frames are the spatial
trigger words which are more common in radiology and are usually prepositions, verbs, and prepositional
verbs. We then construct a list of spatial vignettes to transform these high-level spatial frames into
more fine-grained frame versions by incorporating semantic, contextual or relation type constraints
as well as radiology domain knowledge. The fine-grained frames reveal the true meaning of the
spatial expressions from a radiology perspective. We describe these final frames containing the
actual spatial configurations as the spatio-graphic primitives. Unlike SpatialNet that uses the
VigNet ontology to map the different lexical items into semantic categories, we utilize the publicly
available radiology lexicon, RadLex, to map different radiological entities mentioned in the reports
to standard terminologies recommended in radiology practice.

The main components involved in the proposed Rad-SpatialNet framework are described in

the following sub-sections.

3.2.1.1 ONTOLOGY OF RADIOLOGY TERMS

We leverage RadLex (Langlotz, 2006) to map the various radiological entities along with other
clinically important information in the report text to standard unified vocabularies to facilitate
standardized reporting and decision support in radiology practice as well as research. RadLex consists
of a set of standardized radiology terms with their corresponding codes in a hierarchical structure.
Rad-SpatialNet utilizes the RadLex ontology to map all possible contextual information with
reference to any spatial relation in the reports to the broader RadLex classes which capture the
semantic types of the various information. For example, ‘Endotracheal tube’ which is a TUBE and a
type of IMPLANTABLE DEVICE is mapped to the broad RadLex class MEDICAL DEVICE. Similarly,

‘Ground-glass opacity’ belongs to the RadLex class OracITY which falls under the broad class
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IMAGING OBSERVATION. Thus, terms such as ‘opacity’, ‘opacification’, and ‘Ground-glass opacity’

are mapped to IMAGING OBSERVATION. We also link the various modifier or descriptor entities to
standard RadLex descriptors. For instance, in ‘rounded parenchymal opacity’, ‘rounded’ is mapped

to the MORPHOLOGIC DESCRIPTOR class of RadLex, which is one of the categories of RadLex
descriptors. Unlike VigNet, RadLex does not contain any graphical relations representing spatial
configurations. So, we utilize Radlex mainly to map the terms in reports to radiology-specific semantic
categories and not for creating spatio-graphic primitives. The mapped entities are utilized in the
following steps to construct the spatial frames and subsequently the radiology-specific spatio-graphic

primitives.

3.2.1.2  SPATIAL FRAMES

The spatial frames organize information in a radiology report sentence containing any spatial
relation between common radiological entities (e.g., imaging observations and anatomical structures)
according to the frame semantic principles, similar to FrameNet and SpatialNet. All the spatial
frames created are inherited from the SPATIAL-CONTACT frame in FrameNet. We adopt similar
valence patterns as defined in SpatialNet by specifying various lexical and syntactic constraints to
automatically identify the frame elements from a sentence. However, there are differences in the
set of frame elements in Rad-SpatialNet compared to SpatialNet. For example, besides FIGURE
and GROUND, some of the other common elements in the Rad-SpatialNet frames are HEDGE,
DiaGNoOs1s, DISTANCE, and RELATIVE POSITION.

To do this, we identify the most frequent words or phrases expressing spatial relations in
radiology. Such a word/phrase also forms the lexical unit for a spatial frame. The type or the sense of
the spatial trigger is also recognized to include the spatial relation type information in the frame.

For example, in the sentence describing the exact position of a medical device - ‘The umbilical

venous catheter tip is now 1 cm above the right hemidiaphragm’, ‘above’ is the spatial trigger having a
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Table 3.3: Broader categories of spatial relations in radiology

Relation Description
Type
Containment | Denotes that a finding/observation/device is contained within an anatomical
location (“There is again seen bigh Tz signal within the mastoid air cells

bilaterally”)

Directional Denotes a directional sense in which a radiological entity is described wrt
location (“An NGT has its tip below the diaphragm”)

Contact Denotes an entity is in contact with an anatomical structure (“NGT reaches
the stomach™)

Encirclement | Denotes a finding is surrounding an anatomical location or another finding
(“Left temporal hemorrbage with surrounding edema is redemonstrated”)
Spread Denotes traversal of an entity toward an anatomical location (“An NG tube
extends to the level of the diaphragms.”)

Description | Denotes an anatomical location being described with any abnormality or
observation (“There is also some opacification of the mastoid air cells.”)
Distance Denotes a qualitative distance between a radiographic finding and an
anatomical location (“There are areas of Tz hyperintensity near the lateral
ventricles.”)

Adjacency Denotes a radiographic finding is located adjacent to a location (“7here
is a small amount of hypodensity adjacent to the body of the right lateral

ventricle.”)

directional sense. This instantiates a spatial frame with Directional as the relation type and above.prep
as the lexical unit. Some other common spatial relation types in Rad-SpatialNet are Containment,
triggered by lexical units such as in.prep, within.prep, and at.prep; Descriptive, triggered by lexical
units such as shows.v, are.v and with.prep; and Spread triggered by lexical units such as extend (into).prep,
throughout.prep, and involving.v. The spatial relation types are shown in Table 3.3 and the elements
identified for the spatial frames are described in Table 3.4.

The semantic type of the FIGURE and GROUND elements are identified for each spatial frame

constructed using the RadLex ontology. For the example above related to the positioning of the
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Table 3.4: Frame elements in Rad-SpatialNet

Element

Description

Elements with respect to a spatial trigger

FIGURE

GROUND

HEeDpGE

Diagnosis

REeason

REeLATIVE
Position

DisTANCE

Position
STATUS
ASSOCIATED
Process

The object whose location is described through the spatial trigger (usually refers to
finding/location/disorder/device/anatomy/tip/port)

The anatomical location of the trajector described (usually an anatomical
structure)

Uncertainty expressions used by radiologists (e.g., ‘conld be related to’, ‘may
concern for’ etc.)

Clinical condition/disease associated with finding/observation suggested as
differential diagnoses, usually appears after the hedge related terms

Clinical condition/disease that acts as the source of the
finding/observation/disorder

Terms used for describing the orientation of a radiological entity wrt to an
anatomical location (e.g., posteriorly’ in “Blunting of the costophrenic sulct
posteriorly is still present”, ‘high’ in “The UV line tip is high in the right atrium.”)
The actual distance of the finding or device from the anatomical location (e.g., ‘1
om’ in “ETT tube is 1 cm above the carina.”)

Any position-related information, usually in context to a device (e.g., ‘terminates’
in “A right PIC catheter terminates in the mid SVC.”)

Any process/activity associated with a spatial relation (e.g., ‘‘ntubation’ in “may be
related to recent intubation”)

Elements with respect to a radiological entity

STATUS
MoORPHOLOGIC
DensITY
MopaLiTy
DisTRIBUTION
TEMPORAL
COMPOSITION
NEGATION
S1ZE

LATERALITY
QUANTITY

Indicating status of entities (e.g., ‘stable’, ‘normal’, ‘mild’)

Indicating shape (e.g., ‘rounded’)

Terms referring to densities of findings/observations (e.g., ‘hypodense’, ‘lucent’)
Indicating modality characteristics (e.g., ‘attenunation’)

Indicating distribution patterns (e.g., ‘scattered’, ‘diffuse’)

Indicating any temporality (e.g., ‘new’, ‘chronic’)

Indicating composition of any radiological observation (e.g., ‘calcified’)

The negated phrase related to a finding/observation (e.g., ‘without evidence of”’)
The actual size of any finding/observation (e.g., ‘14-mm’ describing the size of a
lytic lesion)

Indicating side (e.g., ‘lef?’, ‘bilateral’)

Indicating the quantity of any radiological entity (e.g., ‘multiple’, ‘few’)

umbilical venous catheter tip, the semantic type of FIGURE is MEDICAL DEVICE and the type of

GROUND is ANATOMICAL LocaTIioN. All this information—combining the semantic types and the

spatial relation type—are used to further refine the spatial frame FIGURE-DIRECTIONAL-GROUND-

SF as Mep1CcAL DEVICE-DIRECTIONAL-ANATOMICAL LOCcATION-SF.

3.2.1.3 SPATIAL VIGNETTES

The main idea of spatial vignettes are also adopted from SpatialNet. Here, we develop vignettes

primarily to resolve the ambiguities involved in using the same spatial trigger words or phrases to
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describe difterent radiological contexts. In other words, the same spatial expressions might have
different spatial configurations based on the context or the radiological entities associated.

The vignettes connect the spatial frames to spatio-graphic primitives utilizing the RadLex
ontology, semantic/relation type constraints as well as domain knowledge to generate more accurate
spatial representations of radiology language. Consider the following two sentences having the same

spatial trigger ‘extends into’:
1. There is interval increase in the right pleural effusion which extends into the fissure.
2. Thereis an NG tube which extends into the stomach.

The first sentence contains a radiologist’s description of a fluid disorder ‘pleural effusion’ with
respect to an anatomical reference—fissure in the pleural cavity (a closed space around the lungs),
whereas the second sentence describes the positioning of a feeding tube. It is difficult to interpret
the actual spatial meaning of the same prepositional verb ‘extends into’ in these two different contexts
solely from the lexical information. The spatial vignettes map the spatial frames corresponding to
these sentences to different spatio-graphic primitives representing the actual spatial orientation of
‘extends into’ utilizing radiology domain knowledge.

Semantic constraints are applied to the FIGURE and GROUND frame elements, whereas a
spatial relation type constraint is also added to the relation sense. If the semantic category of the
F1GURE is MEDICAL DEVICE and the relation type is DIRECTIONAL, with the lexical unit extends
(into).prep, then a spatial vignette will generate the spatio-graphic-primitive MEDICAL DEVICE-
TERMINATES INTO-ANATOMICAL LOCATION-SGP from the spatial frame MEDICAL DEVICE-
DIRECTIONAL-ANATOMICAL LocATION-SF (corresponding to example 2 above). Another
vignette will produce the spatio-graphic primitive DISORDER-EXTENDS INTO-ANATOMICAL
LocAaT1oN-SGP if the semantic category of the FIGURE is DISORDER instead of MEDICAL DEVICE

and particularly refers to fluid-related disorders like ‘plenral effusion’(corresponding to example 1

42



above). The vignettes here determine the spatial meanings of radiology sentences based on both
the semantic types of FIGURE element and specific properties of the DISORDER type (for example,
fluidity in this case). Similar ambiguities are observed for spatial expressions containing lexcial
units such as projects (over).prep and overlying.v as they often occur in both device and observation
or disorder-related contexts. Thus, the vignettes differentiate the real orientation of the spatial
expression when it is used in context to a medical device versus any other radiographic finding.
Consider another set of examples below where both sentences are related to the tip position of two

medical devices:
1. The umbilical arterial catheter tip projects over the T§-9 interspace.
2. The tip of the right I] central venous line projects over the upper right atrium.

Here, the spatial vignettes produce a more specific spatial representation of the prepositional verb
‘projects over’ based on the details of anatomical location. A spatial vignette will produce the spatio-
graphic primitive MEDICAL DEVICE T1p-IN FRONT OF-ANATOMICAL LOCATION-SGP for the
first sentence. IN FRONT OF is derived as the anatomical structure is corresponding to the ‘78-

9 interspace’ in the spine which is often used as the level of reference to indicate the position of
catheters and tubes and these tubes and catheters are in front of the spine. Another vignette will
produce MEDICAL DEVICE T1pP-TERMINATES AT LEVEL OF-ANATOMICAL LOCATION-SGP
for the second sentence as the IJ venous line lies within the internal jugular vein and might go upto
the ‘right atrium’.

Consider the following sentences containing ‘overlying.v’ as the lexical unit:

1. There is a less than 1 cm diameter rounded nodular opacity overlying the 7th posterior rib

level.

2. The left I] pulmonary artery catheter’s tip is currently overlying the proximal SVC.
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If the FIGURE is IMAGING OBSERVATION and the GROUND is particularly associated with anatomical
locations such as ribs, a spatial vignette will produce the primitive IMAGING OBSERVATION-PROJECTS
OvVER-ANATOMICAL LOCATION-SGP for the first sentence. Ribs are also used the same way as
spine to describe the level of objects or pathology. However, for the second sentence, the spatio-
graphic primitive will be MEDICAL DEVICE T1P-TERMINATES AT LEVEL OF-ANATOMICAL
LocATION-SGP as the FIGURE is MEDICAL DEVICE and the GROUND (anatomical location) is
sre.

The following examples contain the spatial trigger ‘of” connecting two anatomical structures or

parts of anatomical structures:
1. There is increased signal identified within the pons extending to the right side of the midline.
2. The UA catheter tip overlies the left pedicle of the Tg vertebral body.

In the above cases with respect to the spatial preposition ‘of”, the semantic types of both FIGURE

and GROUND are referring to ANATOMICAL LocAaTIONs. However, there is a difference in the
interpretation of the same trigger word ‘of”. The vignette adds a constraint that if the spatial relation
type is DESCRIPTIVE and both FIGURE and GROUND have semantic type as ANATOMICAL LOCATION,
then the meaning of the preposition is determined based on the words of the FIGURE element. If

the words are either ‘szde’ or ‘aspect’, then ‘of” refers to a subarea/side of the GROUND anatomical
location. Whereas for other words, ‘of” refers to a specific identifiable anatomical structure contained
within the GROUND element, similar to ‘pedicle’ present at each vertebra in Example 2 above. The
spatial vignettes corresponding to the three spatial expressions described above - extends (into).prep,

projects (over).prep, and of prep are illustrated in Figure 3.5.
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Figure 3.5: Examples of spatial vignettes for differentiating the spatial meanings of three commonly

found spatial expressions in radiology reports.

3.2.2 DATASET ANNOTATION

We annotated a total of 400 radiology reports—Chest X-ray reports (136), Brain MRI reports
(127), and Babygram reports (137)-from the MIMIC III clinical database (Johnson et al., 2016).
The language used in MIMIC reports is more complex and the report lengths as well as sentence
lengths are long compared to other available datasets such as open-i chest X-ray reports (Demner-
Fushman et al., 2016). We filtered the babygram-related reports following the ‘babygram’ definition,
that is, an X-ray of the whole body of an infant (usually newborn and premature infants). Since
babygram reports have frequent mentions of medical device positions and involve multiple body

organs, we incorporate this modality mainly with the intention to build a corpus with balance
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Figure 3.6: Examples of annotations.

between two major spatially-grounded radiological entities—imaging observations/clinical findings

and medical devices.

3.2.2.1 ANNOTATION PROCESS

We pre-processed the reports to de-identify some identifiable attributes including dates and
names and also removed clinically less important contents. All the sentences in the reports containing
potential spatial relations were annotated by two human annotators. The annotation was conducted
using Brat. The annotations were reconciled three times—following the completion of 50, 200, and
400 reports. Since identifying the spatial frame elements involves interpreting the spatial language
from the contextual information in a sentence, the annotations of the first so reports (i.e. our
calibration phase) differed highly between the annotators. Some of the major disagreements related
to spatial relation sense were discussed and the annotation guidelines were updated after first two

rounds of annotation. Examples of sample annotations are provided in Figure 3.6.
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To provide more insights into some of the complexities encountered in the annotation process,
we highlight a few cases here. First, oftentimes two anatomical locations are present in a sentence
and in such scenarios, an intermediate anatomical location (first location occurrence) is chained as
a FIGURE element in context to the broader anatomical location (second location occurrence and
the GROUND element). However, this chaining is not valid if the two locations are not connected.

Consider the sentences below:

1. There are few small air fluid levels in [mastoid air cells]r;ys1ocarion within the left [mastoid

PV 0(-'355] SecondLocation+

2. Area of increased signal adjacent to the left lateral [ventricle]Fiyyr ocation at the level of [corona

radiata ] Second Location:

For the first sentence, ‘mastoid air cells’ is contained within ‘mastoid process’ and these anatomical
locations are connected. Therefore, ‘mastoid air cells’ is annotated as FIGURE element and ‘mastoid
process’ as the GROUND in context to the spatial frame formed by the lexical unit ‘within.prep’. Note
that ‘mastoid air cells’ is the GROUND element associated with the FIGURE ‘azr fluid levels’ through
the spatial trigger ‘7n’. However, for the second sentence, ‘ventricle’ and ‘corona radiata’ are two
separate anatomical references and are not connected. Hence, two separate spatial relations are
formed with the radiographic observation ‘signal’, one between ‘signal’ and ‘ventricle’ described
through ‘adjacent to’ and the other between ‘signal’ and ‘corona radiata’ described through ‘a#’
and the RELATIVE PosITION ‘level of”. Second, some instances require correct interpretation of
whether prepositions such as ‘of” are SPATIAL TRIGGERs or are part of location descriptors. Note

the examples below:

1. PICC line with its tip located at the junction of superior vena cava and left brachiocephalic

vern.
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2. Abnormal signal in posterior portion of spinal cord.

In the first sentence, junction of” is annotated as the RELATIVE PosITION describing the connection
between ‘superior vena cava’ and ‘brachiocephalic vein’, whereas in the second sentence, ‘of " is a
SPATIAL TRIGGER connecting the FIGURE—portion’ and the GROUND—-‘spinal cord’. Third, although
location descriptor words such as anterior, lateral, and superior are usually annotated as RELATIVE
PoSITION, in a few cases they are annotated as SPATIAL TRIGGER. For example, note the following

two sentences:
1. There is an area of bigh signal intensity extending into the [anterior| Ry, arivs Posrrion mediastinum.
2. There is a 6 mm lymph node [anterior to[sp riar Tricerr the carina.

In the first sentence, ‘anterior’ is used to describe ‘mediastinum’ and is annotated as a RELATIVE
PosITION, whereas in the second sentence, ‘anterior’ contributes in perceiving the actual spatial

sense and hence ‘anterior to’ is annotated as a SPATIAL TRIGGER.

3.2.2.2 ANNOTATION STATISTICS

The inter-annotator agreement results are shown in Table 3.5. We calculate the overall Fx
agreement for annotating the spatial relation types, the main entities, and the spatial frame elements.
The agreement measures are particularly low (around o.4) for FINDING/OBSERVATIONS as often
there are higher chances of boundary mismatch in the process of separating the descriptor-related
words from the main finding or observation term. There are very few instances of PROCESS entities
and cases where the disorder terms act as REASONs in the corpus which have resulted in the agreement
measures being zero. Ultimately, Rad-SpatialNet requires an extremely knowledge-intensive annotation
process, so low agreement at this stage is not unreasonable. Future work will include additiional

quality checks to ensure the semantic correctness of the annotations.
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Table 3.5: Annotator agreement.

Item ‘ First so | Next 150 | Last 200
Relation Types
CONTAINMENT 0.73 0.81 0.81
DIRECTIONAL 0.29 0.73 0.46
CONTACT 0.44 0.1 0.03
ENCIRCLEMENT 0.67 0.57 0
SPREAD 0.24 0.55 0.45
DESCRIPTION 0.42 0.54 0.58
DisTANCE 0 0.5 0.4
ADJACENCY 0 0.25 0.44
Main entities
SPATIAL TRIGGER 0.58 0.81 0.78
ANATOMY 0.48 0.68 0.76
DEvIcE 0.35 0.82 0.83
Trip 0.38 0.98 0.97
FINDING/OBSERVATION 0.28 0.43 0.38
DESCRIPTORS 0.29 0.64 0.71
Frame Elements

FiGURE 0.33 0.58 0.62
GROUND 0.42 0.67 0.70
DiagNosis 0 0.51 0.54
HEDGE 0.19 0.48 0.45
REASON 0 0.38 0
RELATIVE PosiTION 0.07 0.48 0.58
DisTANCE 0.4 0.86 0.71
PosIiTiON STATUS 0 0.62 0.42
AsSsOCIATED PROCESS 0.57 0 0

3.2.2.3 CORPUS STATISTICS

358 (89.5%) of the reports contain spatial relations. The reconciled annotations contain a

total of 1101 sentences with mentions of spatial triggers. There are 1372 spatial trigger terms in
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total (average of 3.8 triggers per report). The frequencies of the entity types, the types of spatial
relations, and the spatial frames are presented in Table 3.6. The predominant spatial trigger types to
instantiate spatial frames are ‘Containment’, ‘Description’, and ‘Directional’. 81 of the 330 DEVICE
entities are described using various descriptor terms, 327 of the 436 OBSERVATION entities, 240

of the 367 CLINICAL FINDINGs, 190 of the 390 DISORDERS, and 564 of the 1492 ANATOMICAL
LocaTIoNs contain descriptors. The distribution of various types of descriptors (consistent with
RadLex) across the main radiological entities are shown in Table 3.7. Note that the figures in Table 3.6
and Table 3.7 are considering only those entities and their descriptors which are involved in a spatial
relation. There are 1328 frame instances which correspond to the main radiological entities as
demonstrated in Table 3.6. Among the remaining 44 spatial triggers, 11 are related to Port/Lead

of devices and 33 describes how a specific part of an anatomical structure is linked to the main part.

3.3 LiMITATIONS OF RAD-SPRL AND RAD-SPATIALNET

Rad-SpRL only covers prepositional spatial expressions as SPATIAL INDICATORs, and do
not consider the non-prepositional ones (e.g., verbs such as demonstrates’, shows’ etc.). Moreover,
multi-word spatial expressions are not covered (e.g., projects in’, ‘projecting through’, ‘projected over’),
although such expressions occur rarely in the Open-i chest X-ray reports dataset to describe the
location of findings. Additionally, the Rad-SpRL framework does not capture other important and
common spatially-grounded radiology entities such as medical devices in the reports. The following
example illustrates a sample sentence where the medical device ‘Right I] venous catheter’ acts as the

TRAJECTOR in reference to its associated location proximal SVC’ that acts as the LANDMARK:
Right I] venous catheter terminates at the proximal SVC.

Rad-SpRL also does not capture other important contextual information related to spatial relations

such as the relative position of a finding w.r.t. its location (e.g., “posteriorly” in the sentence—Blunting
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Table 3.6: General corpus statistics.

Item [ Freq
General
Average sentence length 17.6
Spatial triggers 1372
Sentences with 1 spatial trigger 874
Sentences with more than 1 spatial trigger 227
Entity Types
MEepicaL DEVICE 330
Trr oF DEVICE 142
Device PorT/LEAD I1
IMAGING OBSERVATION 436
CrLiNiCAL FINDING 367
DI1sORDER 390
ANATOMICAL LOCATION 1492
DESCRIPTOR 1548
ASSERTION 326
QUANTITY 67
LocaTtioN DESCRIPTOR 398
PosriTioN INFO 167
PRroCESS 19
Spatial Frames (SFs)
CONTAINMENT 642
DESCRIPTION 387
DirECTIONAL 168
SPREAD 69
CONTACT 54
ADJACENCY 32
ENCIRCLEMENT 14
DISTANCE 6
Most frequent Lexical Units - Containment SF
‘in.prep’ 410
‘within.prep’ 134
‘at.prep’ 86
Most frequent Lexical Units - Description SF
‘of.prep’ 277
‘are.prep’ 37
‘with.prep’ 17
Most frequent Lexical Units - Directional SF
‘above.prep’ 43
‘projecting (over).prep’ 24
‘below.prep’ 18
Spatial Frames based on semantic types
MepicaL Device-related 194
MEebpicaL DevicE Tip-related 142
IMAGING OBSERVATION-related 436
CrinicAL FINDING-related 344
DisoRrDER-related 212
Spatial frame elements
FIGURE 1491
GROUND 1537
HEeDGE 249
DiagnNosis 190
REeason 33
REerLaTIVE POsiTioN 398
DISTANCE 51 45
PosiTioN STATUS 167
AsSSOCIATED PROCESS 21




Table 3.7: Descriptive statistics of the radiological entities in the annotated corpus. (OBs -

Observation, FNDG - Finding, D1s - Disorder, DEvc - Device, ATY - Anatomy)

ELEMENT OsBs | FNpG | D1s | DEvc | ATy
StAaTUS 231 121 77 I 22
QUANTITY 50 31 14 5 30
DISTRIBUTION 43 14 6 o 2
MORPHOLOGIC | 37 20 6 o 6
S1zE DEsc. 33 19 31 I 9
NEGATION 32 50 20 o I
TEMPORAL 23 26 50 14 o
LATERALITY 20 3 22 68 499
S1ZE 19 I 3 o o
COMPOSITION 5 8 2 o 2
DENSsITY 5 o o o o
MoparLiTy 2 o o o) o

of the costophrenic sulci posteriorly is still present.’) and shape of a finding (e.g., “rounded” in the
sentence—"Again seen is a somewhat rounded parenchymal opacity in the right mid-lung.’). Also,
both positive and negative spatial relations are considered in Rad-SpRL as the primary focus was on
identifying the spatial relationship itself, not the presence or absence of the condition to which the
relation refers.

The Rad-SpatialNet framework is an advancement over the Rad-SpRL framework and thus
captures more detailed spatial information from the reports than the Rad-SpRL. However, some
other complex information in context to a spatial trigger could be considered for later work. Consider
the sentence - ‘The tip of the catheter bas a mild rightward curve, suggesting that it may be directed
into a portal vein.” Here, information about ‘zntermediate position change’ might also be annotated
as a frame element. Further, some phrases such as ‘needs repositioning’ can be differentiated from

PosiTioN STATUS as POSITION RECOMMENDATION.
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In both Rad-SpRL and Rad-SpatialNet, only the intra-sentence spatial relations are covered.
Oftentimes, we encounter inter or cross-sentence relations and scenarios where the differential
diagnoses are documented in the sentence following the spatial relation or even far apart in the
‘Impression’ section (around 12.75% of the reports in the Rad-SpatialNet corpus). Covering inter
or cross-sentence relations is left for future work. Moreover, the same entities that are referred to
multiple times in the same report (e.g., once in the ‘Findings’ section and again in the ‘Impression’

section) are not linked in both the Rad-SpRL and Rad-SpatialNet datasets.
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Deep Learning-based Natural Language
Processing Methods for Spatial Information
Extraction

This chapter describes our proposed deep learning-based methods for spatial information
extraction from the radiology reports. The methods are based on sequence labeling and question
answering. We additionally present the results obtained by applying these methods on both the Rad-

SpRL and the Rad-SpatialNet datasets.
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4.1 SEQUENCE LABELING

We apply a set of deep learning models, primarily the pre-trained transformer language models
like BERT (Bidirectional Encoder Representations from Transformers), to extract spatial information
from report text. For the Rad-SpRL dataset, we apply bidirectional long short-term memory (Bi-
LSTM) conditional random field (CRF) neural network as the baseline model and additionally
utilize two pre-trained transformer language models (BERT and XLNet) for extracting the SPATIAL
INDICATORs in a sentence and consequently to extract the associated spatial roles for each SPATIAL
INDICATOR. Similarly, we apply BERT-based model on the Rad-SpatialNet dataset to first extract
the spatial triggers in a sentence and then the spatial frame elements associated with each trigger.

For both spatial role and spatial frame element extraction, we evaluate using both the gold and the

predicted SPATIAL INDICATORSs or spatial triggers in a sentence.

4.1.1  DEScrIPTION FOR RAD-SPRL
4.1.1.1 BASELINE MODEL

We formulate the spatial role extraction as a sequence labeling task. We utilize a Bi-LSTM
CRF framework similar to the proposed architecture in Lample et al. (2016) both for SPATIAL
INDICATOR extraction and spatial role labeling. The CRF in the decoding layer takes into account
the sequential information in the sentence while predicting the sequence labels related to any spatial
role (TRAJECTOR, LANDMARK, D1aGNos1s, and HEDGE). We utilize a Bi-LSTM that incorporates
a character embedding «x° (where each character is denoted ¢; ;) for each word w; in a sentence. Here,
7 represents the word position and ; stands for the position of the character in the word w;. For
every word, this character embedding is then concatenated with the respective pre-trained word
embedding x}°. For extracting the spatial role labels, additionally a SPATIAL INDICATOR embedding

«/* is concatenated to the word and character embeddings to distinguish the indicators from non-
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indicator words. The final concatenated representation [x; x5 47| is fed into the final Bi-LSTM

7 0

network with one hidden layer. The overall architecture is presented in Figure 4.1.

4.1.1.2  BERT AND XLNET-BASED MODELS

First, we fine-tune BERT for extracting the SPATIAL INDICATORs in a sentence and second, we
apply the fine-tuned model for labeling the four spatial roles provided the SPATIAL INDICATOR in
a sentence. In this work, we represent a sentence obtained after WordPiece tokenization as [[CLS]
sentence [SEP]] for constructing a single input sequence following the original BERT paper (Devlin
etal., 2019), where [CLS] is a symbol added at the beginning of each input sentence and [SEP] is
a separator token for separating sentences. The input sequences are then fed into the BERT model
to generate contextual representations. For spatial role labeling, we mask the SPATIAL INDICATOR
term with an identifier ‘$spin$’ to better encode the positional information of the specific SPATIAL
INDICATOR in a sentence for which the spatial roles are annotated. The contextual BERT representation
corresponding to each word in the sequence [[CLS] sentence [SEP]] is then concatenated with a
SPATIAL INDICATOR embedding similar to the baseline Bi-LSTM CRF model. The concatenated
representation is fed into a simple linear classification layer for predicting the final labels for each
token. The model architecture is illustrated in Figure 4.2.

To fine-tune BERT for spatial role labeling for the Rad-SpRL corpus, we initialize the model
with the publicly available pre-trained checkpoints of the BERT large model (BERT arGE). We
also initialize the model parameters obtained by pre-training BERT on medical corpus (MIMIC-III
clinical notes). We have adopted these pre-trained parameters from a previous work (Si et al., 2019)
where clinical domain embedding models were pre-trained on MIMIC-III clinical notes, referred
to as BERTparge (MIMIC), after initiating from the BERT srGE released checkpoint. Owing to
the best performance of BERT1 ar e (MIMIC) on clinical concept extraction for four benchmark

datasets (Si et al.,, 2019), we initiate our model with the pre-trained parameters of BERT1 aArGE
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\ [ B-TRAJECTOR | I-LANDMARK
I-TRAJECTOR —I | B- LANDMARK

There are |degenerat1ve| k:hanges }throughout the thoracic spine

C‘?F
Hidden Layer

::: Bi-LSTM Layer

8 Word
Representation

xwe ce xmd

:: Character Bi-LSTM

Figure 4.1: Baseline model architecture. For each word, a character representation is fed into the

X

input layer of the Bi-LSTM network. For each word, x** represents pre-trained word embeddings,
« represents character embeddings, and ¥ represents indicator embeddings. The final
predictions for the spatial role labels in a sentence are made combining the Bi-LSTM’s final score

and CRF score.

(MIMIC) to fine-tune on our spatial role labeling task.

For XLNet, the model input is similar to BERT and we feed [sentence [SEP] [CLS]] into
the model. We have utilized a similar simple architecture as BERT for fine-tuning XLNet on Rad-
SpRL. However, we have initialized the model with the released pre-trained model parameters
(XLNety arGE) for fine-tuning as experimenting with the MIMIC pre-trained parameters has yet

to result in further performance improvement.
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B-TRAJECTOR | I-LANDMARK
I-TRAJECTOR | ( B-LLANDMARK }

: I
There are|degenerative| changes|throughout the spine

Linear Classification Layer

Contextualized

+ Indicator

embedding

| BERT |
[CLS] There are degenerative changes $spin$ the thoracic spine. [SEP] Input sequence

throughout

Figure 4.2: BERT-based model.

4.1.1.3 PRE-PROCESSING

SPATIAL INDICATOR extraction We preprocess the Rad-SpRL dataset to generate input
sequence for the models. We follow Beginning (B), Inside (I), and Outside (O) tagging scheme to
label the words in a sentence. The input to the models consists of the sequence of words and the
corresponding BIO tags. The following example shows how a sentence containing two SPATIAL

INDICATORS is tagged.

[Sfﬂblf]o [ffﬂm'ng]o [near].inprcaror [Pe]lo [Vlghf]o Uﬂng]o [ﬂpfx]o [ﬂlong]B—INDICATOR

[the]o [laterallo [aspect]o

Spatial role labeling For each SPATIAL INDICATOR in a sentence, we create an instance or
sample of the sentence. For each instance, we tag all the spatial roles (TRAJECTOR/LANDMARK/D1AGNOs1S/HEDGE)
as well as the SPATIAL INDICATOR. Creating separate sentence instance for each SPATIAL INDICATOR
helps in dealing with cases where the same word can be both a TRAJECTOR and a LANDMARK

in context of two different SPATIAL INDICATORs in the sentence (example shown in (c-1) and
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(c-2) in Figure 3.1 in chapter 3). Also, annotating only the roles associated with a single SPATIAL
INDICATOR provides the model unambiguous information about the position of the specific indicator
term to which these roles are associated. We again follow the BIO tagging scheme. The input to the
final model consists of words and the corresponding B, I, O labels for a set of sentences. However, in

the case of applying BERT and XLNet, the input sentence is tokenized by WordPiece and SentencePiece
tokenizers before feeding into the BERT and XLNet encoders, respectively. The following example

shows the tagged words for the sentence — “Minimal degenerative changes of the thoracic spine”.

[Ml‘nl’mﬂl] B-TRAJECTOR [degmfmfl'vé’] I-TRAJECTOR [fbﬂﬂg&”] I-TRAJECTOR

[of]INDICATOR [the]o [thoracic]p.Lanpmark [Jpl.ne]I—LANDMARK

4.1.1.4 EXPERIMENTAL SETTINGS AND EVALUATION

We use pre-trained medical domain MIMIC-III word embeddings of 300 dimensions * in
our Bi-LSTM experiments. The character and the indicator embeddings are initialized randomly
and altered during training. The dimensions of character and indicator embeddings are 100 and 5
respectively. The model is implemented using TensorFlow (Abadi et al., 2016), and the hyperparameters
are chosen based on the validation set. LSTM hidden size is set at 500, dropout rate at 0.5, learning
rate at 0.01, and learning rate decay at 0.99. We use the Adam optimizer and train the model for a
maximum of 20 epochs.

For fine-tuning BERT, both for BERT1 arGg and BERT 1 arGe (MIMIC), we largely followed
the standard BERT parameters, including setting the maximum sequence length at 128, learning
rate at 2¢-5, and using the cased version of the models. Additionally, we set the number of training
epochs at 4 based on the performance of the models on the validation set. For BERT argr (MIMIC),

we initialize the model parameters pre-trained on MIMIC after 320000 steps. For XLNet, the

“https://northwestern.app.box.com/s/eprxyxmee37p3dékhqbpnrastyttqsut
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maximum sequence length and learning rates are the same as used for BERT, casing is also preserved,
and the number of training steps is set at 2500 based on the validation set performance. In both
BERT and XLNet, the dimension of indicator embedding is set at s.

First, we perform 1o-fold cross validation (CV) — with data splits at the report level - to evaluate
the performance of the three models for SPATIAL INDICATOR extraction. The training, validation,
and test sets are split in the ratio of 80%, 10%, and 10% respectively. There are a total of 1742 sentences
with at least one SPATIAL INDICATOR and 31779 sentences without any INDICATOR in the dataset.
To ensure that the performance of the models is not impacted due to the imbalance in the number
of sentences with and without SPATIAL INDICATORS, we additionally run both the Bi-LSTM
CRF and the BERT argr (MIMIC) models by randomly undersampling the negative sentences
(i.e., sentences without an INDICATOR) while training. We experiment using different number of
negative instances such that #negative sentences after undersampling = 7 * #positive sentences in
each train and validation sets, where 7 = 1,2,3,4,5,6). We found that the performance of both the
models (average F1 score of a ro-fold CV) improves as 7 is increased from 1 through 3 and starts
to decline 4 onwards. Therefore, we select the value of 7 as 3 for conducting all our experiments.
However, to evaluate the performance of the models on the full original dataset, we include all
sentences in the reports of the test sets so that we get a more realistic sense of how well the models
perform.

To better assess the generalizability of the models, we randomize the fold creation 5 times and
conduct 10-fold cross validation for each fold variation. We then report the average Precision, Recall,
and F1 measures across 5o (5*10) different instantiations for each model. We also include the 95 %
confidence intervals of the average F1 measures.

Second, we evaluate the performance of the three models in extracting the spatial roles in
context to a SPATIAL INDICATOR. We use the same fold settings and the same training, development,

and test splits as in the SPATIAL INDICATOR extraction for spatial role labeling. For training and
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validation, we utilize only the sentences containing a gold SPATIAL INDICATOR in the sentence.
However, for testing, we experiment providing both the gold and the predicted SPATIAL INDICATORS
(i.e., the output of the first model). The same trained model weights are used in predicting the roles
using gold and predicted INDICATORs. We report the average Precision, Recall, and F1 measures

of each of the 4 spatial roles across 5o instantiations for each model. We also calculate the overall
measures of the three metrics considering all the roles collectively. We report the 95 % confidence
intervals of the average overall F1 measures. Exact match is performed for evaluating the performance

on the test set.

4.1.2  DESCRIPTION FOR RAD-SPATIALNET

Here, we formulate both the tasks of spatial trigger (lexical units of spatial frames) identification
and frame elements extraction as sequence labeling task. The BERT-based model architecture for
sequence labeling is similar to the one described for Rad-SpRL in section 4.1.1.2. As an initial step
of extracting the spatial trigger terms and the associated spatial information (spatial frame elements)
in report sentences, we utilize both BERTgasg and BERT sArGE pre-trained language models as
our baseline systems. We initialize the model parameters obtained by pre-training BERTgasE and
BERT1 aArGE on MIMIC-III clinical notes (Si et al., 2019) for 300K steps and fine-tune the models
on our constructed Rad-SpatialNet corpus. For fine-tuning, we set the maximum sequence length
at 128, learning rate at 2e-5, number of training epochs at 4 and use cased version of the models.

1o-fold cross validation is performed to evaluate the model’s performance with 8o-10-10%
training, validation, and test splits of the reports. First, the spatial triggers are extracted in a sentence.
Second, we extract the common frame elements with respect to the trigger. For element extraction,
we evaluate the system performance using both the gold spatial triggers and the predicted triggers on

the test set.
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Table 4.1: SPATIAL INDICATOR extraction results: Average Precision, Recall, and F1 measures
of 1o-fold CV across 5 different fold variations. CI - 95% confidence intervals of the average F1

measures across so iterations.

Models Precision(%) Recall(%) F1 (CI)

Bi-LSTM CRE 84.73 92.38 88.33 (£0.56)
BERTarcE 94.07 83.54 87.85 (£2.49)
BERT arcr (MIMIC) 90.69 91.60 91.08 (£3.68)
XLNet; ARGE 88.62 94.40 91.29 (£0.70)

4.1.3 REesurLTts oN RaDpSPRL

The average results of the 10-fold CV across s difterent runs with fold variation are shown
in Table 4.1 for SPATIAL INDICATOR extraction on the Rad-SpRL corpus. Note that we test the
models on all sentences (both with and without INDICATOR). We see that either the recall or precision
is higher than 90% for Bi-LSTM CREF, BERT ArGE, and XLNet models. BERT arge (MIMIC)
had better balance in precision and recall (both higher than 90%). The highest F1 score is obtained
by XLNetr arGE, which is 91.29.

For spatial role extraction, we report the average performance metric values of the 1o-fold CV
across s different fold variations, both considering the gold and the predicted SPATIAL INDICATORS
in sentences of the test sets. Note that the test sets for each of the 5o different runs of the models are
same for both INDICATOR and role extraction. We create a separate instance of a sentence for each
of the predicted SPATIAL INDICATORS (in case multiple indicators are extracted by a model). When
extracting the spatial roles using the predicted SPATIAL INDICATORs, we take into account all the
spatial roles predicted for the false positive SPATIAL INDICATORs in calculating the precision loss,
and consider the spatial roles predicted for the false negative SPATIAL INDICATORS in assessing the
recall loss. This provides a more realistic end-to-end evaluation of the models.

The results using gold and predicted indicators are presented in Table 4.2 and Table 4.3, respectively.
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Table 4.2: Spatial role extraction results using gold SPATIAL INDICATORs: Average Precision (P %),
Recall (R %), and F1 measures of 10-fold CV across 5 different fold variations. CI - 95% confidence
intervals of the average F1 measures across so iterations. BLSTM-C - Bi-LSTM CRF, BERT-L -

BERTLARGE; BERT-LM - BERTLARGE (MIMIC), XLNet-L - XLNCtLARGE.

TRAJECTOR LANDMARK DiaGgNosis HepGE OVERALL
P R F1 P R F1 P R F1 P R F1 P R F1 (CI)
BLSTM-C 888 87.3 88.0| 941 89.9 91.9 | 766 750 75.2|78.4 763 770 |89.0 86.4 87.6(fo.ss)
BERT-L 89.7 91.8 90.7 | 95.4 96.1 95.8 | 72.7 85.5 78.4 | 72.8 84.1 77.8 | 88.8 92.4 90.5(+ 0.42)
BERT-LM 912 93.1 92.1 | 95.6 96.6 96.1 | 72.3 83.9 77.4 | 75.0 86.1 8o.1 | 89.5 93.3 91.4(Lto.54)
XLNet-L  92.8 941 93.5 | 96.1 968 96.4 | 78.6 88.0 82.8 |79.6 88.6 83.7 | 91.6 942 92.9(+0.38)

Models

We note that contextualized word representations help in improving spatial role extraction except
for BERT1 ArGE, which performed slightly inferior to the baseline model (Bi-LSTM CRF) when
the predicted SPATIAL INDICATORS are used (see Table 4.3). XLNet performed the best (highest
average overall F1 score of 92.9) in extracting the spatial roles when gold INDICATORs are used,
however, its performance is comparable to BERT 1 Ar e (MIMIC) when predicted INDICATORS are
used (85.4 for XLNet and 85.6 for BERT with the same confidence interval). For TRAJECTOR, the
highest average F1 for the end-to-end evaluation is 85.7, whereas for LANDMARK the highest average
F1 is 89.3, both obtained by BERTy pArGe (MIMIC) (Table 4.3). For all the models, the average F1
measures for Di1aGNos1s and HEDGE are comparatively lower than TRAJECTOR and LANDMARK,
with the highest values being 79.0 and 78.6, respectively. Although the highest overall Fr is achieved
by BERT arGe (MIMIC) for the end-to-end evaluation, XLNet performed better in extracting the

DiagNosis and HEDGE roles.

4.1.3.1  DiscussioN

The results in Table 4.2 and Table 4.3 demonstrate that the models achieve promising results in
extracting the spatial roles from the Rad-SpRL corpus. We observe that incorporating contextualized

word representations by fine-tuning BERT (pre-trained on MIMIC) and XLNet models on the
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Table 4.3: Spatial role extraction results using predicted SPATIAL INDICATORs: Average Precision
(P %), Recall (R %), and F1 measures of 1o-fold CV across 5 different fold variations. CI - 95%
confidence intervals of the average F1 measures across so iterations. BLSTM-C - Bi-LSTM CRF,

BERT-L- BERTLARGE: BERT-LM - BERTLARGE (MIMIC ), XLNet-L - XLNetLARGE-

Models TRAJECTOR LANDMARK DiAGNoOSIS HepGE OVERALL

P R F1 P R F1 P R F1 P R F1 P R F1 (CI)
BLSTM-C 777 83.9 80.6 | 830 866 847|723 722 717|715 72.5 71.6|78.8 831 80.8(+to0.76)
BERT-L 857 73.9 78.1 | 90.0 772 828 |73.1 753 738 |71.4 71.8 711 |85.1 752 79.3(t2.16)
BERT-LM 858 85.9 85.7|89.6 89.2 89.3|72.5 830 77.3 |720 81.6 763|848 866 85.6(+0.65)
XLNet-L. 823 88.9 85.3 | 860 909 882|738 856 79.0|732 853 78.6| 821 89.1 85.4(+0.65)

Rad-SpRL dataset performs better than a Bi-LSTM CRF network in extracting the SPATIAL INDICATORs
as well as the spatial roles. Thus, BERTarGe (MIMIC) and XLNety arGg are currently the best
performing models. However, more work is needed to determine which between these two models
is more robust in extracting spatial information from chest X-ray reports. We also note that the
average F1 measures are high for TRAJECTOR and LANDMARK roles and are comparatively low
for DiagNos1s and HEDGE. The reason behind this can be attributed to the lesser number of
Dragnosis and HEDGE terms in the dataset (5 to 6 times less than both TRAJECTOR and LANDMARK
terms) and greater distance between the SPATIAL INDICATOR and the D1aGNOs1S/HEDGE terms
compared to the TRAJECTOR/LANDMARK terms.

Taking into account the relatively low F1 measure for DiacNos1s and HEDGE, we performed
a brief analysis of the errors. On average, the best performing BERTy aArge (MIMIC) model in the
end-to-end evaluation (shown in Table 4.3) misses around 10 % of the gold annotated D1aGNoOs1s
terms, misclassifies 1 % of the terms as TRAJECTORs, and misidentifies the beginning of around
2.6 % of the D1aGNOsIs terms as inside. Some of the DIAGNOSIS terms that are misclassified as
TrajJeCTORS include ‘bronchovascular crowding’, ‘edema’, ‘pulmonary fibrosis’, ‘atelectasis’, and
Scarring’. This is mainly because of the different ways certain common radiographic findings are

also described as differential diagnoses. For example, in the sentence — “Low lung volumes with
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bibasilar opacities may represent bronchovascular crowding.”, the D1aeNos1s ‘bronchovascular
crowding’ is falsely classified as a TRAJECTOR. This might be because there are instances in the
dataset where ‘bronchovascular crowding’ appears as TRAJECTOR (e.g., in the sentence — “There

are low lung volumes with bronchovascular crowding as a result.”), as often a DIAGNOSIS term itself
appears in a spatial relationship. The main reason for the errors associated with incorrect starting
boundary of a predicted D1AGNOsIS term is that sometimes an extra adjacent term to the left of the
actual D1AGNoOSIS term is predicted by the model. For example, in “Increasing prominence of the
superior mediastinum may be secondary to enlarging thyroid mass.”, the model outputs ‘enlarging
thyroid mass’ as the predicted D1acNosIs instead of the annotated #hyroid mass’. For HEDGE,

one of the major contributing factors of incorrect predictions of gold terms is that the BERT arGE
(MIMIC) model misses around 14 % of the gold annotated HEDGE terms. Most of these missed
terms (e.g., questionable’, suggestion of, ‘appears’, ‘alternatively’) occur very infrequently in the
dataset. Another challenge could be the variety of ways the hedging terms are used and positioned in
a sentence to suggest any finding or differential diagnosis. Future work should attempt to improve
the models to better handle complex description of sentences. Future work should also be directed
toward building an end-to-end system based on neural joint learning models (Li et al., 2017; Miwa
& Bansal, 2016) that would extract both SPATIAL INDICATOR and the spatial roles together, reducing
discongruencies between predicted roles. From a method perspective, some alternative deep learning
methods such as highway networks (Srivastava et al., 2015) and tree-based LSTMs (Miwa & Bansal,
2016) could be explored to further improve the performance of spatial role extraction from the Rad-

SpRL corpus.

4.1.4 RESULTS ON RAD-SPATIALNET

For element extraction, we evaluate the system performance using both the gold spatial triggers

and the predicted triggers on the test set. The results are shown in Table 4.4, Table 4.5, and Table 4.6.
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Table 4.4: 10 fold CV results for spatial trigger extraction. P - Precision, R - Recall.

Model P (%) | R(%) | Fix
BERTgasg (MIMIC) 92.20 | 43.04 | $57.52
BERT prge (MIMIC) | 93.72 | 67.13 | 77.89

Table 4.5: 10 fold CV results for extracting spatial frame elements using BERTgasg (MIMIC). P -

Precision, R - Recall.

GoLD SPATIAL TRIGGERS PREDICTED SPATIAL TRIGGERS

Main Frame Elements

P (%) R(%) Fx P(%) R(%) F1
FiGure 75.14 84.10 79.35 63.26 40.48 48.00
GROUND 84.96 88.90 86.87 68.83 42.95 51.64
HEeDGE 64.31  77.46 69.78 56.91 31.84 38.69
DiagnNosis $3.99  79.54 63.93 38.89 26.48 29.18
RELATIVE PosiTION 81.27 75.56 78.12 67.01 39.91 48.81
DisTANCE 86.64 87.50 84.87 77.17  73.67 74.29
PosITION STATUS 62.29 64.07 62.74 56.86 52.05 52.39
AsSSOCIATED PROCESS, REASON 0.0 0.0 0.0 0.0 0.0 0.0
OVERALL 76.53 82.69 79.48 63.98 40.73 48.55

The results demonstrate that BERTT sr g performs better than BERTgasE for both spatial trigger
prediction and frame elements prediction. However, in case of spatial trigger, the recall is low for

both the models (Table 4.4). For element extraction, BERTgasg’s overall F1 combining all the

frame elements is 79.48 (using gold spatial triggers) and 48.5 5 (using predicted triggers), whereas,

for BERTT ArGE, the difference in the overall F1 between using gold (81.61) versus predicted triggers
(66.25) is much lower (15.4 vs 30.9). The F1 values are zeroes for REAsoN and AssoCIATED PROCESS

because of few occurrences in the dataset.

4.1.4.1  DIiscuUssION

The results of the baseline system illustrates that it is difficult to identify the spatial trigger

expression. This might be because of their wide variation in the reports and many of these appear
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Table 4.6: 10 fold CV results for extracting spatial frame elements using BERT ar e (MIMIC). P -

Precision, R - Recall.

GoLD SPATIAL TRIGGERS PREDICTED SPATIAL TRIGGERS

Main Frame Elements

P(%) R(%) Fx P(%) R(%) F1
FiGure 77.42  85.75 81.35 65.51 65.44 65.12
GROUND 88.92 91.57 90.22 73.31  70.21 71.51
HeDGE 67.20 77.94 71.59 60.43 57.26 57.82
DiagnNosis 51.96 79.81 62.31 47.06  57.64 50.76
RELATIVE PosiTION 81.31 78.42 79.57 66.02 67.76 66.33
DisTANCE 86.83 87.50 87.00 86.50 90.24 88.05
PosITION STATUS 65.73 65.83 65.38 58.59 63.63 60.37
AsSOCIATED PROCESS, REASON 0.0 0.0 0.0 0.0 0.0 0.0
OVERALL 78.83 84.64 81.61 66.63 66.28 66.25

as multi-word expressions. We only use the developed corpus to extract the core frame elements
in a spatial frame. The results indicate that there is enough scope for improving the predictions by

developing more advanced methods in the future.

4.2 INFORMATION EXTRACTION AS QUESTION ANSWERING

Recent research has focused on formalizing various information extraction (IE) tasks as question
answering (QA). More specifically, a few studies (Li et al., 2020b; Sun et al., 2020; Banerjee et al.,
2020) have demonstrated the effectiveness of formulating named entity recognition (NER) as
machine reading comprehension (MRC) instead of the traditional sequence labeling technique
in both general and biomedical domains. Apart from NER, prior work has also framed relation
(Levy etal, 2017) and EE (Liu et al., 2020) tasks as MR C. Additionally, several studies (Li et al.,
2019, 20202; Wang et al., 2020) have explored a new paradigm by formulating relation and event
extraction (EE) tasks as multi-turn QA, an approach that involves performing multiple turns of
machine reading comprehension (MR C) successively. Advantages of framing extraction tasks as

MRC include leveraging prior knowledge through queries, jointly modeling entities and relations
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Table 4.7: Target entities extracted in turn 1.

Target entity type Description RadLex Class
Spatial prepositions (e.g., 772), verbs
Spatial trigger (e.g., demonstrate), verb followed by Not applicable
prepositions (e.g., projected at), etc.
o Terms re'lated t(? r?dlologlFal . ' Clinical finding, Imaging
Finding observations, clinical findings (including i
o observation
those suggesting diagnoses)
Anatomy Anatomical location Anatomical entity
Device Medical device Medical device
Tip Tip of a medical device Portion of medical device

Location descriptor

Describing how a finding is located with
respect to an anatomy

Location descriptor

Modifiers describing a radiological

RadLex descriptor (except

Other descriptor , : ) )
p observation or finding Location and Certainty)
. Uncertainty and negated phrases used b . .
Assertion ) . Y § p Y Certainty descriptor
radiologists
. Position status of a device (e.g., good .
Position o (e84 Not applicable
position)
. Any quantitative term in the report text .
Quantity 4 p Not applicable
(e.g., 3 mm)
Process Describing motion, change, etc. Process

in the form of natural language questions, and making use of advanced MRC models. In addition,

multi-turn QA captures the hierarchical dependency of entities and is therefore suitable for complicated

scenarios where extraction of certain entities depends on previously extracted entities. Previous

approaches have formulated spatial trigger and element (or role) extraction as a sequence labeling

task either in a pipelined or joint learning fashion (Bastianelli et al., 2013). However, inspired by

the advantages that multi-turn QA provides, we propose to adopt a two-turn QA approach by

harnessing MR C models for identifying fine-grained spatial and descriptor information of radiographic

findings and medical devices described in radiology reports..
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Table 4.8: Frame Elements extracted in turn 2, their descriptions, and associated entity types. ST -

Spatial Trigger. Desc - Descriptor.

i f Rel
Frame ELEMENTs  Description E“tft_y Types of Related
Entities
Figure Object whose location is described ST
& ) Finding/Anatomy/Device/ Tip
Ground Anatomical location of Figure ST; Anatomy
Hedge Un.certal'nty expressions used by ST: Assertion
radiologists
Diagnosis C'hnlcal cc')ndlt?on or d%sease associated ST; Finding
with a radiological finding
= Any position-related information
£ Position Status yp . . ’ ST; Position
< usually in context to a device
A
» Terms used for describing the
Relative Position  orientation of a radiological entity ST; Location descriptor
wrt to an anatomical location
Distance Actual dlStS.LnCC of ﬁfldmg or device from ST; Quantity
the anatomical location
Reason Clinical condmon.or d1.sease th:jtt acts as ST; Finding
the source of a radiological finding
Associated Any.proces§ or activity associated with a ST: Process
Process spatial relation
Morphologic Indicates shape Finding/Anatomy; Desc
Finding/A Device;
Size Desc Indicates size description inding/Anatomy/Device;
Desc
Distribution . . .
Indicates distribution patterns Finding/Anatomy; Desc
Pattern
Composition Indl.cates composition of a radiological Finding/Anatomy; Desc
finding
Laterality Indicates side Finding/Anatomy/Device;
Desc
Size/Measurement Actual size of a finding Finding; Desc
Status Indicates status of entities Finding/Anatomy/Device;
) Desc
(7]
Finding/A Device;
A Quantity Indicates quantity of a radiological entity [;:::mg/ natomy/Device;
Temporal Indicates temporality Finding/Device; Desc
Negation The associated negated phrase Finding/Anatomy; Desc
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4.2.1 DESCRIPTION FOR RAD-SPATIALNET

4.2.1.1 PROBLEM FORMULATION

We formulate the spatial IE problem as a machine comprehension problem where information
is extracted from a given text (treated as a context paragraph) using templates posed as queries to
elicit specific information (triggers and frame elements). The answer spans returned by the MRC
system are treated as the extracted entities. In case the system returns a special token NONE, this
indicates that the specific entity that is queried for is not present in the report text. Analogous to
how a conventional entity-relation extraction system is employed, i.e., first identifying the target
entity and then identifying the related entities, our MR C formulation is also designed in two turns/steps
as one-time QA is not sufficient to capture this dependency in the information extracted. The target
entities extracted in the first turn are mentioned in Table 4.7. These entities cover a wide range of
common radiology terms curated as part of the radiology lexicon, RadLex (Langlotz, 2006) (see
Table 4.7). The second turn identifies the spatial frame elements (FEs) associated with a spatial
trigger (e.g., Figure, Ground, Diagnosis) as well as spatial (e.g., Laterality) and descriptive (e.g.,

Status) FEs associated with a radiological entity. These frame elements are described in Table 4.8.

4.2.1.2  QUERY CONSTRUCTION

Entity and frame element (FE) type modification The entity and FE types are used in forming
the queries. The entity types except ‘Spatial Trigger’, ‘Location Descriptor’, and ‘Quantity’ are
modified, as shown in Table 4.9, while incorporating in a query. We modified the entity types
to incorporate more information about the entities in the queries as well as to make the queries
sound more natural. The FE types (corresponding to element names) are used in the queries of the
second turn without modification except for the ‘Diagnosis’ element in which case it is modified to

‘Potential diagnosis’.
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Table 4.9: Modified entity types to be used in queries.

Target entity type Modified entity type

Finding Clinical finding
Anatomy Anatomical structure
Device Medical device

Tip Medical device tip
Other descriptor Descriptor

Assertion Assertion-related
Position Position-related
Process Associated process

Target entity extraction The modified entity type (of a spatial trigger and a main radiological
entity) is converted to a query using a template. This query variant is referred to as Queryg,g (shown
in Table 4.10).

Spatial and descriptive frame element extraction Each FE is converted to a query, Querygng
(see Table 4.10), such that the query asks for identifying the text span (belonging to a specific entity
type) from the report that has the particular FE relation to a target entity type. The query template
contains a slot corresponding to the target entity type (ENT, ) that is filled by the previously extracted
entity (ENT,_SPAN) from the first turn. Thus, this query jointly extracts the FE relation (REL)
as well as the related entity (of type ENT, ) in the form of an answer span that is predicted by the
MRC model. Using this template, queries are formed such that all FE relations are covered for all
possible pairs of target and related entity types. For example, “find all medical device entities in the
context that have a figure relationship with spatial trigger entity above.” is the query constructed
for the triplet {spatial trigger, Figure, medical device} where spatial trigger is ENT,, Figure is REL,
and medical device is ENT, that is extracted by answering this query. If the answer is NONE, this
means there is no such related entity in the text that is associated to the target entity through REL.

We also experiment with another query variation for the second turn. In this, we encode
domain knowledge in the query by incorporating a general description of the FE. That is, we prepend

a description of the spatial FE (SFE) or descriptive FE (DFE) at the beginning of a query. We refer
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Table 4.10: Query template and example. Qr: Querygng. Qr+ 4 QUerygind + desc-

Extraction step Query template Example
.. Entity type : ENT Entity type : Spatial trigger
Target entities Qr: ﬁ)r’uiy 5] ENT entities in the Qr: ﬁ}rlldy ﬁl spalzial triggir entities in the
context. context.
Frame element type : REL Frame element type : Figure
Target Entity type : ENT, Target Entity type : Spatial trigger
ENT, span from turn 1 : Spatial trigger span from turn 1 : i
. EnT,_SpaN
sp_ atl.al and Related Entity type : ENT, Related Entity type : Clinical finding
descriptive frame Qr: find all ENT, entities in Qy: find all clinical finding entities in
elements the context that have a/an REL the context that have a figure relationship
relationship with ENT, entity with spatial trigger entity 7z.
ENnT,_ Sran.
Qa4 ageneral description Q.+ a : Figure refers to finding or device
about REL + Qf or tip entities that are described with
respect to an anatomical structure. + Q

to this query variation as Querygng + desc (see Table 4.10 for template and example). The descriptions

developed for each of the spatial and descriptive FEs are listed in Tables 4.11 and 4.12, respectively.

4.2.1.3 MRC FRAMEWORK

The MRC architecture is based on the pre-trained language model BERT (Devlin et al., 2019).
Previous work achieved promising results using BERT-based MR C models for QA (Devlin et al.,
2019; Livetal,, 2019; Quetal,, 2019). We select this model framework owing to the promising
performance of using BERT for QA as well as to tackle multi-answer QA. We follow the standard
format to feed input into the BERT model for answering queries. We split the whole content of
a radiology report into overlapping passages by sliding window and use each passage as context ¢
into the BERT model after combining with the query ¢. This sliding window technique proved
to be effective as evidenced by prior work (Wang et al.,, 2019¢; Li et al., 2019) . After WordPiece

tokenization of both query and context, we merge the query ¢ and the context c as [[ CLS] ¢ [SEP]
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Table 4.11: Descriptions for spatial frame elements used in Queryfind + desc for the second turn.

Spatial Frame Element

Description

Figure Figure refers to finding or device or tip entities that are
described with respect to an anatomical structure

Ground Ground refers to the main anatomical structures

Hedge Hedge refers to uncertainty phrases describing a finding or
diagnosis. Examples include may represent and suggestive of

Diagnosis Diagnosis refers to a clinical condition or disease associated with

afinding. This is suggested as potential diagnosis and usually
appears after the hedge related terms

Position Status

Position status refers to any position-related information,
usually in context to a device. Examples include terminates and
expected position

Relative Position

Relative position refers to terms describing the orientation of
a finding wrt to an anatomical structure. Examples include

posteriorly, level of, and high

Distance Distance refers to the actual distance of finding or device from
the anatomical structure. Examples include 3.6 cm and 4 mm
Reason Reason refers to a clinical condition or disease that caused a

radiographic finding to be detected. This usually appears after
hedge terms like could be due to

Associated Process

Associated process refers to any process/activity associated with
a spatial relation. Example includes intubation

Morphologic Descriptor

Morphologic descriptor indicates shape of findings. Examples
include rounded

Size Descriptor

Size descriptor indicates size of a finding. Examples include
large and small

Distribution Pattern

Distribution pattern indicates patterns such as scattered and

diffuse

Composition Descriptor

Composition descriptor indicates composition of a finding.
Example includes calcified

Laterality Laterality indicates side. Examples include left and right

Size/Measurement Size refers to the actual size of a finding. Examples include
lesion size such as 14-mm

Density Descriptor Density descriptor refers to densities of findings. Examples

include hypodense and lucent

Modality Characteristic

Modality characteristic refers to characteristics such as
attenuation
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Table 4.12: Descriptions for descriptive frame elements used in Queryfind + desc for the second

turn.

Descriptive Frame Element Description

Status Descriptor Status descriptor indicates status of findings. Examples
include stable and mild

Quantity Descriptor Quantity descriptor refers to quantity of any
radiological entity. Examples include multiple and
few

Temporal Descriptor Temporal descriptor indicates temporality. Examples
include new and chronic

Negation Negation refers to a negated phrase related to a finding.
Examples include without evidence of and no

¢ [SEP]] to construct the input sequence where [CLS] and [SEP] are special BERT tokens. As
explored in previous work (Li et al,, 2019, 2020b), the span extraction mechanism enables queries

that have multiple answers given the context passage. Traditional approaches strategize span extraction
as two 7n-class classification problems where one classifier predicts the start index and the other
predicts the end index from all the context tokens (7 refers to the length of the context passage).
However, this strategy is only applicable for single-answer QA settings. To overcome this shortcoming,
the two n-class classification task is converted to 7 5-class classifications where the softmax function

is applied to each token in the context to predict a BMESO (B-begin, M-middle, E-end, S-single,
O-outside) label. This is suitable to our problem where there can be multiple entities of the same
spatial or descriptor role that are associated to a single spatial trigger or a radiological finding (see
Figure 4.3). The BERT models for both target entity (turn 1) and FE extraction (turn 2) are trained
jointly. The MRC framework and the training mechanism are adopted from a previous work (Li

etal.,, 2019).
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®

There are scattered in the paraventricular white matter and centrum semi-ovale .

STATUS DESC

) Multilevel  and mild at C4-5.

STATUS DESC

Figure 4.3: (1) Two Ground elements are linked to a spatial trigger and (2) two status descriptors
are linked to a radiological finding. For (1), the query for extracting anatomical locations with
respect to the spatial trigger 2z should return two spans — paraventricular white matter and centrum
semi-ovale. For (2), an MRC model is expected to return the spans corresponding to Multilevel and

mild as output when queried for the status descriptive elements of degenerative disc disease.

4.2.1.4 SEQUENCE LABELING BASELINE

We compare our approach to the BERT-based sequence labeling approach described in the
section 4.1.2 above. In that paper, a BERTT pArGg model pre-trained on MIMIC-III is fine-tuned to
first extract all the spatial triggers in a sentence and then extract the spatial FEs associated with each
trigger. A report sentence is represented as [[ CLS] sentence [SEP]] to feed into BERT to identify
the triggers and FEs. Additionally, while extracting the spatial FEs, we mask the spatial trigger
identified in the first step to better encode the position of the specific spatial trigger in a sentence
for which the FEs are to be identified. The encoder output is then fed into a linear classification
layer to predict labels per token. The BIO (B-begin, I-inside, O-outside) scheme is used to tag the

triggers and the FEs.
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4.2.1.5 EXPERIMENTAL SETTINGS AND EVALUATION

We experiment with both cased and uncased BERT aArE variants in the MRC framework
(referred to as Uncased and Cased hereafter). Additionally, we also experiment using a BERT1 arGE
cased version that is pre-trained on MIMIC-III clinical notes for 300K steps Si et al. (2019) (referred
as MIMIC+Cased). The hyperparameters used in our experiments are selected based on the validation
set and are shown in Table 4.13. For training the MRC model in the second turn, we only consider
the relationships between target and related entities where there is at least one instance of such a
relationship in the training data.

We perform 1o-fold cross-validation (CV) for evaluating our MRC approach for spatial IE. For
each of the 10 iterations, we split the dataset such that reports in 8 folds are used for training and
1 fold each are used for development and testing. We report the average F1 measures for extracting
the FEs. Since the query format is the same for the first turn (i.e., target entity identification) and
only varied in the second turn (corresponding to using Queryg,g and Querygnd + desc)>, We report
the average of the two 10-fold CV runs for target entity extraction. We use exact match to evaluate
the performance of the MRC approach for both target entity and FE extraction on the test splits.
Exact matches of both the target and the related entity spans are required to consider a FE relation
extraction as a true positive. We compare our approach to the baseline method for identifying spatial
triggers and SFEs connected to triggers. For a fair comparison, we use the same fold settings for 1o-
fold CV for both the MR C and the baseline methods. The baseline method is also evaluated using

exact match for spatial trigger and SFE extraction.

4.2.2 RESULTS ON RAD-SPATIALNET

The average F1 measures of 10-fold CV evaluation for extracting the spatial and descriptive

FEs are shown in Table 4.14. This includes the results for both the query variations. The average
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Table 4.13: Hyperparameters used in the experiments.

Parameter Value
Sliding window size for context passage 200
Overlap between adjacent windows 45
Maximum number of training epochs 10
Learning rate 2e—5
Trade-off between two turns 0.25
Maximum norm for gradients 1
Warmup ratio 0.1

F1 scores of the BERT-based sequence labeling baseline method are also shown in Table 4.14 for
comparison. Since density descriptor and modality characteristics occur very infrequently in the
dataset (5 and 2 times, respectively), we do not report the results for these two FEs. For extracting
SFEs associated with triggers, we see that Queryfind + desc helps in achieving a better performance
than Querygyg for all elements (except for Hedge) in the case of MIMIC+Cased model. Whereas,
for Uncased and Cased variants, Querygnd + desc performed better for some of such SFEs. We also
note that the performance of less frequent FEs: Reason and Associated Process improved to 49.81
and 54.63 compared to baseline system’s F1 (0 for both). For the majority of the FEs associated
with a radiological entity, the average Fr scores lie in the range of 60-75. However, for Laterality
and Size Descriptor, the values are relatively high with the highest F1 scores being 89.35 and 78.98,
respectively.

The results for target entity extraction are shown in Table 4.15. We observe that the best F1 score
for identifying the spatial triggers obtained by our proposed method (90.07) is around 12 points
higher compared to the baseline system’s performance of 77.89 (as reported in Table 4.4 above).
The entity labels of the target entities are included during the FE extraction to make the queries

more informative and are not part of the FE performance evaluation.
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Table 4.14: Average F1 measures of BERT arg models over ro-fold CV for spatial and descriptive
frame element extraction. DEsc: Descriptive. Qr Queryfing. Qr+ 4t QUeryfind + desc- M+Cased:

MIMIC+Cased. Count: Number of annotations in the dataset. Dash (-): not available for baseline

method.
Proposed approach )
FrRAME ELEMENTS Uncased Cased M+Cased I\I/;[is(?;?eed Count
O Qi & Qu & G
Figure 78.13 7729 76.72 77.57 76.44 77.40 65.12 1491
Ground 83.76 83.40 83.31 82.27 83.17 83.77 71.51 1537
Hedge 75.47 76.44 7718 76.42 75.90 74.97 57.82 249
Diagnosis 69.32 7332 73.94 7267 65.47 67.92 50.76 190
Position Status 68.72 6875 6698 67.12 68.43 70.37 60.37 167
Relative Position 77.19  76.42 77.53 7671 75.78 76.15 66.33 398
g Distance 84.65 86.54 85.36 85.20 87.94 90.09 88.05 45
; Reason 3951 3234 3951 49.81 17.71 44.89 0 33
& | Associated Process 48.52 54.63 43.15 4229 38.95 41.36 0 21
Morphologic 52.48 58.14 4992 60.52 48.04 45.53 - 69
Size Desc 76.16 73.80 78.16 78.94 7856 78.98 - 93
Distribution Pattern  57.45 63.62 59.74 64.01 59.22 66.03 - 65
Composition 41.46 33.63 41.67 46.88 26.49 20.48 - 17
Laterality 88.43 88.51 89.35 87.49 8778 87.32 - 612
Size/Measurement 45.43 48.44 41.51 4359 34.46 32.06 - 23
Status 64.67 62.60 6338 6167 5917 59.09 - 452
2 | Quantity 7256 7232 7282 7161 7247 73.11 - 130
S Temporal 70.87 70.63 70.5 71.47 67.31 71.78 - 113
Negation 58.08 61.06 67.75 65.04 60.95 61.83 - 103

4.2.2.1 DIsCUSSION

The results in Tables 4.14 and 4.15 demonstrate the performance improvement in extracting
spatial information from radiology reports when the problem is framed as MRC compared to
traditional sequence labeling. The improvements are high: for example, improvement of average F1
scores from 65.12 to 78.13 and 71.51 to 83.77 for common FEs like Figure and Ground, respectively.

This highlights the advantages of framing IE as MRC as described in the Section 2.2 of Chapter 2.
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Table 4.15: Average F1 measures of BERT ar g models over two 10-fold CVs for target entity

extraction. M+Cased: MIMIC+Cased.

Target entities Uncased Cased M+Cased
Spatial trigger 89.99 89.50 90.07
Finding 76.89  78.26 76.11
Anatomy 87.56 87.40 87.46
Device 91.87 92.68 93.12
Tip 9918  98.41  99.32
Location descriptor ~ 81.50 81.21 80.89
Other descriptor 84.19 84.24 84.09
Assertion 78.48 80.85 79.40
Position 69.68 71.41 72.81
Quantity 85.54  85.37 83.23
Process 60.93 59.26 60.19

We also note that casting IE problems as MRC is still under-explored on clinical domain datasets
except for Banerjee et al. (2020). This is the only other case we are aware of MRC being used for
IE from clinical reports, and there it is used only for entity extraction, not relation extraction and
not with a two-turn QA approach. Moreover, we emphasize that our work covers more detailed
radiological information from spatial and descriptor perspectives and extracts information from
reports of multiple imaging modalities and anatomies (as opposed to previous work (Syeda-Mahmood
etal., 20205 Sugimoto et al,, 20215 Steinkamp et al., 2019) focusing on either single modality or
anatomy). This is the first study to use MRC both for spatial IE and for extracting important radiology
information.

Our investigation using two query variations for FE extraction suggests that incorporating
more information about the element in the query helps in obtaining better results, especially in
cases where the meaning of FE is not obvious solely based on the FE type name. For example, we see
performance improvement for Position Status for all model variants when the following description

about Position Status is included in the query:

79



Position status refers to any position-related information, usually in context to a device. Examples

include terminates and expected position.

This provides more prior knowledge about what is meant by Position Status in a radiology report
context. We also find that our proposed approach tends to perform better than sequence labeling

for less frequent FEs (e.g., Reason). Note that the MIMIC pre-trained BERT model underperforms
both the original Uncased and Cased models for the majority of the infrequent FEs such as Associated
Process, Composition Descriptor, and Size/Measurement.

Alongside starting the queries with ‘Find all’, we explored two other query variations — beginning
the queries with ‘Get all”’ and “What’ (inspired by previous work by Banerjee et al. (2020)). Although
these variations performed better than the baseline, we did not find any clear performance trend
when compared to the ‘Find all’ variant. An exhaustive comparison of query variations could be
investigated further, but that was not the focus of this work.

The moderate performance values as well as the performance variation for some FEs could
be due to the infrequency of annotations in the dataset. This indicates that there is still scope for
improving the results and we aim to evaluate our approach on an enlarged dataset that will have
more such FEs. Although we apply our proposed method on a dataset that covers three types of
radiology reports, we further intend to evaluate the generalizability of this method on multi-institutional
datasets and on other imaging modalities (e.g., ultrasound and CT reports of difterent body parts)

in a subsequent work.
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Normalization of Radiological Entities

using RadLex

Radiology reports contain a wide range of entities describing the interpretations of the corresponding
images. Prior research (Steinkamp etal., 20195 Bozkurt et al., 2019; Fu et al,, 2020) has focused
on developing methods to identify clinically-significant information from these reports. They
emphasize using this extracted information in a variety of downstream clinical applications including
automated tracking of abnormal radiographic findings (e.g., lesions), summarization, and cohort
selection for epidemiological research. However, to enable the use of the extracted entities in the
process of developing the automated systems across multi-institutional reports, the entities need
to be mapped to concepts in a standardized vocabulary of radiology terms. There has been limited

efforts in this direction, and therefore, in this chapter, we aim to normalize the different entities or
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Report 1: CHEST PRE-OP PA
There is volume loss in the left upper lobe.
There is pleural thickening involving the left apex.

Report 2: CHEST SINGLE VIEW
There is marked volume loss in the left upper lobe region.
Marked left apical thickening is noted and also stable.

Figure s.1: Partial section of two radiology reports. Findings are shown in green, anatomical
locations are in blue, and the descriptor terms in purple. The RadLex concepts corresponding to
the two anatomical locations are upper lobe of left lung (RID1327) and left lung (RID1326) + apex

(RID5946)

information types to RadLex (Langlotz, 2006) concepts to facilitate improved consistency in the
structured representations of important radiological entities.

Radiologists use different phrases to express the same concept in a report. Normalization is the
process of mapping these phrase spans in text to standard concepts in a vocabulary. For instance,
Right base and Right lower lung zone are different forms of describing the same anatomical entity.
Similarly, Intramural or free air is used by radiologists to indicate the clinical finding - Preumatosis
intestinalis, and Central lines are often used to denote the presence of Central venous catheters in
chest X-ray reports. Many natural language processing (NLP)-based clinical application systems
rely on developing inference rules. Such inferences are often performed on the entities that are
extracted from clinical text by entity recognition systems. Consider the example shown in Figure
5.1 to illustrate the usability of normalizing radiological entities in the report text for automated
abnormality tracking systems.

The sentences in Figure 5.1 appear in two different reports of a patient. Volume loss and Pleural
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thickening are the main finding-related entities while left upper lobe and left apex are the anatomy-
related entities in the first report. The second report also contains the same findings except that
the anatomical phrases are changed to left upper lobe region and left apical and there are additional
clinically-relevant status descriptors such as marked and stable. Utilizing the extracted contextual
information (e.g., anatomical phrases here) in the automated tracking of volume loss and thickening
would require establishing a standardized way to represent the extracted anatomical entities (i.c.,
mapping both left upper lobe and left upper lobe region to RadLex concept upper lobe of left lung
(RIDr327)). To our knowledge, only one study (Tahmasebi et al,, 2019) so far has worked on
normalizing the anatomical terms in the reports to SNOMED CT ontology. Here, we attempt to
broaden the scope of entity types and consider all those that can act as contextual information in
various potential clinical use cases. Moreover, since RadLex (Langlotz, 2006) is a publicly available
radiology lexicon (containing 46,657 concepts) specifically developed for standardizing the language
used in reporting imaging results, we utilize RadLex for mapping the various entity mentions

in the reports. This will cover entities such as common modifiers and uncertainty phrases often

encountered in radiology report text and may not be present in other ontologies such as SNOMED

CT.

5.1 DATASET ANNOTATION

We selected a subset of 5o radiology reports from MIMIC-III clinical database (Johnson et al.,
2016). This consists of 17 chest X-ray reports, 16 Brain Magnetic Resonance Imaging (MRI) reports,
and 17 babygram-related reports. This set of reports covers some common imaging techniques and
a wide range of anatomical locations (as often babygrams contain descriptions of multiple body
organs). We used the BRAT annotation tool (Stenetorp et al., 2012a) for annotating the radiological

entities with their corresponding RadLex IDs as shown in Figure s.2.
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1| CLINICAL HISTORY: Car hit tree. _
B . @& costophrenic angle
3/CHEST: The heart and mediastinum are n¢
| Search J
T Google, Wikipedia
4|The lung fields are clear.
5|The Entity type
!  EEETEE) Y | Ot
6| right lower lobe infiltrate seen on prior observation
findil
(EESETeEn  EEscigtan (anatomy —=
7| resolved. Blunting of the costophrenic angle )
device
procedure
531 process
9/ IMPRESSION: Clearing of right lower lobe in procedurestep
property
modality
 Normalization J
radlex_normalization_data 7 ,~ ID: RID1534 Ref:
costophrenic sulcus &

Figure 5.2: Example annotation to normalize “costophrenic angle” to RadLex term “costophrenic

sulcus” corresponding to RadLex ID RID1534 in a sample report using BRAT 1.3.

5.1.1 ANNOTATION PROCESS

We describe the annotation process in the following sections.

5.1.1.1 IDENTIFYING ENTITY SPANS

The first annotation task is to identify the entity mention in the report sentences whose type

falls under one of the following broad RadLex classes:
1. CLINICAL FINDING - Refers to pathophysiologic finding, and symptoms (e.g., heart failure)
2. IMAGING OBSERVATION - Image-specific features as interpreted by radiologists (e.g., znfiltrate)
3. ANATOMICAL ENTITY - Refers to a body location (e.g., apex of lung)

4. MEDICAL DEVICE - Refers to a medical object (e.g., endotracheal tube)
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5. RADLEX DESCRIPTOR - Any modifier (usually adjectives) used to describe other entities
like clinical finding (e.g., status descriptor - szable, composition descriptor - osseous, certainty

descriptor - zo0, etc.)

6. PROCEDURE - This includes different procedures such as imaging procedures, follow-up

procedures, and treatment. (e.g., catheter removal)
7. PROCEDURE STEP - Includes any step in image processing (e.g., multiplanar reformat)
8. PRrocCEss - Usually refers to treatment planning, change etc. (e.g., motion)

9. IMAGING MoODALITY - Form of imaging that depends on how the image is produced (e.g.,

magnetic resonance imaging)

10. PROPERTY - Modifier terms (usually noun phrases) associated with entities (e.g., patient

rotation position)

5.1.1.2 INSTRUCTIONS FOR ASSIGNING RADLEX CODES

The next step involves assigning a single RadLex ID to each of the identified entity mentions.
Note that we have mapped each entity to only one RadLex ID. For instance, the anatomical entity
“Midline structure” is mapped to the RadLex concept “Septum pellucidum” with RadLex ID RID6525.

While assigning the RadLex ID, the following instructions were given to the annotators:
1. Search for the exact entity span in RadLex

2. If not found using 1, search whether it appears in RadLex with different a variation such as
with words rearranged in a different order (e.g., assigning RadLex concept apex of lung for

the entity mention /ung apex)

s



3. If not found using 1 and 2, search whether it appears as a synonym or in the decription of
another RadLex concept (e.g., Costophrenic sulcus is present as a synonym of the RadLex

concept Costophrenic angle)

4. If not found using the above, refer the web to look for the most semantically similar concept
in RadLex (e.g., Chest tube is mapped to the RadLex concept Thoracostomy tube following

this guideline)
5. Ifan entity cannot be mapped to any RadLex concept, it is assigned a label “RID-less”

Moreover, while annotating entities following the above instructions, the following points are taken

into consideration:

* Taking context into account - Annotation of some entities may vary based on the context
of the sentence or the anatomical entity associated with the imaging modality. For example,
Microangiopathic changes refers to a disease/condition affecting small blood vessels. So
depending on the anatomical entity associated with the imaging modality, the mapping
would vary. When the imaging results are related to heart, Microangiopathic changes would
be mapped to Microvascular ischemia in RadLex which is listed under Cardiovascular
disorder, whereas for brain-related imaging results Microangiopathic changes will not be

assigned any RadLex code.

* Splitting entity spans to subspans - Many times an entity mention cannot be mapped to a
specific RadLex concept and annotators tend to use multiple RadLex concepts in different
combinations to annotate that entity. For example, Right middle lobe is not directly normalizable
to a RadLex concept and may be mapped to concepts like lobe, middle lobe of lung, or right.

In order to resolve ambiguity in the annotation process, each entity mention is split such that

the split with the largest subspan can be mapped to a RadLex code and all the other smaller
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Table s.1: Descriptive statistics of the annotated corpus.

Item Frequency
CriNICAL FINDING 282
IMAGING OBSERVATION 77
ANaTomMmicAL ENTITY 384
MEpicAL DEVICE 102
RaDLEX DESCRIPTOR 651
PROCEDURE-RELATED 46
ProCESS 28
IMAGING MoDALITY S1
PROPERTY 85
Total entity mentions 1706
Unlinkable mentions 151

subspans are also mapped to their corresponding RadLex codes. Thus, “Right middle
lobe” will be split as “middle lobe” (largest RadLex mappable subspan) + “right” and not
as “right”+ “middle” + “lobe”. Further, “middle lobe” will be normalized to “middle lobe

of lung” (RID1310) and “right” to “right” (RID5825).

However, there may arise cases when multiple possible variations of largest mappable
subspans can be generated. For example, “Right lung apex” results in two valid (RadLex
mappable) splits, one with “Right lung” + “apex” and the other with “Right” + “lung apex”.
This can be resolved during reconciliation phase by incorporating domain knowledge (e.g.,
knowledge on human anatomy) and further verification by a physician. This may favor the

first option — “Right lung” + “apex” as this is more close to describing the apex of right lung.

Every report was double-annotated and reconciled with the clinical knowledge verified by a physician
when required. The F1 agreement between the two annotators in annotating the spans of radiological
entity mentions is 0.60. We considered an exact match in the entity spans for calculating the Fr

score. The normalization agreement (accuracy) between the annotators on the reconciled version of

the entity mentions is 76.7%. Basic statistics of our annotated corpus are shown in Table s.1.
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Figure 5.3: Overview of the normalization process using the proposed methods (demonstrated for

the entity mention-“costophrenic angle”).

5.2 ENTITY SPAN DETECTION

We formulate this as a sequence labeling task where each word that is part of any radiological
entity of interest is tagged using Beginning and Inside tags whereas a word that is not a part of an
entity is tagged as Outside. Each sentence in the reports is WordPiece-tokenized. This tokenized
sentence is represented as [[CLS] sentence [SEP]] following the original paper (Devlin et al., 2019)

and then fed into the BERT model.

5.3 NORMALIZATION METHODS

The following subsections contain the descriptions of the three methods used for RadLex

normalization. The overall framework of the normalization methods is illustrated in Figure s.3.
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5.3.1 BMa2js

We index all RadLex concepts (a total of 46, 657 Preferred Names in RadLex) as well as the
entity mentions present in the training sets of our annotated corpus using Anserini (Yang et al.,
2018). We then use BM25 to retrieve and initially rank a set of 7 candidates for each entity mention.
(In our experiments, we use # = 10.) We set the values of BM 2.5 parameters, b and 41, as 0.75 and
1.2, respectively. In order to maximize the recall of BM25 in the candidate generation phase, each

entity mention is transformed using the following two expansion techniques:

1. Using Synonyms in RadLex - If the entity mention (72) appears as a Synonym of a RadLex
concept (7¢), the original mention is expanded using the Synonym. For example, “encephalopathy”
is not present in RadLex but appears as a Synonym of the RadLex concept “disorder of
brain” (RIDsoss). Thus, the mention “encephalopathy” is expanded to “encephalopathy

disorder of brain”.

2. Abbreviation expansion - Often, some common medical devices and clinical findings are
abbreviated in the reports. We expand these mentions leveraging the medical abbreviations
and acronyms of radiopaedia”. For instance, “NGT” is expanded to “nasogastric tube” and

“NPH?” is expanded to “normal pressure hydrocephalus”.

5.3.2 BERT AS RE-RANKER

We use the set of candidate concepts obtained from BMz2s for each entity mention to train
the BERTgsg model for re-ranking these candidates. The highest ranked candidate predicted by
BERT is chosen as the final normalized RadLex concept for a given radiology entity mention. The
model is trained as a binary classification task where for each candidate concept (¢;) and the mention

() pair, the label is assigned as 1 when the candidate is the actual annotated normalized concept

*https://radiopaedia.org/articles/medical-abbreviations-and-acronyms-a?lang=us
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for that mention. For each such pair of candidate concept and entity mention, a score is estimated
to predict the likelihood of the candidate concept being the normalized concept. Note that we use
the expanded version of the entity mentions as described above for BM25. The following input
sequence is fed into BERT for each candidate and mention pair:

[CLS] expanded mention (72)[SEP]¢;[SEP]syn(c;)[SEP]...syn,(c;)...[SEP]Zs(c;) [SEP]
Here, syn; refers to any synonym of the candidate concept ¢; and s refers to the RadLex class to
which the candidate concept (¢;) belongs. The order of the synonyms is random. The main intention
behind using the synonyms is that they provide more variation of the candidate concepts and the s
provides more information about the candidate concept’s class obtained from the ‘Is-A’ attribute in
RadLex. The final hidden vector corresponding to the [CLS] token in the input sequence is further
fed into a single layer network to obtain the estimated probability of how likely the candidate concept
is the normalized one. The probabilities corresponding to all the candidate concepts are then used
for ranking. Note that the probability score calculated for a particular candidate is independent of

the other candidates generated for an entity mention.

5.3.3 BERT AS SPAN DETECTOR

Alternatively, we formulate the normalization problem similar to the BERT framework for a
question answering task. Given an expanded entity mention and its corresponding list of RadLex
candidate concepts that is represented as a text sequence, the task is to identify the span of the
normalized concept from the candidate list. The second part in the input sequence (the one followed
by the first [SEP]) is constructed by joining all the candidate concept names separated by comma.
The candidate concepts are placed in an arbitrary order to form this sequence. The final input
sequence corresponding to an entity mention and its candidates is represented as follows:

[CLS] expanded mention (#2)[SEP]cy, ¢, ..., ¢,[SEP]

The scoring mechanism of a candidate span from the sequence of candidate RadLex concepts is
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same as the implementation in the original BERT paper (Devlin et al., 2019). The highest scoring

span is identified as the normalized concept for a given mention.

5.4 EXPERIMENTAL SETTINGS AND EVALUATION

For both BERT-based normalization methods (re-ranker and span detector), we use the BERT 1 ArGE
model by initializing the model parameters obtained after pre-training BERT on MIMIC-III clinical
notes for 320, 000 steps (Si et al.,, 2019). We fine-tune BERT aArGE on our annotated dataset for
normalizing the radiological entities. The number of epochs for fine-tuning is decided based on the
accuracy of the models on the validation sets. The number of epochs is chosen as 4 for both the
normalization models. We use a batch size of 8 for the BERT-based re-ranker model while the batch
size of the span detector model is set at 10. We use the cased version of the models. We fine-tune the
re-ranker model with a learning rate of 1e-6 and the span detector model with a rate of 3e-5. For the
span detector model, we use a maximum sequence length of 384 and a maximum mention length of
64.

We also utilize BERTgasg and BERTT srGe models, both pre-trained from clinical notes as
mentioned above for automatically detecting the entity spans from the report text. We use the cased
version of the models, fine-tune the sequence labeling task for 4 epochs with a learning rate of 2e-5
and maximum sequence length of 128. The batch size used for BERTgasE is 24 and BERT arGg is
8.

We evaluate our proposed normalization methods - BERT-based re-ranker and the BERT-based
span detector by performing 1o-fold cross validation (CV) on our annotated radiology normalization
corpus. We create the folds by splitting the corpus at the report level such that the training, validation,
and test splits are divided in the ratio of 8o-10-10% respectively. For comparison, we evaluate the

predictions of BM25 by averaging the results obtained on the same test folds used for the BERT-
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based models. Since the focus of this study is on normalizing the various radiological entities to

RadLex concepts and not on joint prediction of entity mention spans and their normalized concepts,

we conduct all our normalization experiments considering the gold entity mentions. In our experiments,
any RID-less (RadLex ID-less) entity mention is represented using a special token-XXXXX’.

We report the average accuracy of the models using the same fold settings. For BM25 and the
BERT-based re-ranker, an exact match between the first ranked concept and the gold annotated
concept for an entity mention is considered as a correct prediction. In order to handle cases where
no candidates are retrieved by BM2 for a given entity mention, we adjust the performance metric
(accuracy) by considering only those as correct predictions when their corresponding gold annotated
normalized concept is tagged as ‘unlinkable’ or ‘RID-less’.

For the BERT span detector model, we take into account an exact match between the predicted
span and the gold annotated RadLex concept in the test sets to qualify a prediction as correct. Note
that this model can predict any span from the text representing the sequence of comma-separated
candidate concepts. Taking this into account, we evaluate the performance of this model in three
ways. First, we evaluate using the original predicted text span. In this version, if more than one
candidate concept is captured in the predicted span, the prediction is considered incorrect. Second,
we employ post-processing of the predicted spans such that if a span contains more than one concept
(indicated by comma), we perform an exact match only between the first concept (concept appearing
to the left of the first comma in the predicted span) and the gold normalized concept. Third, we
conduct a similar evaluation considering the last concept in the predicted span. We further report
the average F1-measure of the ro-fold CV on our annotated dataset for detecting the boundaries of

the entity mentions given a report sentence to the entity span detection model.
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Table 5.2: 10-fold CV results for detecting the spans of entity mentions. Both BERTsasg and

BERT 1 ArGE models are pre-trained on MIMIC-III clinical notes.

Model Precision(%) | Recall (%) | Fr
BERTgasE 65.27 73.64 69.14
BERT arGE 72.72 79.64 75.93

5.5 RESULTS

The average performance measures of the BERT-based entity span detection system used as a
sequence labeler (described in Section s.2) over 1o-fold CV are shown in Table 5.2. We notice that
the average F1 is increased by around 6.8 points when the BERTT sr g model is used.

We first report the recall of BM25 for candidate generation. Recall here refers to the percentage
of entity mentions for which the list of candidate concepts contains the gold normalized RadLex
concept. The recall of BM25 as well as its accuracy in predicting the normalized concepts for 1o
and 25 candidates is shown in Table 5.3. The average accuracies of 1o-fold CV for the BERT-based
methods in predicting the correct normalized RadLex concept when provided the 1o candidates
generated by BM2s is shown in Table s.4. We note that the normalization performance is the
highest (accuracy of 77.72%) for the BERT-based span detector model when compared to both
BM2s and BERT-based re-ranking models. The performance is further improved by 0.7% when
either the first or the last concept in the predicted span (as predicted by the BERT span detector

from the sequence of 1o candidate concepts) is considered as the normalized concept.
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Table 5.3: BM2s results in predicting the normalized concepts using 10 and 2.5 candidate concepts.

Metric 10 candidates | 25 candidates
Recall (%) 88.44 89.72
Accuracy (%) 76.10 76.10

Table 5.4: 10-fold CV results of the proposed BERT-based methods using 10 candidate concepts

retrieved by BM2s.
Method Average accuracy (%)
BERT re-ranker 76.50
BERT span detector (using original predictions) 77.72
BERT span detector (first concept in the predicted span as the normalized concept) 78.43
BERT span detector (last concept in the predicted span as the normalized concept) 78.44

5.6 DiscussioN

We create a manually annotated corpus covering a broad range of radiology entity types that
are usually of interest for information extraction research. To our knowledge, this is the first work
in developing a corpus targeted toward radiology entity normalization. We propose methods for
normalizing these entities to an existing lexicon-RadLex.

We also examine the performance of a sequence labeler, based on BERT, for identifying the
spans of the entity mentions from the reports. The performance of the span detection system is
decent (average F1-score of 75.93). The moderate performance may be attributed to the incorrect
predictions for detecting the composite entities (e.g., “7ight upper lobe”). Note that the focus of this
work is radiology entity normalization, hence we aim to further improve the performance of the
entity span detection and develop joint learning methods for predicting the entity spans as well as

mapping them to RadLex concepts simultaneously.
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Most of the annotation-related challenges are related to the requirement of domain knowledge.
For example - “Lower pole of the right kidney” usually refers to “Inferior pole of right kidney” and
“Temporal horns” denotes “temporal horn of lateral ventricle”. Besides being a time-consuming
process, another generic challenge related to constructing a normalization corpus is the ambiguity
involved in annotating composite entity mentions such as “right lung apex”. Another difficulty
in the annotation involves dealing with the inconsistencies in the RadLex lexicon. For example,
the expression “upper lobe of right lung” is present in RadLex whereas “middle lobe of right lung”
is not although both are anatomical expressions at the same hierarchical level. The closest term
available in RadLex for the middle lobe is “middle lobe of lung”. Also, there are cases where certain
entity mentions when expressed using more general terms such as “s#/c” do not appear in RadLex,
although their specific types such as “hypothalamic sulcus” and “cardiophrenic sulcus” are present in
RadLex.

Our proposed normalization methods achieve satisfactory performance with the highest
average accuracy of 78.44%. However, we aim to further evaluate the performance of the proposed
methods by augmenting the annotated corpus in the future. A brief analysis of the model outputs
suggests that the BERT-based models make correct predictions for uncertainty or hedging-related
entity mentions such as “could indicate” that are incorrectly predicted by BM2s. Moreover, the
BERT span detector model performs better in predicting the normalized concepts for plural entity
mentions compared to BERT re-ranker. For instance, BERT span detector predicts “/ungs” as the
normalized concept for the mention-“/ungs”, whereas BERT re-ranker model predicts “/ung” as
the mapped concept. One of the reasons for the moderate performance improvement of the BERT-
based models over BM25 may be that our annotated corpus mostly contains different variations
of radiological terms unlike social media posts where there are more variations of natural language
expressions.

Future work can explore an exhaustive set of ablation experiments mainly for the BERT-based
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re-ranker model utilizing various combination of RadLex knowledge. Additional techniques can be
used for expanding the radiological entity mentions, particularly the ones related to clinical findings
(e.g., “Scrotal herniation of bowel”), by leveraging the co-occurring entity information from sources
like Wikipedia and medical abstracts.

Among the 151 entity mentions for which a suitable RadLex concept is not found, some of

the most common clinical finding and imaging observation-related entities include - “respiratory

» o« » o« » « » o« » o«

distress”, “hyaline membrane disease”, “bowel gas pattern”, “cabg”, “portal venous gas”, “mucosal

» <« » « » «

thickening”, “bydropneumothorax”, “ventricular prominence”, “v-fib arrest”, “urinary incontinence”,

» « » « » « » « » «

“reexpansion”, “pleural margins”, “neonatal pneumonia”, “lyme disease”, “intubation”, “guaiac

» « » « » <« » «

positive stools”, “gonadal shielding”, “fetal lung liguid”, “dyspnea”, “claustrophobia’, “cardiomegaly”,

“anxiety”, “altered mental status”, “afib”, and “aeration”. This can serve as a potential list of terms

to expand RadLex in the future.
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Generalizability of Rad-SpatialNet:
Extending to Ophthalmology Domain

Ophthalmology notes contain important clinical information about a patient’s eye findings.
These findings are documented based on interpretations from imaging examinations (e.g., fundus
examination), complications or outcomes associated with surgeries (e.g., cataract surgery), and
experiences or symptoms shared by patients. Such findings are oftentimes described along with their
exact eye locations as well as other contextual information such as their timing and status. Thus,
ophthalmology notes comprise of spatial relations between eye findings and their corresponding
locations, and these findings are further described using different spatial characteristics such as
laterality and size. Although there has been recent advancements in using natural language processing

(NLP) methods in the ophthalmology domain, they are mainly targeted for specific ocular conditions.
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Some work leveraged electronic health record text data to identify conditions such as glaucoma
(Wang et al., 2022), herpes zoster ophthalmicus (Zheng et al., 2019), and exfoliation syndrome
(Stein et al., 2019), while another set of work extracted quantitative measures particularly related to
visual acuity (Baughman et al., 2017; Mbagwu et al,, 2016) and microbial keratitis (Woodward et al.,
202.1). Here, we aim to extract more comprehensive information related to all eye findings, covering
both spatial and contextual, from the ophthalmology notes. Besides automated screening and
diagnosis of various ocular conditions, identifying such detailed information can aid in applications
such as automated monitoring of eye findings or diseases and cohort retrieval for retrospective
epidemiological studies. For this, we propose to extend our existing radiology spatial representation
schema—Rad-SpatialNet (described in Section 3.2.1 in Chapter 3) to the ophthalmology domain.
We refer to this as the Eye-SpatialNet schema. We annotate a total of 600 ophthalmology notes
following Eye-SpatialNet. Finally, we apply an advanced deep learning-based method to automatically
identify the spatial and contextual information from the notes.

Ophthalmologists use spatial language to describe findings interpreted from imaging techniques.
For example, in the sentence — “OCT of the retinal nerve fiber layer shows normal thickness in both
eyes.”, both eyes have been described using the finding zormal thickness as interpreted from an
Optical Coherence Tomography examination. Here, thickness is spatially associated to eyes through
the preposition %, where normal describes the status of thickness and bozh describes the laterality.
Similarly, symptoms presented by patients are also documented using spatial relations. In the sentence
— “She presented in [ DATE] with weakness and numbness of ber right eye as well as pain and vision
loss in the left eye consistent with optic neuritis.”, the findings weakness and numbness are spatially
related to right eye through the preposition of, whereas pain and vision are linked to left eye through
in. Additionally, we note that the ophthalmologist also reports the potential diagnosis inferred
from these findings, i.e., optic neuritis. [DATE] denotes the timing associated with the findings.

Sometimes, eye procedures and drugs are also associated with anatomical locations and thus are
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Figure 6.1: Example sentences from ophthalmology notes showing some of the spatial frame
elements covered in the Eye-SpatialNet schema. The underlined and italicized texts denote the

lexical units of the frames.

spatially-grounded. We capture all these important information in our Eye-SpatialNet schema.

The Eye-SpatialNet schema is based on frame semantics, where a lexical unit (LU) represents
the word that invokes a frame and the participants of a frame form the frame elements (FEs). The
spatial prepositions (e.g., 722) and verbs (e.g., reveals) constitute the lexical units whereas the associated
findings (e.g., weakness), the locations (e.g., eye), diagnosis (e.g. optic nenritis), and the various spatial
and other descriptors (e.g., left, normal) constitute the frame elements. The spatial prepositions and
verbs are also referred to as spatial triggers in this work. Following this schema, we create a manually-
annotated corpus of 600 ophthalmology notes to represent important spatial information of clinical
significance. Two sample examples from our ophthalmology corpus is illustrated in Figure 6.1.

Note that for (a), ‘Figure’ and ‘Ground’ are the spatial frame elements of the frame evoked by the
spatial trigger of, whereas ‘Morphologic descriptor’ and ‘Distribution pattern’ are the spatial frame
elements of the frame evoked by the finding enlargement. ‘Figure’ usually refers to an entity whose
location is described through a spatial trigger whereas ‘Ground’ denotes the actual anatomical

location. In the second example (b), cataract surgery is spatially linked to eyes where cataract surgery
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acts as the ‘Figure’ element of the frame evoked by the spatial trigger 77z and 2142 (year altered
for de-identification) is a descriptive frame element of the frame instantiated by the procedure
cataract surgery. To our knowledge, this is the first work to develop an annotated dataset with
comprehensive representation schema for identifying detailed information from ophthalmology
notes.

For automatic extraction of the spatial information, we adopt a two-turn question answering
framework (Li et al., 2019) based on a transformer language model, BERT (Devlin et al., 2019).
This is inspired by previous studies demonstrating the effectiveness of framing various information
extraction tasks such as named entity recognition (Li et al., 2020b), relation extraction (Levy et al.,
2017), and event extraction Liu et al. (2020) as question answering (QA) by harnessing the well-
developed machine reading comprehension models. Further, some studies (Li et al., 2019, 20203;
Wang et al.,, 2020) investigated the formulation of relation and event extraction tasks as multi-turn
QA both in the general and biomedical domain. In this chapter, we apply a two-turn QA method,
similar to the one proposed for radiology domain (described in Section 4.2.1 in Chapter 4), to
extract the spatial and descriptive frame elements from ophthalmology notes. In this, we extract
the spatial triggers and the main entities (e.g., eye finding, anatomical location) in the first turn and
subsequently extract all the spatial (e.g., laterality) and descriptive (temporal descriptor or the timing

of a finding) frame elements in the second turn.

6.1 EYE-SPATIALNET SCHEMA DESCRIPTION

Our annotation schema is largely adopted from an existing frame-based spatial representation
schema — Rad-SpatialNet (described in Section 3.2.1 in Chapter 3). The spatial language encoded
in the ophthalmology notes are different from those in radiology reports. We represent the information

in a way that can accurately capture ophthalmology-specific spatial meanings from the note text.
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Figure 6.2: Eye-SpatialNet schema. The dashed circles indicate the newly added frame elements.

For this, in this schema, we incorporate specific spatial and descriptive frame elements or relations
besides the common ones proposed in Rad-SpatialNet. The entity types included are spatial trigger,
finding, anatomy, device, location descriptor, other descriptor, assertion, quantity, drug, and procedure.
The spatial and descriptive frame elements are mostly similar to the ones described in Table 4.8 in
Chapter 4. Additionally, we include the frame elements—medication, impact on side, pathophysiologic
descriptor, direction, associated diagnosis, specific location descriptor, certainty descriptor, and
value. Frame elements are either connected to the spatial trigger terms or the main clinical entities
such as findings and anatomies. We describe the newly added ophthalmology-specific frame elements
in the following subsections. The schema is illustrated in Figure 6.2.

Ophthalmologists often document detailed contextual information while describing the
findings. To cover this, we add some ophthalmology-specific frame elements that we describe in

the following subsections.
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6.1.1 NEW SPATIAL FRAME ELEMENTS

We add three new spatial frame elements related to findings, namely, exact location descriptor,

impact on side, and direction. For the exact location descriptor, let us consider the example below.
She was found to have 20/25 vision OD and CF vision OS with mild disc edema in the left eye.

Here we see that there is a spatial relation between mild disc edema and left eye connected through
the spatial trigger 7z. As per the Eye-SpatialNet schema, edema has the spatial role of a ‘Figure’
and its corresponding location eye acts as the ‘Ground’. Moreover, we notice that edema has been
described through a location descriptor disc besides the status descriptor mild.

Sometimes, a finding that has been detected in both sides (left and right) is described with

different severity based on laterality or side.

External examination reveals a right relative proptosis with bilateral lid retraction right

greater than left.

In this example, retraction is the finding that is more pronounced in the right eyelid than the left
eyelid. Moreover, retraction is described using laterality bilateral and location descriptor /zd.

A finding’s direction is also documented in the notes.

She reports that ber right eye deviated outward, and she had difficulty walking with poor

coordination.

Here, outward is used to describe the direction of right eye deviation.
All these three frame elements—location descriptor, impact on side, and direction are associated
with describing the detailed spatial aspects of a finding and, therefore, we include these elements in

our representation schema.
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6.1.2 NEW DESCRIPTIVE FRAME ELEMENTS

We add four descriptive frame elements related to findings, namely, certainty descriptor, associated

diagnosis, pathophysiologic descriptor, and value. Consider the example below.
His past ocular history is significant for optic neuritis and right optic atrophy.

In this sentence, the term significant is used to describe the certainty of both optic neuritis and optic
atrophy findings.
Oftentimes, some findings are described along with their associated diagnoses. In the following

example, occlusions is linked to Susac Syndrome.

At this time the exact cause is unknown, however, with multiple retinal branch artery occlusions

bilaterally one must entertain the diagnosis of Susac Syndrome.

Note that this ‘Associated Diagnosis’ frame element is different from the ‘Diagnosis’ frame element
proposed in Rad-SpatialNet. The ‘Diagnosis’ element is linked to a spatial trigger, whereas ‘Associated
Diagnosis’ element is linked to an eye finding (e.g., Susac Syndrome in the sentence above). In “She
did show me video of ber episodes of upturning of the eyes which appears consistent with oculogyric
crisis.”, oculogyric crisis acts as the ‘Diagnosis’ element of the spatial frame instantiated by the spatial
trigger of connecting upturning and eyes.

We also include pathophysiologic descriptor of a finding in the schema. For example, in “She s
seen in_follow up for ber left sided headache and retroorbital pain in the setting of presumed antoimmune
retinopathy.”, autoimmune is the pathophysiologic descriptor associated with the finding retinopathy.

Ophthalmology notes also contain information about visual acuity scores and other eye-related

measurements. We present two examples below.

1. On his examination be found her to have 20/20 vision OD and 20/3 0 vision OS with a left

RAPD.
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2. INTRAOCULAR MEASUREMENT: Method: Applanation Right Eye: 1§

3. LEFT EYE: Media: hazy view Cup/Disc Ratio: 0.4

Note that in the first example, the first vZsion occurrence has a visual acuity score of 20/20 in the
oculus dextrus (OD) or the right eye, while the second vision has a score of 20/3 0 in the oculus
sinister (OS) or the left eye. Thus, the first viszon finding is linked to z0/20 and the second vision

is linked to 20/z0 through the ‘Value’ relation or frame element. And OD is the laterality of the

first vision while OS is the laterality of the second one. In the second example, INTRAOCULAR
MEASUREMENT is linked to 75 through the ‘Value’ element, whereas the third example shows
that the finding Cup/Disc Ratio is associated with its corresponding value o0.4. Therefore, we capture
all the important eye measurements in our schema.

Apart from above additions, this schema covers temporal information of findings that are
expressed using a variety of phrases unlike the temporal descriptors of radiological findings annotated
in Rad-SpatialNet (described in Section 3.2.1 in Chapter 3). These expressions include one and a
half to two years, > 8 years, next 3-4 months, within 1-2 months post-operatively, over the next few
days, and early in the mornings. This schema covers lateralities that are specific to ophthalmology

such as OS, OD, and OU, besides the common ones such as left, right, and bilateral.

6.2 DATASET ANNOTATION

We use a set of 600 notes for annotating the important ophthalmic entities and spatial relations.
These notes are collected from the Robert Cizik Eye Clinic at McGovern Medical School at Houston.
The notes contain information about a patient’s history, detailed description of patients’ experiences
with their vision, interpretations of eye imaging examinations, information about past surgeries and
their outcomes and complications, and associated neurological symptoms. We use the BRAT tool

(Stenetorp et al., 2012a) for annotation.
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Table 6.1: Basic statistics. Avg - Average.

Item Value
Avg. note length (in tokens) 470.61
Avg. sentence length (in tokens)  20.34
No. of unique spatial triggers 49

6.2.1 ANNOTATION STATISTICS

Each note was annotated by two annotators having medical background (one optometrist, one
MD) and the annotations were reconciled iteratively through discussions. The overall F1 agreements
are reported for annotating the main entities, the spatial and descriptive frame elements. We show
the statistics of our annotated dataset as well as the inter-annotator agreement measures in Tables
6.1, 6.2, 6.3, and 6.4. The average sentence length (20.34) of the ophthalmology notes is slightly
higher than that of the radiology reports Rad-SpatialNet dataset (refer Table 3.6). The spatial
triggers in our annotated ophthalmology dataset contains spatial prepositions such as 2%, behind,
and within as well as verbs such as appear, reveals, and are. The top three frequent trigger terms
are n, of, and are. Among the entity types, the agreement is low (F1: 0.35) for Procedure as this
involves identifying different eye surgery procedures or therapies that are often expressed in their
abbreviated forms (e.g., LPI for Laser Peripheral Iridotomy and PRP for Pan-retinal photocoagulation).
Among the spatial and descriptive frame elements, Diagnosis, Size, and Associated Diagnosis have
low Fr agreements of 0.28, 0.30, and 0.23, respectively, as it is oftentimes difficult to correctly
interpret the potential diagnoses terms and sizes of different eye entities. Diagnoses terms are difficult
to differentiate from the Finding terms and are rather annotated as Findings. Another general
challenge in the annotation process involved separating the eye-related findings from the neuroradiological
findings as oftentimes the interpretations of brain images are embedded in the ophthalmology

notes.
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Table 6.2: Spatial frame elements.

Frame element Frequency Fr1 agreement
Figure 2261 0.77
Ground 2094 0.89
Hedge 397 0.69
Diagnosis 18 0.28
Relative Position 132 0.59
Reason 7 0.77
Medication 18 0.64
Morphologic 45 0.44
Size Desc 43 0.56
Distribution Pattern 33 0.29
Composition 36 0.59
Laterality 3464 0.78
Size 48 0.30
Impact on Side 97 0.75
Direction 85 0.56
Specific location 1636 0.72

6.3 INFORMATION EXTRACTION AS QUESTION ANSWERING

6.3.1 SYSTEM OVERVIEW

We frame the task of spatial information extraction (IE) from ophthalmology notes as two-
turn question answering (QA). This formulation (both single and multi turn QA) has proven to
perform well for various general and biomedical domain IE tasks. Table 4.14 in Chapter 4 has
also demonstrated the improved performance of a two-turn QA framework over a more standard
sequence labeling-based method to extract detailed information from radiology text. Inspired
by these findings, we adopt a similar two-turn QA approach to identify the spatial triggers, the
main ophthalmic entities, and their corresponding spatial and descriptive frame elements. This

framework is suitable for IE scenarios where identification of relations or frame elements are dependent
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Table 6.3: Main entities.

Entity type Frequency Fr1 agreement
Spatial trigger 1715 0.91
Finding 7308 0.80
Anatomy 2424 0.88
Device 14 0.90
Drug 22 0.60
Procedure 182 0.35
Other descriptor 9782 0.79
Quantity 366 0.88
Assertion 1616 0.70
Location descriptor 132 0.60

Table 6.4: Descriptive frame elements.

Frame element Frequency Fi1 agreement
Status 3051 0.59
Quantity 101 0.56
Temporal 1066 0.45
Negation 921 0.55
Pathphysio 75 0.60
Certainty 298 0.49
Associated Diagnosis 72 0.23
Value 318 0.83

on extracting the target entities or lexical units of the frames (i.c., spatial triggers and ophthalmic
entities). In this, the aim is to query a machine reading comprehension (MR C) model for returning
answers given a query and the context passage (ophthalmology note text). The MRC system is based
on the pre-trained language model BERT (Devlin et al., 2019) where we follow the standard BERT
input format by combining the query and the note text. The system allows for multiple answer
extraction against a query, which is suitable for our schema as there can be multiple frame elements

of the same type that are linked to a particular entity (spatial trigger or other ophthalmic entity).
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The MRC framework involving two BERT models for the two turns are adopted from a previous

work (Lietal,, 2019).

6.3.2 QUERY GENERATION

We construct queries for the newly added entities and frame elements in Eye-SpatialNet. We
adopt the same query templates for both target entity and element extraction as used in Table 4.10
in Chapter 4. Queries for the first turn incorporate the entity types whereas queries for the second
turn include information about the frame elements and the associated main entity that is extracted
in the first turn. In this work, we use the Queryg,g + desc Variant to extract the frame elements in the
second turn. The idea is to make the query more informative through incorporation of domain
knowledge by adding a description of the particular frame element of interest at the beginning of a

query. The following is an example query to extract ImpactOnSide’ spatial element.

ImpactOnSide refers to which eye side is more impacted. Examples include right greater than
left, smaller than left, and worse in the left eye. find all descriptor entities in the context that

have a impact on side relationship with clinical finding entity optic neuropathy.

Here, we see that the query includes description about ImpactOnSide as well as the finding entity
(i.e., optic neuropathy) that is identified in the previous turn. If no answer is retrieved from the
MRC system, this means there is no such entity of type ‘Descriptor’ in the note text that captures
information about which eye side is more or less aftected by optic neuropathy. The descriptions used

to form the queries for all new frame elements are shown in Table 6.5.

6.4 EXPERIMENTAL SETTINGS AND EVALUATION

We randomly split our annotated ophthalmology dataset of 600 notes such that 450 notes

are used for training, 5O for development, and 100 for testing. We use clinical BERT 1 orgg model
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Table 6.5: Descriptions used in the queries to extract additional frame elements.

Frame element Description

Medication Medication refers to a drug or solution that has been administered
or applied to any eye location.

ImpactOnSide ImpactOnSide refers to which eye side is more impacted. Examples
include right greater than left, smaller than left, and worse in the left
eye.

PathphysioDesc Pathophysiologic descriptor refers to the functional changes
that accompany a disease. Examples include autoimmune and

physiologic.

Direction Direction indicates direction of a finding. Examples include
outward and to the right.

AssocDiag Associated diagnosis refers to the clinical condition or disease
associated with a finding. This usually appears after phrases such as
associated with and secondary to.

LocationDesc Location descriptor refers to the exact location of a finding.
Examples include retrooorbital and optic disc.

CertaintyDesc Certainty descriptor refers to uncertainty phrases describing a
finding. Examples include significant and consistent with.

Value Value refers to a visual acuity score or any measurement or ratio.
Examples include 20/20, 20/40, 16, and 0.8.

that is pre-trained on MIMIC-III clinical notes for 300K steps (Si et al., 2019) as it performed better
on our radiology reports dataset. We fine-tune BERT aArge-MIMIC (cased version) on our Eye-
SpatialNet dataset for 10 epochs and use the same hyperparameter settings as reported in Table 4.13
in Chapter 4 for the Rad-SpatialNet dataset. We evaluate the performance metrics - precision, recall,
and F1 score and report the results on the test set of 100 notes. We consider exact matches of the
entity and frame element spans against the annotated spans for evaluation.

Further, to leverage an already available language model that is fine-tuned on the radiology

reports dataset for the task of spatial information extraction, we evaluate any prospective benefits of
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Table 6.6: Target entity extraction results using BERT1 ar ge-MIMIC two-turn QA method. desc -

Descriptor.

ENTITY Precision(%) Recall (%) Fx

Spatial trigger 86.86 91.89 89.31
Finding 75.71 83.41 79.37
Anatomy 85.37 85.15 85.26
Location desc 30.77 40.00 34.78
Other desc 76.57 83.04 79.67
Assertion 81.78 89.80 85.60
Quantity 82.89 82.89 82.89
Procedure 56.67 53.12 54.84

transfer learning through sequential fine-tuning, that is, by first fine-tuning the model on radiology
reports followed by fine-tuning on ophthalmology notes. The radiology fine-tuning was performed
on 288 reports and we further fine-tune on 450 ophthalmology notes. For this, we use the BERT
LARGE-MIMIC sequence labeling model fine-tuned on radiology reports (described in Section
4.1.4 in Chapter 4). Note that we use the gold spatial triggers for this experiment to extract the
elements that are connected to the triggers (and not the main ophthalmic entities). Using predicted
triggers would provide a more realistic evaluation, but that is not the focus of this experiment. We
evaluate the performance on the main spatial frame elements that are common between the two
domains on the 100 test ophthalmology notes. For fine-tuning the sequence labeling model on

the ophthalmology data, we set the maximum sequence length at 128, learning rate at 2¢ — 5, and

number of training epochs at 4.

6.5 REsuLTS

The performance measures for extracting the main ophthalmic entities in the first turn from

100 ophthalmology test notes are reported in Table 6.6. The results are promising for the common
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Table 6.7: Frame element extraction results using BERT1 ar gG-MIMIC two-turn QA method. sptr

- Spatial trigger. Desc - Descriptive.

FrRAME ELEMENTS Precision(%) Recall (%) Fr
’g Figure 75.29 74.43 74.86
& | Ground 85.89 91.21  88.47
S | Hedge 89.47 86.44  87.93
8. | Relative Position 30.43 70.00 42.42
? | Medication 50.00 100 66.67

Laterality 80.59 83.15 81.85
2 | Distribution Pattern 47.37 64.29 5455
g SizeDesc 60.00 42.86  50.00
= LocationDesc 69.26 76.21 72.57
€ | ImpactOnSide 72.73 84.21  78.05
& | Direction 57.14 66.67  61.54

Size 28.57 10.00  14.81

Status 70.11 70.93  70.52
% | Quantity 63.64 4375  S1.85
Ié Temporal 53.33 43.78 48.09
% Negation 77.60 82.32 79.89
8 | Certainty 60.26 6438  62.25
Q| Pathphysio 47.06 5333 50.00

Value 81.63 68.97 74.77

entities including ‘Spatial trigger’, ‘Finding’, and ‘Anatomy’ with F1 scores of 89.31,79.37, and
85.26, respectively, while they are low for ‘Location descriptor’ and ‘Procedure’. Note that the
entities ‘Drug’ and ‘Device’ occur very infrequently in the dataset (with only 2 and 1 occurrences
in the test set) and the performance measures are zero.

We show the results for extracting the spatial and descriptive frame elements in the second turn
in Table 6.7. We see that the model performs well for common frame elements such as ‘Ground’,
‘Hedge’, ‘Laterality’, ‘ImpactOnSide’, and ‘Negation’. The performance measures are particularly

low for ‘Relative Position’, ‘Size’, and “Temporal Desc’. This may be because of the wide variation
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Table 6.8: F1 measures for different fine-tuning variations using BERT1 pAr gGe-MIMIC sequence
labeling method on 100 test ophthalmology notes. Oph - Fine-tuning only on Ophthalmology, Rad-

Opbh - Fine-tuning on Radiology followed by Ophthalmology, Rad - Fine-tuning only on Radiology.

FraME ELEMENT Oph Rad-Oph Rad

Figure 78.76 80.88 51.29
Ground 95.38 95.19 91.95
Hedge 82.64 89.08 0

Relative Position 60.87 S57.14 43.48

in the phrases used to express the sizes and temporalities of findings. Moreover, there are only 3, 1,
and 7 instances of the frame elements ‘Diagnosis’, ‘Reason’, and ‘Composition Desc’, respectively
in the test set with no occurrence for ‘Morphologic Desc’. Although the element ‘AssocDiag’ occurs
21 times, the performance values are zero for this element. The reason could be that this is often a
difficult task (even for humans) to differentiate these terms from findings.

The results of transfer learning experiment from radiology to ophthalmology domain is shown
in Table 6.8. We see the F1 scores improve from 78.76 to 80.88 for ‘Figure” and 82.64 to 89.08 for
‘Hedge’ when we use a model fine-tuned on radiology reports to further fine-tune on our ophthalmology
corpus. We also note that the F1 measure for the ‘Ground’ element is 91.95 without the requirement
of any fine-tuning on ophthalmology data. The results are zero for ‘Diagosis’ and ‘Reason’ as they

are too infrequent in the dataset as stated above.

6.6 DiscussioN

We present a new dataset of 600 ophthalmology notes annotated with detailed spatial and
contextual information. Although a few studies worked on identifying a certain set of entities
from clinical notes, they are mostly focused toward visual acuity and features of microbial keratitis

(Baughman et al., 20175 Mbagwu et al., 2016; Woodward et al., 2021). Our work is an initial effort
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in building a schema that captures more detailed information from the notes that can potentially be
used in various useful ophthalmology-related applications and research studies.

Most of the entities and frame elements used in encoding spatial language in the ophthalmology
notes are adopted from our previously proposed Rad-SpatialNet schema built for radiology. This
indicates the generalizability of the schema in that it captures most of the common and important
spatial information usually encountered in clinical text. We incorporate additional frame elements
for two reasons. First, to cover more detailed information about the findings that were not present
in Rad-SpatialNet such as capturing implicit spatial relations through the ‘Location Desc’ frame
element (e.g., scenarios where a spatial relation exists but a spatial trigger term is not present in the
sentence). Second, to include ophthalmology-specific spatially-grounded entities (e.g., ‘Procedure’)
and elements that are of interest to ophthalmology researchers (e.g., visual acuity and other important
eye measurements through the ‘Value’ frame element). The results in Tables 6.6 and 6.7 show that
the two-turn QA approach achieves satisfactory performance in identifying different entities and
frame elements and are comparable to the results on the radiology report dataset (shown in Table
4.14 in Chapter 4). We achieve this without any modification of the query templates and the frame
element descriptions (that are used to form the queries) for those elements that also exist in Rad-
SpatialNet. This also indicates that the method is adaptable and generalizable enough to work
satisfactorily well for frequent entity types and frame elements across medical domains (although
the language style and the vocabulary differ a lot between radiology reports and ophthalmology
notes).

To examine the effect of transfer learning from a different medical domain, our experiment
with the sequence labeling model in Table 6.8 indicates that transfer learning holds potential in
improving the performance for some frame elements, however, a more thorough evaluation covering
all other elements is required to understand its real benefits. This includes experimenting with a

small number of ophthalmology notes in the fine-tuning process, as often only a limited amount of
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labeled data is available in a new domain. Interestingly, although the two-turn QA approach works
well both for ophthalmology and radiology domains, our initial experiments with sequential fine-
tuning did not yield good results using the QA approach. We leave this to future work where we
plan to investigate this further and evaluate the less explored domain adaptation techniques such as
the adaptive oft-the-shelf approach proposed in Laparra et al. (2020).

To handle less frequent entities and frame elements better as well as to further improve the
QA model’s performance, the dataset can be augmented in the future by automatically generating a
large weakly labeled ophthalmology dataset using domain-specific rules, a technique that has been
validated to be useful by many recent studies in the medical domain (Smit et al., 2020; Fries et al.,
202.1b). Apart from reducing the annotation effort, this can particularly be useful for elements such
as ‘Size’ and “Value’ that usually follow a set of patterns based on domain. For example, ‘4-> 3mm’
is used to express pupil size in an ophthalmology note whereas 2.1 x 3.4 x 2.0 cm’ denotes a tumor
size in a radiology report. Finally, cross validation can be incorporated in a later work for a more

exhaustive evaluation on this proposed dataset.
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Weak Supervision for Spatial Information

Extraction

Most information extraction studies in the clinical domain utilize exclusively supervised learning
approaches. Such approaches rely on human-annotated reports that are not only tedious, time-
consuming, and expensive, but also require extensive domain knowledge. Thus, it is difficult to
achieve the scale of manual annotation for complex and fine-grained information. Moreover, manual
annotations are often not generalizable across institutions because of limited coverage of language
variations and/or reporting style. Meanwhile, deep learning-based supervised methods often demand
large amounts of annotated training data to achieve substantial performance improvement over
alternatives like rule-based methods. Recent research (Ratner et al., 20205 Fries et al., 2017; Shang

etal., 2018; Safranchik et al., 2020) has proposed weak supervision to address the above issues
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by programmatically creating very large training corpora with imperfect labels which have the
potential to outperform fully supervised approaches. Such approaches have been applied in clinical
natural language processing (NLP) tasks such as medical entity classification (Fries et al., 202.1a),
concept normalization (Pattisapu et al., 2020), relation classification (Peterson et al., 2020; Callahan
etal., 2019), and sentence-level classification (Banerjee et al., 2019) for different use cases including
patient-centered outcome assessment (Banerjee et al., 2019) and medical device surveillance (Callahan
etal., 2019).

One recently explored weak supervision method is data programming (Ratner et al,, 2020),
which uses multiple supervision sources including patterns, domain rules, and domain-specific
ontologies to automatically generate training data. Rules or labeling functions (defined based on
domain knowledge from these sources) are applied on unlabeled data, the output of which is used
to train a generative model to generate probabilistic training labels, thus obviating the laborious
process of constructing human-annotated labels. Moreover, the labeling functions can be easily
updated when applied to a different institution’s data to incorporate any change in the downstream
use case, or to keep in sync with the latest domain knowledge with feedback from subject matter
experts. This thereby reduces the manual effort of re-labeling data based on revised annotation
guidelines. Inspired by this, we use data programming to automatically construct a distantly labeled
corpus of radiology reports following our previously proposed Rad-SpatialNet representation
schema (described in Section 3.2.1 in Chapter 3).

This chapter describes our proposed data programming-based weak supervision approach to
create a large labeled dataset of radiology reports for spatial relation extraction. We use the Snorkel
framework (Ratner et al., 2020) to automatically create the weak relation labels. Our labeling functions
are based on the radiology-specific lexicon - RadLex (Langlotz, 2006), regular expressions, language
characteristics of report text, and other task-specific heuristics. The generated weak labels are used to

train a transformer-based language model, BERT (Devlin et al., 2019). The overall weak supervision
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Figure 7.1: Overview of our weak supervision approach for radiology spatial information
extraction. LF: Labeling Function. BIO: Beginning, Inside, Outside. RAD-SPpyy: Development
set. RAD-SPrysr: Held-out test set. x represents the number of unlabeled reports used for training

the Label Model (varies from 500 to 50%).

pipeline is shown in Figure 7.1. To assess our approach, we evaluate BERT that is fine-tuned only
using weakly labeled reports. We also evaluate sequential fine-tuning performance (fine-tuning on
weak labels followed by gold labels) and compare it with a fully-supervised variant. The evaluations
are performed on 400 radiology reports (comprising of chest X-ray, brain MR, and babygram

reports) (more details are described in Section 3.2.2 in Chapter 3).

7.1 DATA

We use 400 (358 containing spatial relations) manually labeled MIMIC-III (Johnson et al.,

2016) radiology reports (Chest X-ray: 136, Brain MRI: 127, and Babygram: 137) as a held-out
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test set for evaluating our weak supervision pipeline. We refer to this as RAD-SPryr. More details
are found in Section 3.2.2 in Chapter 3. We randomly select a total of 50k unlabeled MIMIC
reports (with almost equal proportion of the three report types) to train the generative model and
subsequently the weakly supervised BERT 1 Ar Ge-MIMIC model. We manually annotate additional
randomly selected 6o MIMIC reports (20 in each of the three categories) for building dictionaries,

labeling functions, and hyper-parameter tuning (referred to as RAD-SPpgy ).

7.2 METHOD

We perform the following sequential steps to programmatically create the weak training labels.

For this we employ data programming using the Snorkel framework (Ratner et al., 2020).

7.2.1  CANDIDATE GENERATION

We identify all the candidate {spatial trigger, radiological entity} pairs where the radiological
entity acts as a potential spatial FE with respect to the spatial trigger in a sentence. This involves the

following steps:

1. Dictionary construction - We curate two dictionaries using pre-existing knowledge sources—
1) Rad-Entityg;.: This contains different types of radiological entities such as radiological
findings and anatomical entities using RadLex (Langlotz, 2006). For this, all RadLex terms
under the parent RadLex classes Imaging observation (RIDs), Clinical finding (RID34785),
Anatomical entity (RID3), Medical device (RID29033), and Process (RID39128) are used
for constructing a comprehensive vocabulary representing important radiological entities.
Additionally, we also add the terms in Foundational Model of Anatomy (FMA) ontology

(Rosse & Mejino, 2008) to include more anatomical entities and add radiology-specific
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acronyms and their corresponding expansions from Radiopaedia *. This results in a total
of 153,944 terms. 2) Spatial-Triggerg;.: This contains potential phrases denoting spatial
relations between finding/device and location. We develop this by combining the spatial

triggers annotated in RAD-SPpgy to a set of hand-built trigger terms.

2. Expanding Rad-Entityg;.. - We manually add more finding and anatomy-related terms
to Rad-Entityg;, that are encountered in RAD-SPpyy but are not present in RadLex or
FMA (e.g., effacement, volume loss, candate nucleus head). Based on patterns identified
using RAD-Sppyy, we further prepend or append phrases to a set of terms in Rad-Entity gic,.
Specifically, we prepend in two ways—1) prepending phrases such as ‘area(s) of”, ‘region(s) of”
and ‘focus/foct of” to finding-specific terms (e.g., hypodensity) and 2) prepending descriptors
to certain finding and anatomical entities (e.g., prepend ‘petechial’ and ‘intraparenchymal’ to
a finding term hemorrhage and prepend combinations of two brain lobes such as ‘frontoparietal’
to terms like Jobe and cortex). Finally, we add the plural forms of all terms to the dictionary.
For including terms related to ‘RelativePosition’, ‘PositionStatus’, and ‘Hedge’ FEs to Rad-
Entitygic., we construct a list of terms using both RAD-Sppy and manually curated terms.
Additionally, for ‘RelativePosition’ and ‘Hedge’, we add all RadLex terms under RadLex
class Location descriptor (RIDs817) and Certainty descriptor (RID29), respectively. This

increases the total number of terms to 1,492,109.

3. Entity tagging - We apply an entity tagger that extracts all possible text spans in a sentence
representing any spatial FE by exactly matching against the terms in Rad-Entityg;,. For the
identified spans having any overlap, the longest span is selected except for a few special cases.
Such exceptions include anatomy entities (e.g., znferior cerebellar peduncle) that contains

location descriptor-related terms (znferior) in which cases we select both znferior and the

*https://radiopaedia.org/articles/medical-abbreviations-and-acronyms-a?lang=us
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main anatomical entity cerebellar peduncle as two candidate entity spans instead of selecting
the longest span. Similarly, candidate spatial triggers are identified using dictionary matching
against terms in Spatial-Trigger ;. For entities representing ‘Distance’ FE (e.g., z mm’),
regular expressions (inspired from Bozkurt et al. (2019)) are applied for matching. Besides
‘Distance’, we also develop regular expressions for identifying certain anatomical entities

representing segments (e.g., ‘Cs-C7’, ‘T12’).

Finally, all possible {trigger, entity} pairs are generated by combining each identified trigger
with all identified radiological entities in a sentence. All these pairs form the candidate spatially-

related entities.

7.2.2  LABELING FUNCTIONS

This step involves writing rules or labeling functions (LFs) considering both radiology report-
specific language characteristics and domain lexicons to vote on a {trigger, entity} pair’s potential
FE label (from a set of nine labels corresponding to nine spatial FEs). Given a {trigger, entity} pair
as input, each LF either assigns an FE label for the pair or abstains (i.e., assigns no label). Most LFs
include combining dictionary-matching and task-specific heuristics. Dictionaries used in LFs are
constructed in a similar manner as for the entity tagging step (described in subsection 7.2.1) for
broad categories such as finding, device, and anatomy. Matching against terms in specific dictionaries
constrains the semantic type of an entity whereas the task-specific heuristics captures prominent
cues to identify the potential spatial role of an entity with respect to a spatial trigger by using linguistic
features of a sentence documenting any important clinical information about radiological findings.
Examples of heuristics used in LFs to vote a candidate {trigger, entity} pair as ‘Ground’ and ‘Diagnosis’
FE are illustrated in Table 7.1.

Besides relying on domain ontologies (RadLex, FMA) through dictionary match, the task-
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Table 7.1: Heuristics used in two sample LFs to label a {trigger (SPTRG), entity (RADENT)} pair

with Ground and Diagnosis frame element relations. SPTRGs are bolded and FEs are underlined.

FE - Frame Element. LF - Labeling Function.

FE (Features used in LF)

Example sentence

Heuristics

Ground (Relative
position of RADENT
with respect to
SPTRG; semantic

The lungs demonstrate
hazy bilateral opacity of

hyaline membrane disease.

* SPTRG is any of [with|without|show(s)|demonstrate(s)|
is|are|reveal(s)] AND RADENT lies directly adjacent
to the left of the SPTRG

* For other SPTRGs, RADENT lies to the right of

white matter and
centrum semi-ovale

type of RADENT) SPTRG AND there is o-2 words in between SPTRG
and RADENT AND RADENT is anatomy

Ground (Closest There are scattered T2 RADENT lies to the right of SP°TrRG AND

SrTRG; semantic high signal intensity foci * o word in between SPTRG and RADENT AND

type of RADENT) in the periventricular RADENT is anatomy

* For greater than o word in between SPTRG and
RADENT, no other trigger in between AND

SPTRG; semantic

consolidation is seen

consistent with RADENT is anatomy
microvascular angiopathy.
Diagnosis (Closest A patchy area of RADENT is finding AND text span to the right of

RADENT s . AND

type of RADENT; within the right lower * IF preposition-containing hedge term between
presence of hedge to lobe concerning for SPTRG and RADENT

the left of RADENT; pneumonia. * ELSE IF a hedge term present to the left of the
RADENT being the RADENT with window length 4 and no additional
last term) spatial trigger between SPTRG and RADENT
Diagnosis (Presence There is stable opacity left window = [represent, suggest, indicat, consistent
of specific hedge- in the right lower lobe with); right window = [ruled out, excluded, vs, versus)
related terms as well as a retrocardiac * any item in left window list present to the left of
surrounding opacity, these are likely RADENT with window length 4 AND RADENT is
RADENT; semantic related to atelactases versus finding

type of RADENT) pneumonia. * any item in right window list present to the right of

RADENT with window length 4 AND RADENT is
finding
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specific heuristics are necessary for a complicated task like this where identifying a spatial role (or
FE) against a radiological entity is context-dependent (e.g., a finding term could be both ‘Figure’

and ‘Diagnosis’ depending on what role it plays in a sentence). This becomes more challenging
when there are multiple spatial triggers in a sentence and the same entity is associated with different
triggers with different spatial roles (e.g., an anatomical entity could be both a ‘Figure’ and ‘Ground’).
Our LFs handle this complexity by considering the position of an entity with respect to a specific
spatial trigger in a sentence. We manually examine the sentences in RAD-SPpygy to build the LFs.
The LFs are developed and refined in iteration by evaluating on the annotated RAD-Sppyy set. We

develop 19 LFs in total. The heuristics used in all LFs are included in Appendix (Table A.r).

7.2.3 WEAK LABEL GENERATION

We use Snorkel’s generative model (known as a Label model) that combines the noisy label
outputs from all LFs for a {trigger, entity} pair by estimating the unobserved accuracy of each LF
to assign a single probabilistic label for that pair. This generates probablistic training labels (or
“weak” labels) for all candidate pairs extracted from the unlabeled report sentences. Since our task
is to identify the FEs at the level of each spatial trigger in a sentence, we create separate instance for
each trigger by combining all the RADENTs from the {trigger, entity} pairs for which an FE label has

been predicted. These modified trigger-level instances are used for further processing.

7.2.4 WEAK LABEL FILTERING

We apply two additional constraints to filter the weak labels generated by the Label model to
produce a sizable improved weakly labeled training data. First, since ‘Figure’ and ‘Ground’ constitute
the two fundamental FEs of a spatial frame, we check for the presence of both these FEs among the
weak FE label predictions in the trigger-level instances from subsection 7.2.3. Second, we check for

the presence of certain frequent phrases surrounding common spatial triggers such as of; with, and
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in. We ensure that no such phrase is found to the left or right of the trigger. This rule eliminates
false positive triggers (the frequent phrase sets are taken from Datta & Roberts (2020)). Only if the

two constraints satisfy, we select that trigger-level instance in our final weak labeled training set.

7.2.5 WEAKLY SUPERVISED MODEL - BERT

We use the final weak labeled training data to fine-tune BERT Ar Ge-MIMIC (pre-trained on
MIMIC notes for 300K steps (Si et al., 2019)). We formulate this as a sequence labeling task where
we extract spatial FEs provided a spatial trigger in a sentence. For this, we convert each trigger-level
instance produced from Label model to a sequence of BIO (B-Beginning, Inside-I, and Outside-O)
labels against each word in a sentence. The process of filtering the weak labels and transforming
to BIO tag sequence is shown in Figure 7.2. Each sentence, represented using the standard input
sequence format - [[CLS] sentence [SEP]], is then fed into BERT. As there can be multiple triggers
in a sentence, we mask the words corresponding to a spatial trigger with an identifier $sptrg$ to
encode the position of a specific trigger. The contextual representations from the BERT encoder

output is fed into a linear classification layer to predict labels per word.

7.3 EXPERIMENTAL SETTINGS

7.3.1 WITHOUT GOLD DATA

We use varying amounts of unlabeled MIMIC-III radiology reports to generate weak spatial
labels and then use these labels to fine-tune the BERT aAr gGe-MIMIC model. Specifically, we use 10,
25,50, 75, and 100 percent of the 50k selected MIMIC reports. We evaluate each variant on the 358

gold annotated test reports (RAD-SPgr).
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Unlabeled report BIO format sequence labels

| There is opacification of ethmoidal
| and sphenoid sinuses as well as

There is opacification of ethmoidal (Weak labels) mucus thickening within the frontal
and sphenoid sinuses as well as Trigger-level instances sinus.

mucus thickening within the frontal - . ) . ,[' . .

sinus. of --> [opacification (Figure); Y | O O B-Figure B-Trigger B-Ground

ethmoidal (Ground); sphenoid
sinuses (Ground)]

O B-Ground I-GroundO O 00 0 O
0000

il

-
within --> [mucus t 3
O - (Figure); frontal sinus (Figure)] 3

There is opacification of ethmoidal

and sphenoid sinuses as well as

mucus thickening within the
Label model frontal sinus.

] 000000000 O0O0 B-Figure I-

N . . Figure B-Trigger O B-Ground I-
MDCT axial imaging was initially ! x '| Ground O

performed through the brain through --> [brain (Ground)] |!
without administration of IV '
CONLTAS. cvvvrvreenerieserieseenieseensennsaesenane

Filtration step

Figure 7.2: Filtering weak labels and converting the labels to feed into BERT model. All the

candidate spatial triggers are shown in bold.

7.3.2  SEQUENTIAL FINE-TUNING

We perform sequential fine-tuning where we first fine-tune BERT on weakly labeled reports
followed by fine-tuning on gold annotated reports (a similar approach that proved to be eftective in
arecent work by Smit et al. (2020) to improve the performance of the automatic rule-based labeler
like CheXpert (Irvin et al., 2019)). Specifically, we leverage the best BERT1 or Ge-MIMIC model
variant among the five variants trained on only weak labels in subsection 7.3.1 to initialize the model
parameters to further fine-tune on gold reports. We report the average F1 measures of a ro-fold
cross validation on RAD-SPy¢r. We use the results (average F1 using predicted triggers) of a fully
supervised BERTT Ar gE-MIMIC sequence labeling model reported in Table 4.6 in Chapter 4 for
direct comparison. Note that we use the same 10-fold split settings as used in the previous work for

this experiment.
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7.3.3 VARYING AMOUNTS OF GOLD DATA

We also experiment using increasing amounts of gold annotated reports for sequential fine-
tuning. Similar to subsection 7.3.2, the best trained model on weak labels is used to further fine-
tune on the gold reports. We use 10 percent of 358 annotated reports, each for testing and development,
and the remaining 80 percent (i.e., 288 reports) for training. Specifically, we use 10, 25, 50, 75, and

100 percent of the 288 gold reports for sequential fine-tuning.

7.4 EVALUATION

To evaluate our weakly supervised BERT model’s end-to-end performance in extracting the
spatial FEs with respect to a trigger, we consider the spatial triggers that are predicted by the Label
model on the test data (RAD-SPryr) after applying the two constraints (refer subsection 7.2.4
above) to form the model input to BERT. Here, we apply the first constraint with a slight modification
(i.e., we filter the trigger-level instances for which a Ground FE is predicted by the Label model)
in order to increase the recall of spatial triggers as the fine-tuning task uses the trigger positions to
predict the associated FEs. We take into account the precision loss related to FEs that are predicted
for false positive (FP) spatial triggers and recall loss related to FEs that are missed for false negative
(EN) triggers. These FP and FN triggers are based on the predictions of the Label model on Rap-
SPggr

The hyperparameters for both the Label and BERT orgg-MIMIC models are tuned using the
60 annotated reports in RAD-SPpyy through grid search. For Label model, the number of training
epochs, learning rate, L2 regularization, and precision initialization are set at 100, 0.0001, 0.01, and
0.7, respectively. For BERTT Ar gGe-MIMIC fine-tuning, the maximum sequence length, learning
rate, training epochs are chosen as 128, 2e—S5, and 4, respectively and we use the cased version of the

model.
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Table 7.2: F1 measures of the weakly supervised BERTT aAr gGe-MIMIC model on RAD-SpPggr. All

the values for the ‘Associated Process’ frame element are zero.

# Weak labeled reports for training
FraME ELEMENTS 500 1k Sk 125k 25k 37.5k 50k

Figure 32.56 41.12 45.47 45.18 44.66 45.93 45.37
Ground 5416 61.90 62.62 63.25 63.53 63.07 63.06
Hedge 4275 41.34 S53.65 50.51 51.84 55.00 56.38
Diagnosis 20.77 25.05 29.62 31.23 33.55 33.26 34.12
Position Status 4375 45.08 42.66 3832 39.88 40.92 41.04
Relative Position 50.36  50.15 48.34 48.883 49.13 49.22 49.17
Distance 70.48 64.46 65.49 63.79 66.67 66.67 67.31
Reason 0 0 1951 27.69 28.12 30.77 31.43
Overall 43.40 49.01 51.64 S1.64 S1.92 52.47 5S2.43

7.5  RESULTS

The coverage of the candidate generation phase is 78.3%, or in other words, our candidate
generator identifies 78.3% of the total gold {spatial trigger, radiological entity} pairs from RAD-
SPrgsr. The performance measures of the weakly supervised BERTT ar gGe-MIMIC model using
increasing amounts of weakly labeled reports are presented in Table 7.2. We see that the best overall
F1 on RAD-SPryr is obtained when 37.5k weakly labeled reports are used. The precision, recall,
and F1 measure for identifying the spatial triggers on RAD-SPyr are 70.84%, 75.07%, and 72.89,
respectively. We additionally present the results for 500 and 1k weakly labeled reports (in Table 7.2
to highlight the performance trend even when less than 10% of reports are used in fine-tuning.

Table 7.3 shows the sequential fine-tuning results when the model checkpoint corresponding
to using 37.5k weakly labeled reports are used to further fine-tune on gold reports. We note that the
sequential fine-tuning helps to improve the performance for all spatial FEs except for the ‘Relative

Position’ FE when compared to the fully-supervised variant. To demonstrate the effect of increasing
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Table 7.3: Average F1 measures of BERT Ar ge-MIMIC model over 1o-fold CV through
sequential fine-tuning (using the model checkpoint obtained after fine-tuning on weak labels of

37.5k reports). FS-F1 - Fully supervised F1 measures.

FrRAME ELEMENTS Precision(%) Recall(%) Fr  FS-Fr

Figure 71.25 64.90 67.69 65.12
Ground 74.64 69.33 71.74  71.51
Hedge 67.60 61.87 64.04 57.82
Diagnosis 58.12 56.14 56.54 50.76
Position Status 66.18 71.22 68.05 60.37
Relative Position 65.99 65.18 64.96 66.33
Distance 88.00 90.83 88.36 88.05
Reason 53.33 51.29 45.19 0

Associated Process 60.00 45.00 50.00 0

Overall 71.26 66.71 68.76 66.25

size of gold annotated data on the model’s performance, we present the sequential fine-tuning
results with varying gold reports in Table 7.4 on a randomly selected 35 annotated test reports.

As expected, the performance of the BERTT ar ge-MIMIC model improves as the gold data size is
increased, however, we observe that the highest or a comparable overall F1 measure is achieved using
75 percent (i.e., 213 reports) of the total annotated reports available for training. Also note that the
results for the ‘Reason’ and ‘Associated Process’ FEs are zero in many cases as these are found very

infrequently in the dataset.

7.6 DiscussioN

We develop a weakly supervised pipeline based on data programming technique to extract
spatial relations from radiology text. This is an early attempt to automatically create weak labels

in the radiology domain covering detailed and important spatial information of clinical importance
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Table 7.4: Sequential fine-tuning results (F1 measures) of BERT1 pArge-MIMIC (using the model
checkpoint obtained after fine-tuning on weak labels of 37.5& reports) on randomly selected 35 test
reports with increasing amount of gold reports used in the fine-tuning process. All the values for the

‘Reason’ frame element are zero. 100% corresponds to 288 gold reports.

% of gold reports used

FrAME ELEMENTS 10 25 50 75 100

Figure 51.72 54.75 56.82 59.55 57.78
Ground 64.52 68.09 66.32 66.31 67.38
Hedge 55.00 68.18 76.92 76.92 7317
Diagnosis 48.48 54.55 53.33 70.97 62.50
Position Status 54.55 61.54 6154 57.14 66.67
Relative Position 53.66 60.47 58.54 55.00 55.81
Distance 40.00 33.33 66.67 57.14 75.00
Associated Process 0 0 100 100 100

Overall 56.05 60.43 62.03 63.62 63.01

that could be used for various clinical informatics applications, unlike the three previous studies
that employed weak supervision for simpler binary classification and anatomy tagging (Dunnmon
etal., 2020; Wang et al,, 2019a; Eyuboglu et al,, 2021). The results in Table 7.2 demonstrate that our
proposed pipeline performs decently given the complexity of information extracted and without
any reliance on the time-consuming and expensive manual labeling process. Although they do not
surpass the fully-supervised model’s performance, they hold the potential to identify a variety of
important clinical information without using any hand-labeled training data. Further, our findings
on sequential fine-tuning (Table 7.3) also reflect the advantages of leveraging a MIMIC pre-trained
model first fine-tuned on domain and task specific data (weakly labeled radiology reports) and then
on gold annotated data instead of just fine-tuning on the gold data. This is in line with the findings
demonstrated for the CheXbert model where combining the annotations of a rule-based labeler and

expert annotations resulted in better performance (Smit et al., 2020).
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Our weak supervision approach provides sufficient flexibility as the labeling functions can be
tairly easily modified to incorporate any change in reporting style and other institutional reports.

For example, let’s consider the following two reporting styles:
1. There are calcified atherosclerotic changes in the brain parenchyma.
2. Brain parenchyma: There are calcified atherosclerotic changes.

While the first style is more commonly encountered in radiology reports to describe findings (e.g.,
atherosclerotic changes) and their locations (e.g., brain parenchyma), some institutions or radiologists
may prefer the second format (i.e., location: findings). Such changes in reporting format may necessitate
some updations in the labeling functions which could be easily incorporated as and when needed.
Moreover, as new frame elements are added to the representation schema for different downstream
use cases, we can add additional labeling functions to cover those. Additionally, as the labeling
functions are developed using the more general language characteristics of radiology text and the
finding/anatomy dictionaries are primarily based on standard medical ontologies (e.g., FMA), they
are mostly generalizable, i.e., they hold potential in identifying the spatial FEs belonging to different
imaging modalities and human anatomies (beyond the three report types used in this work). For
instance, our labeling functions will be able to identify spatial information from a pelvic ultrasound
report sentence as well (e.g., identifying the finding leZomyomas and its location uterus from the
sentence— “Multiple leiomyomas in the uterus.”). This is not explored in this work, however, we
plan to do a thorough analysis to examine the performance of our weak supervision pipeline when
applied to reports of multiple institutions, modalities, and anatomies in the future.

Although the dictionaries we developed in this work are comprehensive enough (at least for the
three radiology sub-areas considered in this paper), we intend to further improve the coverage of the
candidate generation step that generates the candidate {spatial trigger, radiological entity} pairs by

further expanding the terms in the dictionaries that can detect more variation of radiological entities.
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The coverage is mainly impacted because of misspellings and the dictionaries lacking less common
phrase variations representing findings and anatomies. Some of such phrases include findings such
as gastric distention, gross formational abnormalities, low attenuation structure, signal gap, and
mesenteric stranding and anatomical locations such as portal vein, deep venous system, mediastinal
margin, cavernous carotid, and antecubital fossa. This also reflects the challenges involved in creating
more robust dictionaries as there are different and many possible ways of expressing radiological

entities and we leave this to future work.



Application of Rad-SpatialNet for Ischemic
Stroke Phenotyping

This chapter describes an ischemic stroke phenotyping application system that is developed

leveraging spatial information from radiology reports.

8.1 INTRODUCTION

Ischemic stroke (IS) accounts for around 87% of all strokes in the United States (Division for
Heart Disease and Stroke Prevention, 2020). Clinical trials and epidemiological studies targeted
toward investigating communication, cognitive, and emotional changes after stroke are interested in

analyzing specific subsets of patient records pertaining to certain characteristics of IS for treatment
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and prognosis research. Radiological findings documented in head computed tomography (CT)
and brain magnetic resonance imaging (MRI) reports provide important information to develop

IS phenotypes. Understanding and identifying various clinically important information from the
report text can facilitate in constructing fine-grained phenotypes. In this work, we propose to utilize
spatial information in the reports to construct IS phenotypes. We develop and evaluate a natural
language processing (NLP) pipeline for IS phenotyping by using spatial information extracted from
the reports. More specifically, we use the spatially-related imaging features and their brain locations
as well as the potential diagnoses information to classify the phenotypes.

Effects of stroke in a patient are dependent on the areas of the brain affected (Johns Hopkins
Medicine, 2022; Hui et al., 2020). Based on the side and the particular location of the stroke, different
body functions are impaired. For example, stroke in the right side of cerebral hemisphere results in
left-sided weakness or paralysis, visual, and spatial problems, stroke in the cerebellum manifests in a
different set of eftects such as ataxia, dizziness, nausea, and vomiting, whereas stroke located in the
brainstem results in problems associated with breathing, balance, and coma. Moreover, the effects
can be further specified based on the particular lobe of the cerebral hemisphere that is affected.

For example, sensation and spatial awareness are impacted with stroke in the parietal lobe whereas
language and memory are impaired with stroke in the temporal lobe. A previous work (Cheng
Bastian et al., 2014) has demonstrated that location of stroke infarct influences the functional
outcome following an ischemic stroke as measured by modified Rankin Scale, a commonly used
scale for rating stroke outcome in clinical trials. Further, a few studies (Shi et al., 2017; Price et al.,
2010) have focused on the brain locations affected by stroke for improving treatment of post-stroke
depression and predicting post-stroke language outcome. Therefore, categorizing imaging reports
according to stroke location—or in other words, constructing phenotypes incorporating the stroke
location—holds potential benefits for clinical research studies that focus on targeted treatment based

on the specific brain region affected.

132



Spatial information extraction output

Ph
Report sentence (per Rad-SpatialNet schema) enotype
-Right Brain sid.
There is slight edema with 0 generates - rain sie

effacement of sulci adjacent to the

large area of hypodensity in the
right frontal lobe.

. 3
Frontal | Brain
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Acute | Stroke stage
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diagnosis | Old lacunar infarct Lacunariy

Figure 8.1: Examples of stroke phenotypes using spatial relations from reports. Blue ovals contain

spatial triggers.

We construct the IS phenotypes by using the brain location information in the reports both
directly and indirectly. Direct use refers to including the side and the specific brain region affected
by stroke in the phenotypes. Indirect use of location includes deriving other crucial information
such as stroke stage based on the particular brain region a certain imaging feature is detected. Besides
these, we also use the IS-related potential diagnoses information directly in the phenotypes to extract
the stroke stage in cases when it is included as part of the diagnosis phrase (e.g., s#bacute stage in the
diagnosis phrase ‘subacute infarction’).

Consider the two examples shown in Figure 8.1 from head CT reports. The first sentence
captures information corresponding to mass effect like sulcal effacement along with imaging feature
such as cortical hypodensity that helps to indicate that an infarction is acute. The second sentence
detects an area of low attenuation in the left side of globus pallidus, part of basal ganglia. The sentence

also describes that this finding indicates that the infarct is lacunar and thus chronic. Therefore,
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for the first example, we see that spatial relations between imaging features and brain locations

(as indicated by phrases like ‘effacement of sulci’” and ‘hypodensity in the right frontal lobe’) encode
important radiological information that facilitates in determining the diagnosis (i.e., #nfarction)
and its stage (i.e., acute). Also, note that although acute is not mentioned explicitly in this sentence,
identifying the spatial relations help in inferring that the stroke is acute. Thus, spatial relations
present in imaging reports can directly be utilized for constructing stroke phenotypes containing
fine-grained location information along with additional derived information like stroke stage. We,
therefore, use our proposed spatial representation schema—Rad-SpatialNet (refer Section 3.2.1

in Chapter 3) to extract spatial information from reports which can subsequently be used for
extracting important IS phenotypes.

Prior studies have attempted to extract IS-related information from radiology reports. Wheater
et al. (2019) developed brain imaging phenotypes, however, these phenotypes lacked specificity in
the brain location information and were classified as only cortical or deep. Other works identified
reports with acute IS (Ong et al,, 2020; Kim et al., 2019) and silent brain infarcts (Fu et al., 2019).
However, these studies focused on limited information like classifying reports based on presence/absence
of IS, acuity, and middle cerebral artery (MCA) territory involvement. Alternatively, we aim to
construct specific stroke phenotypes containing more granular information for each stroke affected
brain area and this makes the task more complex compared to performing binary classification of the
reports. We illustrate the granularity and complexity of our phenotypes in Figure 8.2. Note that the
phenotypes consider information at the level of both side and region of the brain affected. Thus we
see the stage is acute for right cerebellar hemisphere and chronic for the left side.

Therefore, using spatial information from the reports forms an intuitive way to extract such
fine-grained information for constructing the phenotypes. We define the fine-grained stroke phenotypes
described above with input from radiology experts. For automatic labeling of the reports with

the relevant phenotypes, we first identify the spatial relations using a transformer-based model
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Sentences from a report

There is an acute infarction in the aspect of the right
cerebellar hemisphere. There are several small acute infarctions in the right
midbrain. Thereis encephalomalacia and gliosis in the left
cerebellar hemisphere.

$

Brain side Brain region Stroke stage Lacunarity
Right Cerebellar hemisphere Acute No
Left Cerebellar hemisphere Chronic No
Right Midbrain Acute No

Phenotypes containing brain region-specific information

Figure 8.2: Granular phenotypes considered in this work (shown for a sample report).

(BERT (Devlin et al., 2019)) for each report. We then apply rules based on domain knowledge
on the extracted spatial information to classify the phenotypes. Finally, we evaluate our system by
comparing the automatically generated phenotypes with the gold phenotypes for a set of head CT

and brain MRI reports. The main contributions of this chapter include:

* Classify fine-grained ischemic stroke phenotypes by applying simple domain rules on top of

spatial information extracted from neuroradiology reports.
* Phenotypes contain information targeted at the level of a specific side and region of the brain

affected.

8.2 DATASET

We select a set of 150 MIMIC reports (containing a mix of brain MRIs and head CTs) to
classify the ischemic stroke phenotypes. These 150 reports contain at least one of the ICD-9 ischemic

stroke-relacd diagnosis codes from 433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 434.01, 434.11,
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434.91, and 436. We refer to this phenotyping dataset as RAD-IS-P. To train our spatial information
extraction (IE) model, we use 400 MIMIC-III (Johnson et al,, 2016) radiology reports (consisting
of chest X-rays, brain MRIs, and babygrams) annotated following Rad-SpatialNet schema (refer
Section 3.2.1 in Chapter 3). Since we extract stroke phenotypes from both types of neuroradiology
reports, i.e. MRIs and CTs, we annotated a few (15) head CT reports following the same schema to
add to the training data for our spatial IE system. Thus, we use the combined set of 415 reports for

training the IE model. We refer to this dataset as RAD-SpATIAL-IE.

8.3 DATASET ANNOTATION

Each MRI and CT report is annotated with important IS features as validated by a practicing
radiologist. These features are identified based on both their clinical importance as well as taking
into account the types of information covered in Rad-SpatialNet schema. The pre-defined features

are described as follows:
1. Brain side - the laterality of the brain that is affected

2. Brain region - refers to the specific brain area affected due to reduced blood and oxygen
supply

3. Stroke stage - three main stages used to describe the CT manifestations of stroke: acute,
subacute, and chronic (as described in Birenbaum et al. (2011)). Additionally, some reports
document the stage information as acute/subacute, so we also consider acute/subacute

separately

4. Lacunarity - whether infarct is lacunar or not. Lacunar infarcts are usually small noncortical

infarcts (diameter of 0.2 to 15 mm) and are caused by occlusion of a small perforating artery



Table 8.1: Annotated phenotypes per brain region.

Brain region affected Frequency | Brain region affected Frequency
Cerebral hemisphere 26 Basal ganglia 38
Cerebral hemisphere - Frontal lobe 61 Thalamus 6
Cerebral hemisphere - Occipital lobe 30 Cerebral peduncle 2
Cerebral hemisphere - Parietal lobe 46 Internal/External capsule 8
Cerebral hemisphere - Temporal lobe 29 Corona radiata 4
Cerebellum 35 Insula 15
Brainstem 9 Watershed 4

Multiple combinations of these four features can be present in a report. In such cases, we
label each report with a maximum of five combinations of brain side, region, stroke stage, and
lacunarity. For the example in Figure 8.2, the resulting feature combinations used for annotating
the report are — 1. right, cerebellum, acute, not lacunar, 2. left, cerebellum, chronic, not lacunar,
and 3. right, brainstem (midbrain), acute, not lacunar. Another point to note is that if the stroke
stage is directly available as part of the spatial information extracted from the report, we use that
information to annotate the report, otherwise the stage annotation is determined based on certain
additional conditions/domain constraints applied over the extracted spatial information. For example,
in the sentence “There are several small acute infarctions in the right midbrain” in Figure 8.2, acute
was directly available as part of the Figure frame element acute infarctions identified in context to
the spatial trigger 7z. However, in the last sentence, the stage is annotated as chronic because of the
presence of terms like encephalomalacia and gliosis. Using this annotation scheme, the RAD-IS-P
dataset was annotated with the stroke phenotypes by a radiologist. A brief statistics of the brain

region-wise phenotype annotations are shown in Table 8.1.
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Figure 8.3: Pipeline for ischemic stroke (IS) phenotype classification. Dashed box indicates the

main contribution of this work. IE - information extraction.

8.3.1 PHENOTYPING METHOD

We use the output of a spatial information extraction (IE) system (information represented
following the Rad-SpatialNet schema) to classify the granular ischemic stroke phenotypes. A set of
simple domain rules are applied on the output of the IE system for classifying the phenotypes. An
overview of our approach is shown in Figure 8.3. We describe the sequential stages of our phenotype

extraction system in the following sections.

8.3.1.1 SPATIAL INFORMATION EXTRACTION

We use an existing BERT-based sequence labeling system for extracting the spatial information
from the reports (described in Section 4.1.2 in Chapter 4). This includes identifying the spatial
triggers in a sentence followed by identifying the associated frame elements for each extracted trigger.
Both spatial trigger and frame element extraction are framed as sequence labeling task. The frame
elements identified by the BERT system for each of the spatial triggers in a sample head CT report
sentence are illustrated in Figure 8.4. Specifically, in this work, we re-train the BERT-based frame
element extractor using the RAD-SPATIAL-IE data with updated annotation spans for a few frame

elements as described below.



Spatial trigger (lexical unit) Frame elements
Spatial Frame - 1

in Figure (areas of restricted diffusion)
Ground (vascular territory)
Hedge (suggesting)
Diagnosis (thromboembolic ischemic changes)

Spatial Frame - 2

of Figure (vascular territory)
Ground (right MCA)

Spatial Frame- 3

on Figure (hyperintense foct)
Ground (right occipital lobe, right basal ganglia)
Hedge (suggesting)
Diagnosis (thromboembolic ischemic changes)

Spatial Frame - 4
on Figure (hyperintense foct)

Ground (right temporal lobe)
Relative Position (distally)
Hedge (suggesting)
Diagnosis (thromboembolic ischemic changes)
Figure 8.4: Spatial frames extracted for a sample sentence—There are areas of restricted diffusion
in the vascular territory of the right MCA, also some scattered hyperintense foci noted on the right

occipital lobe, right basal ganglia and distally on the right temporal lobe suggesting thromboembolic

ischemic changes.

UprDATES TO RAD-SPATIALINET FOR GROUND AND DIAGNOSIS FRAME ELEMENTS Note
that for each anatomical location phrase labeled as Ground element in the Rad-SpatialNet schema,
the associated laterality terms such as ‘left’, ‘right’, and ‘bilateral’ were annotated as elements in
context to that anatomical radiological entity. Similarly, for some of the potential diagnoses labeled
as Diagnosis element, the associated temporal descriptors such as ‘acute’, ‘evolving’, and ‘chronic’
were also annotated as elements in context to the diagnosis radiological entity. Thus, the laterality
and the temporal descriptor terms were not part of the Ground and Diagnosis frame elements

respectively (in turn not directly connected to the spatial triggers) and thus were not identified by
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the spatial frame element extraction system. However, considering the need to capture laterality
and diagnosis temporality information for our phenotyping task, we updated the mention spans of
the Ground and Diagnosis elements in the sentences to support this work. Consider the following

examples:
1. Include the laterality of the anatomical location

Rad-SpatialNet — There is hypodensity in the left basal ganglia.
This chapter — There is hypodensity in the left basal ganglia.

2. Include laterality and location descriptor whose span falls in between a laterality phrase and

the anatomy phrase

Rad-SpatialNet — 4 small area of white matter hyperintensity in the right frontal

subcortical region.

This chapter — A small area of white matter byperintensity in the right frontal subcortical region.

3. Include the temporality of the potential diagnosis

Rad-SpatialNet — Hypoattenuation in the right frontoparietal distribution consistent

with acute infarction.

This chapter — Hypoattenuation in the right frontoparietal distribution consistent with

acute infarction.

In the first example we see that ‘/ef” has been included in the Ground element, and in the second
example both ‘7zght’ and ‘frontal’ are included in the Ground element span. In the third example,‘acute’
is included in the Diagnosis element span. The spatial trigger (lexical unit for a spatial frame) is 7’

for all the examples.
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8.3.1.2 AUTOMATIC IS PHENOTYPE EXTRACTION

For each report, we use rules on top of the output of the BERT-based element extractor to
automatically classify the phenotypes. We combine the spatial frames identified by the element
extractor at the report level. We also keep a track of all the spatial frames predicted by the BERT
extractor for each sentence in a sequential order (the order in which the spatial triggers appear in
a sentence). This helps to combine the frames when the Ground element associated to a trigger is
same as the Figure element of the next trigger. For example, in “acute infarction in the lateral aspect
of right cerebellum”, 1S-related finding (znfarction) is connected to the corresponding location (rzght
cerebellum) through the common frame element aspect of the two spatial frames with triggers % and
of appearing sequentially in the sentence.

For each spatial trigger identified in a sentence, the following steps are performed:

1. First, the spatial triggers and the frame elements relevant to ischemic stroke are filtered. For
this, we check if any of the Figure/Diagnosis element spans detected in relation to a trigger
is IS-related. If one of the pre-defined IS-related imaging finding keywords (as shown in the
first two rows of Table 8.2) is present in any of the element spans, the following steps are

performed.

2. For extracting the brain side, we check for the presence of any laterality-related term in the
predicted Ground element span (e.g., lef for left, and both, bilateral for bilateral). Additionally,
if the Ground elements are thalami and capsules, we assign the side as bilateral. In other
cases, unspecified is assigned. Moreover, in cases (e.g., infarction involving left frontal and
parietal lobes) when the same laterality is linked to multiple regions, each region is assigned
the laterality separately. Here, Jef? is assigned to both frontal and parietal lobes although left

does not appear in the Ground span parietal lobes.
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3. For identifying the brain region, the presence of any of the keywords developed for each of
the pre-defined brain areas are checked in the detected Ground element span (e.g., keywords
for mapping the brain region as ‘Basal ganglia’ are basal ganglia, caudate, candate nucleus,
candate head, caudate nucleus head, putamen, globus pallidus, and lentiform nucleus). These
keywords are built with domain expert input. Additionally, for Ground element spans
involving two lobes, we assign both the cerebral lobes (e.g., frontal and parietal lobes are

assigned for Ground element span — frontoparietal).

4. For identifying the stroke stage for each pair of brain region and side, two sequential steps are
involved. First, we check for the presence of any stage-related term directly in the predicted
Figure/Diagnosis element span. Since the term acute is also contained in subacute, we priortize
the search for subacute over acute. If not found, domain constraints are applied over the
predicted spatial frame elements (this step also takes into account the other spatial relationships
predicted in the same report in connection to the same brain region). If the stage is not

determined by these two steps, we assign the label — Can t determine.

5. Similarly, for identifying the lacunarity for each pair of brain region and side, we check for
the presence of lacunar-specific terms in the Figure/Diagnosis element span. We assign a

binary lacunarity label — Yes if lacunar and No otherwise.

The keywords developed for IS-related imaging findings as well as for identifying the stroke
stage and lacunarity from the frame element spans are shown in Table 8.2. These keywords as well
as the domain constraints for inferring the stage are developed in collaboration with the radiologist

who created the gold phenotypes. A few predominant constraints are demonstrated in Table 8.3.
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Table 8.2: Keywords for identifying IS finding, IS stage, and lacunarity from the frame element

spans to classify the phenotypes.

Item Keywords

IS-related imaging finding (CT) | hypodensity, hypodensities, hyperdensity, hyperdensities,
hypodense, hypoattenuation, hypo-attenuation, low attenuation,
low-attenuation, hypoattenuating, hypo-attenuating, low
attenuating, low-attenuating, decreased attenuation, lacune, infarct,

lesion
IS-related imaging finding (MRI) | restricted diffusion, slow diffusion, susceptibility artifact, signal,
infarct
IS stage - Subacute sub-acute, subacute, sub acute, evolving
IS stage - Acute acute
IS stage - Chronic encephalomalacia, gliosis, known, old, previous, prior
Lacunarity lacune, lacunar

Table 8.3: Domain constraints applied on BERT predicted spatial frame elements to determine

ischemic stroke stage.

Modality Acute Chronic
(hypodensity/hypoattenuation in cortical/subcortical region)
AND (hyperdense MCA OR hyperdensity in basilar artery OR (hypodensity/hypoattenuation in cortical/subcortical region
CT loss of gray-white matter differentiation OR sulcal effacement) | AND (prominence of ventricles/sulci OR atrophy)) OR gliosis/encephalomalacia
(slow diffusion/restricted diffusion in cortical/subcortical region) facilitated diffusion in cortical/subcortical region
MRI OR (loss of flow void in MCA/basilar artery) OR gliosis/encephalomalacia OR dilation of ventricles

8.4 EXPERIMENTAL SETTINGS AND EVALUATION

We use the BERTT prGE model for fine-tuning the spatial information extraction task by
initializing the model parameters obtained after pre-training BERT on MIMIC-III clinical notes
for 300, 000 steps (Si et al., 2019). For extracting the spatial triggers from the Rap-IS-P data, we use
the trained model from Table 4.4 described in Section 4.1.4 in Chapter 4. However, for extracting

the frame elements, we re-train the BERT-based element extractor on the RAD-SPATIAL-IE dataset
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using the updated gold spans of Ground and Diagnosis frame elements for capturing the laterality
and temporality information, respectively. We perform 10-fold cross-validation for evaluating the
performance of the element extractor model. For each of the 1o iterations, we split the reports

in RAD-SPATIAL-IE such that reports in 8 folds are used for training and 1 fold each are used for
validation and testing. The model is fine-tuned by setting the maximum sequence length at 128,
learning rate at 2¢ — S, and number of training epochs at 4. We use cased version of the models.
Among the 10 versions of the trained model checkpoints (generated for 10 folds of the dataset), we
select the version based on the highest Fr measure on the validation set to predict the spatial frame
elements from the RAD-IS-P data used for phenotype classification. Additionally, to provide a sense
of the performance of the spatial information extraction system on stroke-related reports (that are
more representative of the ones used for phenotyping), we annotated a random set of 20 reports
from the RaD-IS-P dataset according to the Rad-SpatialNet schema and evaluated the system’s
performance on these 20 reports. For our phenotyping task, we report the precision, recall, and F1
measures of the phenotype extraction system based on various meaningful subsets or combinations

of stroke features described in Section 8.3.

8.5 RESULTS

The average precision, recall, and F1 scores of extracting spatial triggers from the RAD-SPATIAL-
IE data are 86.14%, 79.55%, and 82.66, respectively. For the 20 stroke reports (selected from the
RAD-IS-P data), the precision, recall, and F1 values for spatial trigger extraction are 93.70%, 76.28%,
and 84.10, respectively. These predicted triggers are used further by the element extractor model
in the end-to-end evaluation (shown under the ‘Predicted spatial triggers’ column in Table 8.4).
Table 8.4 also highlights the average 10-fold CV performance measures of the BERT-based element

extractor using the gold spatial triggers. The frame elements Associated Process and Reason have
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Table 8.4: 10 fold CV results on RAD-SPATIAL-IE for BERT-based spatial frame element extraction

model using gold and predicted spatial triggers. P - Precision, R - Recall.

Main Frame Elements Gold spatial triggers Predicted spatial triggers

P(%) R(%) Fr P(%) R(%) Fx
FiGURE 81.39 84.26 82.77 | 67.53 71.08 69.14
GROUND 92.01 93.41 92.69 | 70.87 80.13 75.09
HEepGE 75.51 83.08 78.91 | 68.94 74.05 71.19
DiaGNosIs 54.73 78.41 64.06 | 48.49 67.67 55-95
RELATIVE POsiTION  87.47 81.01 83.54 | 60.13 66.35 62.17
DisTANCE 75.83 80.83 75.53 | 73.63 80.00 74.25
PosiTiON STATUS 68.59 66.20 66.97 | 61.42 64.45 61.55
OVERALL 82.60 85.31 83.92 | 66.95 73.17 69.81

very low performance scores as they occur very rarely in the whole dataset and also not used for
phenotyping. We additionally illustrate the overall precision, recall, and F1 measures (considering
all the spatial frame elements) of the frame element extractor on the 20 stroke report subset in Table
8.5.

The results of our phenotype extraction system are shown in Table 8.6. We calculate the performance
metrics of the system based on different combinations of the features (i.e., brain region, side, stroke
stage, and lacunarity) that are potentially useful for clinical research studies. The precision, recall,
and F1 values are calculated by comparing the distinct combinations of the features per report
identified by the system to those of the gold annotated ones. This gives an idea about how well
the system performs in classifying various subsets of meaningful features. Since stroke stage and
lacunarity are associated with a specific brain region and side pair, we report the performance of the
system including the stage and lacunarity features along with brain region and side in the last four
rows of the table. Note that for stroke stage, we show the results both by considering various stage

types and also by grouping the three stage types—acute, subacute, and acute/subacute together.
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Table 8.5: BERT-based spatial frame element extractor’s performance on 20 stroke reports (taken

from RaD-IS-P). P - Precision, R - Recall.

Spatial triggers used Overall P (%) OverallR (%) Overall Fx
Gold annotated triggers 72.80 80.87 76.62
Predicted triggers 65.71 73.48 69.38

Table 8.6: Phenotype extraction results. BR - brain region, CS - corresponding side, SS - stroke

stage, SS_CO - SS with coarse types (acute/chronic), LC - lacunarity.

Phenotype variant Example Precision(%) | Recall(%) | Fx

BR cerebellum 73.58 89.62 80.81
BR + CS cerebellum, left 68.34 85.47 75.95
BR +SS_CO cerebellum, chronic 55.53 82.0 66.22
BR +CS+SS_CO cerebellum, left, chronic 49.67 74.11 59.48
BR + CS + SS cerebral bemisphere - frontal lobe, bilateral, subacute 46.32 56.96 51.09
BR+CS+LC basal ganglia, bilateral, yes 62.53 77.2 69.09
BR + CS+SS_CO + LC | basal ganglia, bilateral, chronic, yes 48.59 72.49 58.18

8.6 DiscussioN

This work focuses on identifying complex ischemic stroke phenotypes mainly from the perspective
of the stroke location (brain region and side). We utilize the output of a spatial information extraction
(IE) system (developed in our previous work) and apply simple neuroradiology-specific rules to
classify these phenotypes. Note that the phenotypes we tackle in this work consider information
at the level of specific brain area that is affected by stroke. Thus, this involves identification of
information related to a stroke affected region in the brain from the report text. Our Rad-SpatialNet
schema allows for easy identification of such related information as this captures the spatial relations
between imaging findings and brain locations as well as the associated potential diagnoses. This
becomes even more useful when the same report contains infarcts of different stages in different
brain locations. Figure 8.2 illustrates an example where three different brain regions are affected and

the stroke stage varies according to the region and its laterality.
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We observe that applying simple domain rules that are mainly based on keyword search and a
small set of constraints over the output of the spatial IE system results in satisfactory performance
in classifying complex stroke phenotypes. This highlights both the information coverage of the Rad-
SpatialNet schema and the sufficiently promising performance of the spatial IE system. Another
point to note is that the information covered through Rad-SpatialNet are generic enough to extend
our phenotype classification approach to other types of diseases/conditions beyond neuroradiology
domains.

We briefly discuss the errors of the phenotype extraction system here. Most of the errors related
to missing the brain region (referring to the recall of 89.62% in Table 8.6) is because of the Ground
elements that are not predicted by the spatial IE system. There are also a very few cases where spatial
triggers are not present explicitly (e.g., left cerebellar infarct). The existing Rad-SpatialNet schema
doesnot capture such implicit relations and thus such regions are missed. Some of the errors related
to stroke stage classification (when all the stage types are considered) is due to the ambiguity involved
in distinguishing the acute and the subacute stages. Oftentimes, it becomes difficult to assess the
stroke timing based on the report content (one of the major reasons for low recall for BR + CS +
SS shown in Table 8.6). A small number of errors also occur when only acute and chronic stage
information is considered because the output of the spatial IE system sometimes missed the specific
stage-related term (e.g., evolving, chronic) in the predicted Diagnosis/Figure element span. Moreover,
the report does not contain other spatial relations to satisfy the domain constraints for stage inference.
Another reason of stage-related errors is when the stage information is mentioned in a following
sentence in the report that does not contain any spatial relations (e.g., ‘These lesions suggest old
infarction’). Lacunar-related errors happen mainly because their inferences sometimes depend on
the specific sizes mentioned in the sentence (e.g., lesion of 7 mm in diameter) that are currently not
captured in the Rad-SpatialNet schema. Taking into account a few limitations as described here

in the Rad-SpatialNet schema, we aim to emphasize that there are rare instances of such scenarios
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overall across reports and we intend to further incorporate these information in the Rad-SpatialNet
in our future work. We also see that the precision values are low, and one of the main reasons is that
many of the stroke locations are referenced multiple times in a report and are expressed difterently or
with varying levels of specificity. For example, left frontal lobe is mentioned in the report’s Findings
section, whereas Jeft MCA is mentioned in the Impressions section. This results in generating some
false positive brain regions (e.g., parietal and insula here) as MCA (middle cerebral artery) maps to
parts of frontal and parietal lobes as well as insula (the brain regions where MCA supplies blood to).
The performance of our phenotype extraction system reflects the challenging nature of this complex
phenotyping task and we aim to improve its performance and evaluate on an augmented dataset in a
later work.

However, the phenotyping results suggest that the Rad-SpatialNet schema that we used in
this work is robust enough considering the complexity of the phenotypes. We want to highlight
that the current Rad-SpatialNet schema can be leveraged further to classify more granular aspects
of the stroke location. Specifically, the RelativePosition frame element (e.g., superior, inferior) can
be used to classify the subregions of a brain region like cerebellum. For instance, in the sentences
of the same report—“New acute infarction involving the superior left cerebellar hemisphere” and
“Encephalomalacia and gliosis are again seen in the inferior left cerebellar hemisphere”, the stroke
stage is acute in case of left cerebellum (superior) and chronic for left cerebellum (inferior). Thus,
spatial information documented in the reports when extracted with detailed contextual information

facilitates the classification of fine-grained phenotypes.
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Application of Radiology Information for

Automated Tracking

This chapter describes a natural language processing system that tracks the same radiological

findings and the same medical devices across radiology reports of a patient over time.

9.1 INTRODUCTION

Radiology reports contain rich descriptions of clinically important findings and medical devices.
Oftentimes, these findings and devices are referred to multiple times in a single report and are also
referred to across different reports of a patient. Radiologists make such references in multiple reports

mainly to highlight any longitudinal changes of a particular finding (e.g., change in a tumor at
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Example: Patient 1 Example: Patient 2

Report #1 - 2197-04-25 04:08:00 Report #1 - 2111-12-14 19:25:00
IMPRESSION: FINDINGS:

Pulmor)ary has progressed There is an NG tube present with the
obscuring more focal areas of tip in the body of the stomach.
pulmonary contusion. cee 7

) 7

Report #2 - 2197-04-26 13:33:00
CHEST:

Perihilar present on the prior
chest x-ray is less.

Report #2 - 2111-12-15 14:31:00
FINDINGS:

Endotracheal tube terminates
approximately 5.5 cm above the level
of the carina.

Enteric tube terminates within the

IMPRESSI.ON: I - stomach.

Decrease in mediastinal widening

and perihilar tee 7
/ Report #3 - 2111-12-17 19:06:00

AP UPRIGHT CHEST:

Report #3 - 2197-04-27 06:01:00 NG tube tip cannot be identified.

FINDINGS:

Mild periilar is slightly ETT has been removed.

improved since prior study. 4
oo 7 Tracking of the same device 1,

Tracking of the same device 2

Figure 9.1: Examples of tracking the same finding (edema) and the same devices (NG tube and

Endotracheal tube) across multiple reports.

a certain location) and also to describe any interval changes in a device position (e.g., change in

the position of an endotracheal tube inserted in a patient with respect to an anatomical location).
Although extracting important information (e.g., findings, anatomical locations) from radiology
reports has been widely studied (Hassanpour & Langlotz, 20165 Steinkamp et al., 2019; Syeda-
Mahmood et al., 2020; Sugimoto et al,, 2021), tracking (or identifying the coreferences) of radiological
findings across reports is unexplored. Automated tracking of findings and devices across a patient’s
radiology reports holds potential to reduce physician burden in making patient-related decisions as
well as to facilitate various retrospective clinical research studies.

Tracking the same finding or device across reports is a challenging problem as it relies on radiology



domain knowledge and requires understanding the linguistic variations used by radiologists as
well as understanding both linguistic and domain-specific context across different reports. This is
illustrated through an example in Figure 9.1, where, for Patient 1, the peribilar edema described in
one of the subsequent reports of this patient is referencing to the pulmonary edema mentioned in
a previous report, and is again described through a difterent expression, peribilar haziness, in a later
report. Here, these three finding entities—pulmonary edema, peribilar edema, and peribilar haziness
are describing the progress of the same finding for this patient. Similarly, for Patient 2, NG tube
and Enteric tube are discussing the same device, whereas Endotracheal tube and ETT are describing
the change in the status of another device. Thus, we see that there is a strong reliance on domain
language knowledge and context information to identify the co-referring expressions of the same
findings or devices across reports.

In this chapter, we introduce an annotated dataset to track the same radiological findings
and medical devices across reports. We sample a total of 60 patients from the publicly available
MIMIC-III clinical database (Johnson et al., 2016), with an average of 10.6 reports per patient.
The reports include a variety of imaging modalities covering different human anatomies. Our
tracking dataset comprises of a total of 5872 mentions with 2292 mention chains. A chain here
represents all the mentions across reports of a patient that refer to the same finding or device entity.
We represent the tracking task with enough specificity to capture the clinical granularities that are
critical to treatment planning. For example, a fracture detected at the right frontal lobe of the skull
is different from a fracture detected at the left temporal lobe, and, therefore, these two fractures will
be placed in two different mention chains. More details are explained in the annotation guideline
(Sections 9.3.1 and 9.3.2). Instructions to access the annotated dataset are available at GitHub”*. We
employ two baseline methods—a rule-based system and a transformer language-based system, BERT

(Devlin et al., 2019), to automatically identify the cross-report coreferences. Finally, we evaluate the

*https://github.com/krobertslab/datasets/tree/master/rad-tracking
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performance of the systems using standard coreference metrics.

9.2 DATASET

We sample 60 patients from MIMIC-III for creating this annotated tracking dataset with a
total of 638 reports. The average number of reports per patient is 10.6, with the maximum being 33.
The reports consist of various imaging modalities including X-ray, computed tomography (CT), CT
angiography, magnetic resonance imaging (MRI), and ultrasound as well as different body organs
such as chest, head, neck, foot, hip, liver, and kidney. The five most frequent modality types are
chest X-ray, CT head, CT abdomen, CT C-spine, and abdomen X-ray. The average length of a
report in the collection is 244.7 tokens, with the highest being 1490 tokens. Our dataset includes
sufficient radiological linguistic variation as the reports belong to different imaging modalities
and describe the imaging interpretation of various anatomies. For annotation, 60 patients are
split among three annotators with medical background where each report is annotated by two

annotators. We are currently in the process of reconciling the annotations.

9.3 ANNOTATION PROCESS

We annotate the finding and medical device instances that refer to the same finding/device
across reports for a specific patient. Finding here refers to a radiographic finding described in a
report. This includes clinical findings (e.g., pneumonia) and imaging observations (e.g., enhancements
such as lesion and foci). Device refers to any medical device including tubes and catheters (e.g.,
endotracheal tube, central venous catheter). We use the Brat tool (Stenetorp et al., 2012b) for annotation.
The reports of a patient are sorted chronologically using the CHARTTIME attribute of the MIMIC
table. Since this is a patient-level annotation, we examine all the sequentially arranged reports for

a patient to identify the finding/device instances that correspond to the same finding/device. We

152



assign the same mention identifier to all the entities/mentions across reports that represent the

course of a specific finding or device.

9.3.1 IDENTIFY REFERENCES OF THE SAME FINDING

The course of a finding can be roughly represented as — (1) initial detection/diagnosis, (2)
improved, worsened, etc., and (3) no longer detected. We came up with the following general rules

to track a particular finding:

* Identify the first time a finding is detected

* Identify all the other references of the same finding in the subsequent reports highlighting
any change in the characteristics of a finding (e.g, a finding may become large, may improve

when compared to a previous study etc.)

* Identify all the references until the last report for a patient is reached or if the finding has

been resolved

In certain cases, the corresponding location information of a finding serves as a clue in identifying
the same reference of a finding across reports. Let us consider the following two examples for a

patient:

* Report 1: Questionable aneunrysm at right posterior communicating artery.

* Report 4: Small aneurysm of size 2.5 mm arises at the origin of posterior communicating

artery.

We see that both aneurysms in the two reports are referring to the same aneurysm and hence will be
assigned the same mention identifier (belong to the same mention chain). Note that the location
posterior communicating artery provides a clue that the aneurysms in these reports are discussing

about the same finding.
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The findings are tracked at the level of the exact anatomical location. This is described through

the following points:

1. If the same finding is detected at a different body location or has moved to a different location,
we assign different mention identifiers to these findings. For example, opacity in right lower
lobe is a difterent finding than an epacity in the left lower lobe. So different mention IDs

will be assigned to these two opacities and are hence part of two different mention chains.

2. We also differentiate findings based on the hierarchical structure of the anatomies. Thus,
a left frontotemporal fracture and a skull fracture are placed in two different mention

chains as the frontotemporal region is a sub-part of the skull.

3. We separate findings based on their laterality information. For example, left pleural effusion
and bilateral effusions are placed in different mention chains as bilateral indicates that the

effusion is also present on the right side.

4. Common finding terms such as normal and unremarkable are tracked separately based on
the anatomical location or the observation described. For example, the same finding zormal
is placed in separate mention chains corresponding to the two descriptions—‘The appendix is
normal.” and ‘Heart size normal.’, as the former is describing about appendix and the latter is

about heart size.
5. Again, if the same finding has re-appeared after a period, a different mention identifier is

assigned (e.g., tumor re-appearing after a few years).

9.3.2 IDENTIFY REFERENCES OF THE SAME DEVICE

Similarly, for tracking the medical devices across reports, the same mention identifier is assigned

to entities of a device that represent a specific device. The course can be represented as — (1) insertion,
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(2) device position status — normal/abnormal, and (3) removal. The following are general rules to

track a particular device:
* Identify the first time a device is inserted or placed

* Identify all the other references of the same device in the subsequent reports. This will
mainly include updates related to the previously inserted device (e.g., any change in its
location or update in the status of its position such as stable, good, satisfactory, unchanged,

etc.)

* Continue identifying all the references until the last report for a patient is reached or if the

device has been removed

If the same device is re-inserted after a period, we assign a different mention identifier to that
device since this indicates a new use of a device. Consider the following sentences from four different

reports:
* Report 1: Right If central venous catheter in place and the tip is in distal SVC.

* Report 2: Right énternal jugular central venous catheter in stable position and emanating

in middle SVC.
* Report 3: Right énternal jugular central venous line remains in position.
* Report 5: Right lzne is terminating in SVC.

Note that all the device mentions in these reports (indicated in bold) are the different variations that
are used to refer to the same device and all these mentions are annotated as part of the same mention

chain.
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9.3.3 CHALLENGES

The challenges involved in creating this dataset broadly fall under two categories — dependence
on context both within and across reports and extensive reliance on radiology domain knowledge.
Oftentimes, understanding the context is crucial in correctly annotating the same references of a
finding. Table 9.1 illustrates a scenario where contextual information documented in a long report
helps in identifying the coreferences of a finding — subarachnoid hemorrhage. For the first occurrence
of hemorrhage, note that linking the 7ight frontal location mentioned a few sentences above to
the expression—occupying the immediately subjacent sulci in the same sentence where hemorrhage
occurs indicates that the hemorrhage is associated with right side of the brain. Again, the second
occurrence of hemorrhage is associated with the left side as indicated by the location lefz frontotemporal
in the same sentence. And the third occurrence is associated with both sides (left and right). Thus,
these three instances of hemorrhage belong to three different mention coreference chains.

There is also a tremendous dependence on domain knowledge. Table 9.2 shows a few example
sentence pairs (same/across reports) where domain knowledge of difterent levels are required for
annotation. The first example is simple, where dissociation and disruption are synonymous terms
and can be easily identified as coreferences. The second pair is relatively difficult, requiring basic
clinical knowledge, with swelling and edema referring to the same finding entity. The third pair
is at a moderate difficulty level, where atelectasis and collapse belong to the same mention chain
and preumonia and consolidation belong to another mention chain. The fourth example requires a

deeper knowledge where vascular markings and interstitial edema refer to the same finding.

9.3.4 STATISTICS

Some basic statistics of our annotated dataset are shown in Table 9.3. We highlight the five

most frequent finding and device mentions in Table 9.4 (note that “¢7p” is a mention that is often
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Table 9.1: An example radiology report snippet illustrating the dependence of context for tracking
subarachnoid hemorrhage. Findings are in , anatomical locations are in ,and the

descriptions serving as cues to identify the same finding are bolded.

CT HEAD W/O CONTRAST

Findings:

The fracture is associated with a focal lentiform extra-axial hematoma
measuring roughly 8 mm in thickness and 3.5 cm in maximal transverse dimension.
This demonstrates a relatively low-attenuation portion, anteriorly, which may
represent acute, non-clotted blood.

This collection may be bounded by the coronal suture, and therefore lie in the
epidural space.

There is moderate subarachnoid occupying the immediately subjacent
sulci, which are slightly flattened, due to the mass effect of the hematoma.

No significant extra-axial hematoma is identified at the corresponding

fracture site, though there is subarachnoid in the sulci
in this region.
Impression:
Associated subarachnoid at sites described above, with possible small

associated right frontal and left frontotemporal contusions ......

documented while referring different medical devices). In terms of inter-annotator agreement, the
overall F1 agreement for annotating the mention spans (considering exact span match) is 0.55. The
disagreements are mainly related to selecting certain modifier terms describing a radiological findings
(e.g., selection of the span “free intraabdominal air” by one annotator and only “azr” by another).
For coreference resolution, we calculate the inter-annotator agreement using MUC and CoNLL Fr
metrics, and the values are 45.24 and 42.1, respectively.

We provide more insights about our annotated corpus through Figures 9.2, 9.3, and 9.4. Figure

9.2 illustrates the number of different reports that are included while annotating the mention
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Table 9.2: Examples denoting reliance on domain knowledge for annotation.

Difficulty

Example pairs

Simple (synonymous)

Some degree of as well as lateral displacement of
the ossicular chain; Complex fracture of the left temporal bone
with evidence of lateral displacement and of the left
ossicular chain

Simple (clinical

knowledge)

There is a left parietovertex soft tissue ;s There is
extensive left supra- and periorbital soft tissue

Moderate (clinical

knowledge)

There is new patchy opacity at the left lung base, which may

represent resolving postoperative with effusion,
but cannot be excluded; New retrocardiac
/ and bilateral effusions

Complex (clinical

knowledge)

There is mild prominence of the pulmonary

without overt evidence for failure; In the interval, there is
increased and small-moderate bilateral pleural
effusions.

chains. Each stack in a bar highlights the proportion of mention chains according to their lengths

(i.e., # mentions in a chain). It is interesting to note that there are more mention chains of length 2

where only a single report contains both the mentions than when the two mentions are present in

two different reports (represented in blue). Also, the number of chains of lengths 3 and 4 are the

highest when the chains contain mentions from only two reports.

We show the distribution of temporal distances (in weeks) between co-referring mentions in

two sequentially ordered reports of a patient in Figure 9.3. Overall, more radiological findings are co-

referred than medical devices in radiology reports. We observe that the majority of the coreferences

between two consecutive reports occurred within an interval of 2 weeks whereas the maximum

interval was found to be 2.15 years.

We also illustrate the overlap of imaging modalities of the reports in the annotated mention
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Table 9.3: Dataset statistics.

Item Count
Avg no. of reports per patient 10.6
Total reports 638
Avg no. of tokens per report 244.7
Min no. of mention chain per patient 8
Max no. of mention chain per patient 110
Total mention chains 2292
Total singleton mention chains 1102
Longest chain length 53
Avg chain length (excluding singletons) 4
Avg no. of tokens per mention 1.44
Total entities (radiological finding) 4978
Total entities (medical device) 894

chains using the UpSet visualization technique (Lex et al., 2014) in Figure 9.4. While a majority of
the mention chains contain mentions described in either only X-ray or CT reports, we do find the
inclusion of mentions described in multiple modalities. Among two-modality combinations, (X-ray,
CT), (CT, CTA), (CT, MR), and (CT, Ultrasound) are the most frequent co-occurring modalities.
Among three-modality combinations, (X-ray, CT, CTA) is the most frequent. We also see a very

small percent of mention chains spanning four modalities.

9.4 METHODS

We frame the tracking task as a cross document coreference resolution (CDCR) problem. We
apply two baseline methods for automatically identifying the coreferences of findings and devices
across all radiology reports of a patient. First is a simple string matching-based baseline, whereas in
the second we employ a BERT-based classification approach to predict the mention chains. Since

CDCR is our main focus, we use the gold mentions.
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Table 9.4: Top five frequent mentions in the dataset.

Finding Count Device Count
effusion 398  tip 144
pneumothorax 238  ngtube 103
fracture 229  endotracheal tube 101
opacity 180 chest tube 42
atelectasis 176 swan-ganz catheter 36

9.4.1 RULE-BASED

We perform sentence segmentation and word tokenization using NLTK. We combine all
entities or mentions at a patient level. Then all possible mention pairs are generated. If the lower-
cased version of the two mention strings in a pair match, we consider that these two mentions will

belong to the same chain. All these mention pairs are then combined to construct the chain.

9.4.2 BERT-BASED

In this approach, given a mention pair, we use BERT as a binary classifier to predict whether
the two mentions are coreferences. Specifically, we apply BERT in a sentence pair classification
setting where information about the two mentions are combined to form the input sequence. Later,
the output generated by BERT for all mention pairs corresponding to a patient is combined to

predict the final mention chains. We describe the details in the following sub-sections.

9.4.2.1 PRE-PROCESSING

First, we generate all possible mention pair combinations for each patient. We then generate
positive and negative pair instances for fine-tuning BERT using gold mention chain information.

Since there is imbalance in the number of positive and negative instances (negative instances being
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Figure 9.2: Coverage of reports in mention chains. The x-axis indicates the number of different
reports of a patient covered in a mention chain whereas the y-axis indicates the actual number of

mention chains.

25 times as many positive instances), we randomly sample negative instances such that there are
equal instances of positive and negative pairs.

While forming the input sequence to BERT, we provide additional contextual information
associated with the two mentions besides the mention spans. We incorporate anatomy and radiology
modifier information surrounding a mention span in the sequence. This is grounded on the point
that two finding mentions with the same name (e.g., fracture) are placed in separate chains based on
their different anatomical locations (e.g., skull vs hip) or different associated modifiers (e.g., right
vs left). For this, we leverage the Stanza python library (Qi et al., 2020) and use the clinical model

package for identifying the observation, anatomy, and their corresponding identifiers. Specifically,
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Figure 9.3: Time difference between two mentions annotated in two consecutive reports in a chain.

Fach bin denotes an interval of two weeks.

we apply the radiology named entity recognition (NER) model (Zhang et al., 202 1) that was trained
on radiology reports from three hospitals using a bi-directional LSTM character-level language

model. We feed in the pretokenized text generated from NLTK to the Stanza NER pipeline.

9.4.2.2 FINE-TUNING BERT

We fine-tune a BERTT pr g model to classify whether the two mentions in a pair are co-referring.
We initialize the model parameters obtained by pre-training BERT on MIMIC-III clinical notes (Si
etal., 2019). We frame our mention pair classification problem as a text pair classification task. First,
we use only the mention spans of the two mentions to construct the BERT input as: [CLS]m1[SEP]m2[SEP],

where 1 and m2 are the spans of the two mentions in a pair. Next, to provide additional information

162



5 3 8
© o o

Intersection size

N
o
o

OTHER [ ]
us o
T o

et

Figure 9.4: Distribution of imaging modalities in mention chains. XR - X-ray, CT - Computed

o
L

II.--
9 3 3

T
1000 0

Tomography, MR - Magnetic Resonance, CTA - CT Angiography, US - Ultrasound, OTHER -

other modalities.

to the BERT model about both the mentions in a pair, we encode the anatomies as well as the
anatomy and observation modifiers predicted by Stanza in the sentences containing the mentions.
Following the standard BERT input format used in text pair classification configuration, we separate
the information corresponding to the two mentions using the special [SEP] token, where anatomy
and modifier information of each mention are delimited by a comma. Specifically, we include the
Stanza-generated anatomy and modifiers in the left and right of a mention with an window size
5 in the order they appear in a sentence. We construct the BERT input sequence as follows for a
mention pair:

[CLS]m1, anty(ml), ...anty,(ml), mod(ml), ..mod,(m1)[SEP]m2, anty,(m2), ...anty,(m2),
mod(m2), ...mod,(m2)[SEP]
Here, anty,(m1) refers to all the anatomy terms surrounding mention 1. Similarly, mod,(m2)
refers to all the modifier terms surrounding mention 722.

The output corresponding to the [CLS] token is used to classify if the two mentions are co-
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referring. The BERT classifier output is then processed to generate the mention chains. All the
pairs for which BERT predicted as coreference positive are merged to form the coreference chains.

Further, the predicted chain information is converted to CoNLL format for evaluation.

9.5 EvaLuaTionN

We evaluate the methods using gold mentions. We perform 5-fold cross validation to evaluate
the performance of the BERT-based approach for CDCR. For each of the 5 iterations, our dataset
of 60 patients are split into training, validation, and test sets in the ratio of 60, 20, and 20 %, respectively.
The BERT classifier is applied to all possible mention pairs in the test sets. We report the results
using the CR evaluation metrics-MUC, B3, CEAF., the average F1 of these metrics i.e., CONLL
F1,and BLANC. MUC (Vilain et al., 1995) is a link-based evaluation metric that is based on the
minimum number of coreference links required to translate from gold to predicted mention chains.
B3 (Bagga & Baldwin, 1998) is a mention-based metric where the evaluation uses the recall or precision
of the individual mentions. For each mention in the gold chains, B3 recall considers the fraction
of the correct mentions that are included in the predicted chain containing that mention. The
main assumption of CEAF (Luo, 2005) is that each gold chain should be mapped to only one
response chain, and vice versa. BLANC (Recasens & Hovy, 2011; Luo et al,, 2014) is another link-
based metric where the recall and precision are calculated by averaging the recall and precision of
coreference and non-coreference links.

We use the BERTT arGE cased model to classify the mention pairs. The model is pre-trained on
MIMIC-III notes for 320K steps. We set the maximum sequence length at 128, learning rate at 2¢-5,

and the number of training epochs at 4.
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Table 9.5: 5-fold CV results of BERTT ar g models for classifying if two mentions in a pair are

coreferring. P - Precision, R - Recall, Acc - Accuracy.

Model P(%) R(%) Fr Acc
Mentions 44.83 85.89 5891 95.53
+ Context 52.76 86.3 65.49 96.61

9.6 RESULTS

We show the results of our BERT classification models in Table 9.5. We illustrate a few sample
errors of the BERT classifiers in Table 9.6. In most of the false positive cases, we observe that the
mention strings are the same and better learning of more broad context is required. The false negative
errors indicate the need to incorporate more domain-specific knowledge. We then use the output of
the BERT models to perform coreference resolution across reports. The cross-report coreference
resolution results of the string matching baseline as well as both the BERT variants are in Table 9.7.
We use the gold mention spans in this evaluation. Although the BERT classifier that uses context
performs better than the one that uses only mention spans (as per the performance measures in
Table 9.5), we see that the CDCR performance of the latter is better for all metrics. We also observe
that the recall values of MUC, B, and BLANC are higher for the BERT (mentions) model than the

string-matching method that has better precision values (the case is reverse for CEAF,).

9.7 DiscussioN

We create an annotated cross-document coreference resolution (CDCR) dataset in the radiology

domain to track the same radiological findings and medical devices across all reports of a patient
and apply BERT-based baseline method to perform CDCR. The task of CDCR is relatively under-

explored in the clinical domain, and in this work we propose a sufficiently large dataset with an
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Table 9.6: Common error types of BERT classification models. FP - False Positive, FN - False

Negative.
Mention .
pairs Corresponding sentences Category Reason
Report-s Compared with prior radiograph,
an NG tube has been withdrawn and there is
NG tube; significant dilatation of the colon lying just .
NG tube below the right hemidiaphragm; Report-10 FP giroilcti:;f i:?edegrtzgc(tng
An NG tube terminates with its tip in the bl ianeport-.sg.’
stomach indicates that the NG tube in
Report-3 The grayscale ultrasound of the Report-10 is different from the
veins of the upper extremities demonstrated ﬁrslt)one) Sufficient contextual
thrombus; filling defect in the right cephalic vein at i formation s not incorporated
thrombus the level of the antecubital fossa consistent . h del p
with thrombus; Report-13 No intraluminal Into the models
thrombus is identified
Report-1 There is increased retrocardiac
density, consistent with left lower lobe
collapse; collapse and/or consolidation; Report-20 More domain knowledee
atelectases There is cardiomegaly with azelectases in the FN derstandine i . & dt
left upper lobe as well as atelectasis in the left ll,m crstanding 1s requlr'e ©
lower lobe. ink the correlated findings
Report-1 There is no intraparenchymal
hemorrhage;  hemorrbage identified; Report-6 There is a
hematoma small left frontal subdural hematoma, slightly

larger than prior CT studies

average of 10.6 reports per patient (compared to previous 3 notes per patient in Wright-Bettner et al.

(2019)). Additionally, this is the first CDCR dataset in radiology.

The results in Tables 9.5 and 9.7 indicate that there is enough scope for performance improvement.

A brief analysis of the output from the BERT classifiers suggests that incorporating rich radiology-

specific domain knowledge will be useful in improving CDCR systems. For example, there is potential

in encoding knowledge about relations between different human anatomies, knowledge about

clinical correlation between various radiological findings (e.g., ‘consolidation’ and ‘pneumonia’),

and information about findings that are more often coreferred across different imaging modalities.

Another promising avenue is allowing the model to learn more broad cross-report context (e.g.,
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Table 9.7: CDCR performances. Precision - P %, Recall - R %. 5-fold cross validation results are
reported for BERT models.

MUC B’ CEAF, CoNLL BLANC
Methods
P R F1 P R F1 P R F1 F1 P R F1
String match 80.18 70.36 74.95 8352 70.75 76.6 61.88 76.46 68.4 73.32 78.52 71.6 74.44
BERT (mentions) 6856 9531 79.65 40.84 86.57 55.23 76.53 23.46 35.84 56.91 53.39 77.18 50.29

BERT (mentions + context) 67.46 92.58 77.87 3272 857 46.48 7612 18.97 29.99 S145 49.79 67.92 39.13

by leveraging certain language patterns in the reports suggesting any potential coreference such as
‘compared to previous study’). We also intend to investigate the impact of BERT classifier output
on the various CDCR evaluation metrics in detail.

An interesting method to explore for CDCR model development using this annotated dataset
is by adopting the recently proposed cross-document language modeling technique that uses a
new pre-training approach that has shown to be eftective for several multi-document downstream
tasks including CDCR and multihop question answering (Cattan et al., 2021a). The pre-training
technique considers two main ideas: pre-training over sets of multiple related documents and usage
of dynamic global attention pattern over masked tokens. This pre-training approach can be used
to develop a CDCR system similar to the CDCR pairwise scoring framework proposed in a recent
work (Caciularu et al,, 2021). Here, we can feed the whole radiology reports corresponding to the
two mentions in a pair into the CDLM rather than feeding only the local context of the mentions
(e.g., surrounding words of a mention). Future work can focus on building an end-to-end CDCR
system where the predicted mention spans are used to infer the mention chains instead of the gold
mentions, although this relies on a robust extraction system to identify the radiological entities
accurately (which is oftentimes challenged by the presence of different modifier terms described
in conjunction with the main finding terms). From the clinical application perspective, this dataset

can be extended to cancer domain that demands long-term tracking of findings (e.g., tumor, cyst).
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Conclusion

This dissertation has ranged from representing detailed spatial information in radiology reports
to building natural language processing methods for automatic identification of such information,
and applying this extracted information for important clinical use cases. This concluding chapter

summarizes the key findings and lays out the limitations and future work of these studies as a whole.

10.1 KEyYy FINDINGS

Our proposed spatial representation frameworks capture different spatial information of
clinical importance in radiology reports. The basic schema, Rad-SpRL, captures four important
spatial roles in the context of a spatial indicator (that denotes the presence of a spatial relation between

clinical findings and body locations) including probable diagnoses. The advanced schema, Rad-
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SpatialNet, captures a wider variety of spatial and contextual information such as the relative position
of a finding with respect to a location and the size of a finding.

We employed transformer language models based on both sequence labeling and question
answering for extracting the spatial information. For Rad-SpRL, the sequence labeling models
based on BERT and XLNet achieve satisfactory performance with the highest average F1 measure
of 91.29 for extracting the indicators and 85.7, 89.3,79.0, and 78.6 for identifying TRAJECTOR,
LANDMARK, D1aGNos1s, and HEDGE roles, respectively using the predicted INDICATORs. For
Rad-SpatialNet, the performance of BERT-based sequence labeling models is decent, with F1 of
77.89 for spatial trigger extraction and an overall F1 of 81.61 and 66.25 across all frame elements
using gold and predicted spatial triggers, respectively. We also frame the problem of extracting fine-
grained radiology spatial information (annotated as per Rad-SpatialNet representation) as two-turn
question answering (QA). This approach outperforms traditional transformer-based sequence
labeling in extracting both spatial triggers and their corresponding spatial frame elements. The
average F1 score for identifying spatial triggers is 90.07 and the average F1 scores for identitying
important frame elements like Figure and Ground are 78.13 and 83.77, respectively. Here we see
promising improvements of 12, 13, and 12 points in the average F1 scores for identifying the spatial
triggers, Figure, and Ground frame elements, respectively when compared to a traditional sequence
tagging method. This demonstrates the advantages that QA provides over sequence labeling for
information extraction (IE). This is the first work to employ a multi-turn QA approach for granular
IE both in the radiology as well as spatial IE domains.

Second, after text is extracted from radiology reports it needs to be grounded in formal terminologies
or ontologies to support reasoning. Our findings here include a system that mapped radiology
concepts to RadLex. We constructed a manually annotated normalization corpus in the domain of
radiology and this is the first attempt to normalize diverse radiological entities to RadLex concepts.

We proposed two BERT-based models where we configured BERT for the normalization task as a
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re-ranker as well as a span detector. We obtain satisfactory results by fine-tuning the BERT models
on our annotated dataset with the span detector model achieving an accuracy of 78.44% in cross
validation.

Next, in order to alleviate the reliance on human annotations for creating training data, we
proposed a weak supervision approach to automatically create radiology training data for spatial
IE. This is based on data programming that uses rules (or labeling functions) relying on domain-
specific dictionaries and radiology language characteristics to generate weak labels. These weak
labels were then used to fine-tune a pre-trained BERT model. Our weakly supervised BERT model
provide satisfactory results in extracting spatial relations without using any manual annotations for
training (spatial trigger F1: 72.89, relation F1: 52.47). To our knowledge, this is the first work to
automatically create detailed weak labels corresponding to crucial radiological information. Our
data programming approach is 1) adaptable as the labeling functions can be updated with relatively
little manual effort to incorporate more variations in radiology language reporting formats and 2.)
generalizable as these functions can be applied across multiple radiology sub-domains in most cases.
We demonstrate that a weakly supervised model performs sufficiently well in identifying a variety of
relations from radiology text without manual annotations, while exceeding state-of-the-art results
when annotated data is available.

Finally, we use the clincial information extracted from the reports to develop phenotyping and
tracking applications. First, we use the output of our spatial IE system based on Rad-SpatialNet to
classify complex ischemic stroke phenotypes. We demonstrate that a generalizable and fine-grained
representation schema like Rad-SpatialNet could be utilized for determining detailed phenotypes
that often requires information about various related radiological entities (such as findings, brain
locations, and diagnoses). Our phenotypes are based on specific brain regions affected by stroke.
We show that satisfactory results can be achieved by applying simple domain rules on top of the

IE system’s output to classify the phenotypes. Second, we develop an automated tracking system

170



that can track the same radiological findings and medical devices across multiple reports of a patient

over time. For this, we constructed a manually annotated cross-document coreference resolution

(CDCR) dataset. We applied two baseline methods to automatically identify the cross-report coreferences.
The performance of these methods are low to moderate, highlighting the challenging nature of this

task and our dataset.

10.2 LIMITATIONS AND FUTURE WORK

The task of relation extraction can be broken down broadly into three categories - easy, medium,
and hard based on its difficulty level. Our work for spatial IE covers the intra-sentence relations
that fall into the medium category. The easy category includes intra-noun phrase relations (e.g.,
‘lung cancer’) which are already captured to some extent in existing ontologies such as Unified
Medical Language System (UMLS). We do not cover such relations in the Rad-SpatialNet schema,
but included these cases when we extended the schema to the ophthalmology domain. The hard
category consists of inter-sentence relations, which is not covered in this work. Let’s consider the

following example:
There is profoundly reduced blood flow in the temporal lobe. This finding suggests infarction.

Here we see that the potential diagnosis ‘infarction’ is documented in a sentence that follows the
sentence containing the spatial relation between ‘reduced blood flow’ and ‘temporal lobe’. This is a
relatively hard NLP problem and forms an interesting direction for future research.

More complex scenarios where two spatial relations are spatially related can also be handled in

the future. Let’s take the example below:
There is effacement of sulci adjacent to the hypodensity in subcortical region.

Here, ‘adjacent to’ is a spatial expression that connects two spatial relations—‘effacement of sulci’

and ‘ hypodensity in subcortical region’. Oftentimes, the same radiological findings are mentioned
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multiple times in the same report, e.g., once in the ‘Findings’ section and again in the ‘Impressions/Conclusions’
section. We do not map or link these same entities as part of Rad-SpatialNet. This can also be
included in the future.

We notice that one of the main reasons behind the low performance of our information extraction
methods for identifying some frame elements (e.g., Reason, Density descriptor, etc.) is that those
elements exist very infrequently in our annotated dataset. More instances of these frame elements
can be annotated in the future. Rad-SpatialNet also holds potential to extend to other domains
like pathology that could aim to extract spatial information from pathology reports. There is also
aneed to evaluate the generalizability of our proposed sequence labeling and question answering-
based extraction methods on multi-institutional datasets and also across reports belonging to other
imaging modalities (e.g., ultrasound, computed tomography angiography, etc.).

For the downstream applications, there is a scope for developing various disease-specific phenotyping
applications. For example, the spatial information from the radiology reports could potentially be
used to classify important phenotypes for Alzheimer’s disease. For instance, if certain radiological
findings like ‘volume loss’ is present in the ‘precuneus’ part of ‘medial parietal lobe’, this would
imply that the Alzheimer’s disease is at its early stage. Thus important phenotypes based on disease
stage could be classified using the spatial information from the reports. The fine-grained spatial
information extracted by our proposed methods could also serve as fine-grained labels for the corresponding
medical images. These labels can be used to train deep image classification models in the future. For
automated tracking of radiological findings, our constructed annotated dataset can be augmented
with more cancer-specific findings that demand long-term tracking and, therefore, could be leveraged
for longitudinal tracking of cancer or tumor-related findings. Another potential research avenue is
to develop more advanced tracking methods that can incorporate more domain knowledge understanding

and broad cross-report context understanding.
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Table A.x1: Heuristics used in the labeling functions to identify the spatial frame elements. FE -

Frame Element. LF - Labeling Function. RADENT - Radiological Entity. SPTRG - Spatial Trigger.

Spatial FE Heuristics

Figure (LF 1) anatomies to ignore = [szde, region, portion, part, territory, fmgment, margin,

site, aspect, division, area, branch);

anatomy related terms = all anatomies - anatomies to ignore

RADENT is neither relative position nor position status nor hedge AND

* IF SPTRG is any of [with|without|show(s)|demonstrate(s)|is|are|reveal(s)]
AND RADENT lies to the right of SPTRG AND RADENT is finding

* ELSEIF RADENT lies to the left of SPTRG AND any of [with tip|with its
tip|with the tip] does not follow RADENT AND any of [¢ip of |tip of the]

does not precede RADENT AND

* IF no preposition-containing hedge term between SPTRG and
RADENT AND the other trigger term between SPTRG and

RADENT is 9f” AND RADENT is %p’

* ELSEIF no preposition-containing hedge term between SPTRG
and RADENT AND no additional spatial trigger between SPTRG

and RADENT AND RADENT is not an anatomy-related term

* ELSE IF o word in between SPTRG and RADENT AND RADENT

is not an anatomy-related term
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Figure (LF 2)

* RADENT lies to the left of SPTRG AND RADENT belongs to acronyms

dictionary

Figure (LF 3)

specific terms = [collapsed, engorged, widened, calcified, unfolded, occluded,
prominent, inflated, bypoinflated, byperinflated, aerated, hyperaerated,

hypoaerated, narrowed]

* RADENT lies to the right of SP°TRG AND SPTRG is any of [4s|are] AND

RADENT belongs to specific terms list

Ground (LF 1)

* SPTRG is any of [with|without|show(s)|demonstrate(s)|is|are|reveal(s)]

AND RADENT lies directly adjacent to the left of the SPTrG

* For other SPTRGs, RADENT lies to the right of SPTRG AND there is 0-2

words in between SPTRG and RADENT AND RADENT is anatomy

Ground (LF 2)

RADENT lies to the right of SPTRG AND
* oword in between SP°TRG and RADENT AND RADENT is anatomy
* For greater than o word in between SPTRG and RADENT, no other trigger

in between AND RADENT is anatomy
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Ground (LF 3)

Regular expressions used for matching specific anatomy patterns:

anatomy with segment = “[A-Z] [o-9]{1,2}[\-|\/1[A-ZJ?[o-9]{1,2}”

anatomy with segment without hyphen = “[A-Z][0-9]{1,2}”

anatomy segment body = “[A-Z][o-9]{1}\s{1.}body”

RADENT lies to the right of SPTRG AND

* oword in between SPTRG and RADENT AND RADENT matches any of
the three anatomy patterns

* For greater than o word in between SPTRG and RADENT, no other trigger

in between AND RADENT matches any of the three anatomy patterns

Ground (LF 4)

specific diseases = [bmd, hyaline membrane disease, ards, acute respiratory

distress syndrome, rds, respiratory distress syndrome)

* RADENT lies to the right of SP°TRG AND RADENT belongs to acronyms

dictionary except for the terms in specific diseases list

Diagnosis (LF 1)

RADENT is finding AND text span to the right of RADENT is ©.” AND
* IF preposition-containing hedge term between SPTRG and RADENT
* ELSEIF a hedge term present to the left of the RADENT with window

length 4 and no additional spatial trigger between SPTRG and RADENT
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Diagnosis (LF 2)

left window = [represent, suggest, indicat, consistent with];

right window = [ruled out, excluded, vs, versus)

* any item in left window list present to the left of RADENT with window
length 4 AND RADENT is finding

* any item in right window list present to the right of RADENT with

window length 4 AND RADENT is finding

Diagnosis (LF 3)

specific diseases = [bmd, hyaline membrane disease, ards, acute respiratory

distress syndrome, rds, respiratory distress syndrome)

* RADENT lies to the right of SP°TRG AND RADENT belongs to specific

diseases list AND text span to the right of RADENT is ¢’

Diagnosis (LF 4)

* RADENT lies to the right of SPTRG AND no additional spatial trigger or

hedge term to the right of RADENT AND RADENT is finding

Diagnosis (LF s)

RADENT lies to the right of SPTRG AND RADENT is finding
* IF preposition-containing hedge term between SPTRG and RADENT
* ELSEIF a hedge term present between SPTRG and RADENT and no

additional spatial trigger between SPTRG and RADENT

Hedge (LF 1)

* RADENT lies to the right of SPTRG AND RADENT is a hedging-related

term AND a finding term is present to the right of the RADENT
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Hedge (LF 2)

RADENT lies to the left of SP’TRG AND RADENT is a hedging-related term
AND
* oword in between SPTRG and RADENT OR a finding term is present

between SPTRG and RADENT

Distance (LF 1)

device related = [tube, catheter, ett, tip, port, lead, device, drain, screw)
Regular expressions used for matching distance-related entities:

distance first pattern = (\d+\.( )2\ d+[\d-+( )2\ \d+|\\d+[\d+) *([\-
](mm|cm|millimeter(s)?|centimeter(s)?)(?![a-z/]));

distance second pattern = (\d+\.( )2\ d+|\d-+()2\.\d+|\\d+[\d+) *(\-?
*(mm|cm|millimeter(s)?|centimeter(s)?)(?! [a-z/]));

distance third pattern = \b(few|some)\b\s{1,}\b(mm|mms|millimeter|

millimeters|cm|cms|centimeter|centimeters)\b

* any of the terms in device related list is present in the sentence containing

RADENT AND RADENT matches any of the three distance patterns

Position Status

(LF 1)

device related = [tube, catheter, ett, tip, port, lead, device, drain, screw)

* RADENT is a position status-related term AND any of the terms in device

related list is present in the sentence containing RADENT

Relative Position

(LF 1)

* RADENT is a relative position-related term AND the next or preceding

word of RADENT is contained in any of the terms in anatomies dictionary
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LF
Reason (LF 1) * RADENT is finding AND any reason associated hedge term is present to

the left of RADENT with window length 4

Associated Process * oword in between SPTRG and RADENT AND RADENT is an associated

(LF 1) process-related term

* For greater than o word in between SPTRG and RADENT, no other trigger

in between AND RADENT is an associated process-related term

179



References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M, et al. (2016). Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Alex, B., Grover, C., Tobin, R., Sudlow, C., Mair, G., & Whiteley, W. (2019). Text mining brain

imaging reports. Journal of Biomedical Semantics, 10(1), 23.

Annarumma, M., Withey, S. J., Bakewell, R. J., Pesce, E., Goh, V., & Montana, G. (2019).
Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks.

Radiology, 291(1), 196—202.

Apostolova, E., Tomuro, N., Mongkolwat, P., & Demner-Fushman, D. (2012). Domain
Adaptation of Coreference Resolution for Radiology Reports. In BioNLP: Proceedings

of the 2012 Workshop on Biomedical Natural Language Processing (pp. 118-121).

Aronson, A. R. & Lang, F.-M. (2010). An overview of MetaMap: historical perspective and recent

advances. Journal of the American Medical Informatics Association, 17(3), 229-236.

Badene, S., Thompson, K., Lorré, J.-P., & Asher, N. (2019). Data Programming for Learning

Discourse Structure. In Proceedings of the 5 7th Annual Meeting of the Association for

180



Computational Linguistics (pp. 640—645).

Bagga, A. & Baldwin, B. (1998). Algorithms for Scoring Coreference Chains. In Iz The First
International Conference on Language Resources and Evaluation Workshop on Linguistics

Coreference (pp. 563—566).

Baker, C. F. (2014). FrameNet: A Knowledge Base for Natural Language Processing. In

Proceedings ofFrame Semantics in NLP: A Workshop in Honor of Chuck Fillmore, number
1968 (pp. 1-5).
Banerjee, I, Li, K., Seneviratne, M., Ferrari, M., Seto, T., Brooks, J. D., Rubin, D. L., &

Hernandez-Boussard, T. (2019). Weakly supervised natural language processing for

assessing patient-centered outcome following prostate cancer treatment. JAMIA Open,

2(1), 150-159.

Banerjee, P., Pal, K. K., Devarakonda, M., & Baral, C. (2020). Knowledge Guided Named Entity

Recognition for BioMedical Text. arXiv:1911.03869 [cs].

Barhom, S., Shwartz, V., Eirew, A., Bugert, M., Reimers, N., & Dagan, I. (2019). Revisiting Joint
Modeling of Cross-document Entity and Event Coreference Resolution. In Proceedings of

the 5 7th Annual Meeting of the Association for Computational Linguistics (pp. 4179-4189).

Bastianelli, E., Croce, D., Basili, R., & Nardi, D. (2013). UNITOR-HMM-TXK: Structured

Kernel-based learning for Spatial Role Labeling. In Second joint Conference on Lexical

181



and Computational Semantics ("SEM), Volume 2: Proceedings of the Seventh International

Waorkshop on Semantic Evaluation (SemEval z013) (pp. 573-579).

Baughman, D. M., Su, G. L., Tsui, I, Lee, C. S., & Lee, A. Y. (2017). Validation of the Total Visual
Acuity Extraction Algorithm (TOVA) for Automated Extraction of Visual Acuity Data
From Free Text, Unstructured Clinical Records. Translational Vision Science € Technology,

6(2), 2.

Birchall, D. (2015). Spatial ability in radiologists: A necessary prerequisite? British Journal of

Radiology, 88(1049), 6-8.

Birenbaum, D., Bancroft, L. W., & Felsberg, G. J. (2011). Imaging in Acute Stroke. Western

Journal of Emergency Medicine, 12(1), 67-76.

Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical

terminology. Nucleic Acids Res, 32(Database issue), D267-D270.

Bozkurt, S., Alkim, E., Banerjee, I., & Rubin, D. L. (2019).  Automated Detection of
Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural

Language Processing Algorithm. Journal of Digital Imaging, 32(4), s44—553.

Bradshaw, T., Weisman, A., Perlman, S., & Cho, S. (2020). Automatic image classification using
labels from radiology text reports: Predicting Deauville scores. Journal of Nuclear Medicine,

61(supplement 1), 1410-1410.

182



Brady, A. P, Bello, J. A., Derchi, L. E., Fuchsjiger, M., Goergen, S., Krestin, G. P., Lee, E. J. Y.,
Levin, D. C., Pressacco, J., Rao, V. M., Slavotinek, J., Visser, J. J., Walker, R. E. A., & Brink,
J. A.(2021). Radiology in the Era of Value-based Healthcare: A Multi-Society Expert

Statement from the ACR, CAR, ESR, IS3R, RANZCR, and RSNA. Radiology, 298(3),

486-491.

Brown, E. G., Wood, L., & Wood, S. (1999). The Medical Dictionary for Regulatory Activities

(MedDRA). Drug-Safety, 20(2), 109-117.

Bugert, M., Reimers, N., & Gurevych, I. (2021).  Generalizing Cross-Document Event

Coreference Resolution Across Multiple Corpora. arXiv:2011.12249 [cs].

Bustos, A., Pertusa, A, Salinas, J.-M., & de la Iglesia-Vay4, M. (2019). PadChest: A large chest

x-ray image dataset with multi-label annotated reports. a7Xiv preprint arXiv:rgor.07441.

Caciularu, A., Cohan, A., Beltagy, L., Peters, M., Cattan, A., & Dagan, L. (2021). CDLM:
Cross-Document Language Modeling. In Findings of the Association for Computational

Linguistics: EMNLP 2021 (pp. 2648-2662).

Callahan, A., Fries, J. A., Ré, C., Huddleston, J. I, Giori, N. J., Delp, S., & Shah, N. H. (2019).

Medical device surveillance with electronic health records. npj Digital Medicine, 2(1),

183



Candemir, S., Rajaraman, S., Thoma, G., & Antani, S. (2018). Deep learning for grading
cardiomegaly severity in chest x-rays: An investigation. In /EEE Life Sciences Conference

(LSC) (pp. 109-113).: IEEE.

Cattan, A., Eirew, A., Stanovsky, G., Joshi, M., & Dagan, I. (2021a). Cross-document Coreference
Resolution over Predicted Mentions. In Findings of the Association for Computational

Linguistics: ACL-IJCNLP 2021 (pp. 5100—5107).

Cattan, A., Eirew, A., Stanovsky, G., Joshi, M., & Dagan, I. (2021b). Realistic Evaluation
Principles for Cross-document Coreference Resolution. In Proceedings of *SEM z021:

The Tenth Joint Conference on Lexical and Computational Semantics (pp. 143-151).

Cattan, A., Johnson, S., Weld, D., Dagan, I, Beltagy, I., Downey, D., & Hope, T. (2021¢). SciCo:

Hierarchical Cross-Document Coreference for Scientific Concepts. arXiv:2104.08809 [cs].

Chang, A., Savva, M., & Manning, C. D. (2014). Learning Spatial Knowledge for Text to 3D
Scene Generation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 2028-2038).: Association for Computational

Linguistics.

Chang, E., Demberg, V., & Marin, A. (2021). Jointly Improving Language Understanding and

Generation with Quality-Weighted Weak Supervision of Automatic Labeling. In E4ACL.

Cheng Bastian, Forkert Nils Daniel, Zavaglia Melissa, Hilgetag Claus C., Golsari Amir, Siemonsen

Susanne, Fiehler Jens, Pedraza Salvador, Puig Josep, Cho Tae-Hee, Alawneh Josef, Baron

184



Jean-Claude, Ostergaard Leif, Gerloff Christian, & Thomalla G6tz (2014). Influence of
Stroke Infarct Location on Functional Outcome Measured by the Modified Rankin Scale.

Stroke, 45(6), 1695—1702.

Collell, G. & Moens, M.-F. (2018). Learning Representations Specialized in Spatial Knowledge:
Leveraging Language and Vision. Transactions of the Association for Computational

Linguistics, 6, 133—144.

Cornegruta, S., Bakewell, R., Withey, S., & Montana, G. (2016). Modelling Radiological
Language with Bidirectional Long Short-Term Memory Networks. In Proceedings of the

Seventh International Workshop on Health Text Mining and Information Analysis (pp.
17-27).
Corry, C. (2011). The future of recruitment and selection in radiology. Is there a role for

assessment of basic visuospatial skills? Clinical Radiology, 66(s), 481-483.

Coyne, B. & Sproat, R. (2001). WordsEye: An automatic text-to-scene conversion system. In

Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques

(pp- 487-496).

Coyne, B., Sproat, R., & Hirschberg, J. (2010). Spatial relations in text-to-scene conversion. In
Computational Models of Spatial Language Interpretation, Workshop at Spatial Cognition,

volume 620 (pp. 9-16).

185



Cusick, M., Adekkanattu, P., Campion, T. R., Sholle, E. T., Myers, A., Banerjee, S., Alexopoulos,
G., Wang, Y., & Pathak, J. (2021). Using weak supervision and deep learning to classify
clinical notes for identification of current suicidal ideation. Journal of Psychiatric Research,

136, 95—-102.

Daniels, Z. A. & Metaxas, D. N. (2019). Exploiting Visual and Report-Based Information for
Chest X-Ray Analysis by Jointly Learning Visual Classifiers and Topic Models. In JEEE

16th International Symposium on Biomedical Imaging (ISBI).

Datta, S., Godfrey-Stovall, J., & Roberts, K. (2021a). RadLex Normalization in Radiology

Reports. AMIA Annual Symposium Proceedings, 2020, 338-347.

Datta, S., Khanpara, S., Riascos, R. F., & Roberts, K. (2021b). Leveraging Spatial Information in
Radiology Reports for Ischemic Stroke Phenotyping. AMIA Summits on Translational

Science Proceedings, 2021, 170-179.

Datta, S., Lam, H. C., Pajouhi, A., Mogalla, S., & Roberts, K. (2022). A Cross-document
Coreference Dataset for Longitudinal Tracking across Radiology Reports. In Proceedings of

the Thirteenth Language Resources and Evaluation Conference (pp. 3686-3695).

Datta, S. & Roberts, K. (2020). A Hybrid Deep Learning Approach for Spatial Trigger Extraction
from Radiology Reports. Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Conference on Empirical Methods in Natural Language Processing,

2020, §0-55.

186



Datta, S. & Roberts, K. (2022). Fine-grained spatial information extraction in radiology as two-

turn question answering. International Journal of Medical Informatics, 158, 104628.

Datta, S., Si, Y., Rodriguez, L., Shooshan, S. E., Demner-Fushman, D., & Roberts, K. (2020a).
Understanding spatial language in radiology: Representation framework, annotation,
and spatial relation extraction from chest X-ray reports using deep learning. Journal of

Biomedical Informatics, 108, 103473.

Datta, S., Ulinski, M., Godfrey-Stovall, J., Khanpara, S., Riascos-Castaneda, R. F., & Roberts, K.
(2020Db). Rad-SpatialNet: A Frame-based Resource for Fine-Grained Spatial Relations
in Radiology Reports. In Proceedings of the 12th Language Resources and Evaluation

Conference (pp. 225 1-2260).

Demner-Fushman, D., Kohli, M. D., Rosenman, M. B, Shooshan, S. E., Rodriguez, L., Antani, S.,
Thoma, G. R., & McDonald, C. J. (2016). Preparing a collection of radiology examinations

for distribution and retrieval. Journal of the American Medical Informatics Association,

23(2), 304-310.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the zo1 9
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (pp. 4171-4186).: Association for Computational

Linguistics.

187



Division for Heart Disease and Stroke Prevention (2020). Stroke Facts | cdc.gov.

Dogan, R. I, Leaman, R., & Lu, Z. (2014). NCBI Disease Corpus: A Resource for Disease Name

Recognition and Concept Normalization. J Biomed Inform, 47, 1-10.

Dong, H., Sudrez-Paniagua, V., Zhang, H., Wang, M., Whitfield, E., & Wu, H. (2021). Rare
Disease Identification from Clinical Notes with Ontologies and Weak Supervision.

arXiv:2ro5.01995 [cs].

Dua, S., Baldini, L., Katz-Rogozhnikov, D. A., van der Veen, E., Britt, A., Mangalath, P., Kleiman,
L. B, & Fitz, C. D. V. (2021). Biomedical Corpus Filtering: A Weak Supervision Paradigm

With Infused Domain Expertise. In SDU@AAAIL

Dunnmon, J. A., Ratner, A. ]., Saab, K., Khandwala, N., Markert, M., Sagreiya, H., Goldman,
R., Lee-Messer, C., Lungren, M. P., Rubin, D. L., & R¢, C. (2020). Cross-Modal Data

Programming Enables Rapid Medical Machine Learning. Patterns (New York, N.Y.), 1(2).

Eyuboglu, S., Angus, G., Patel, B. N., Pareek, A., Davidzon, G., Long, J., Dunnmon, J., &
Lungren, M. P. (2021). Multi-task weak supervision enables anatomically-resolved
abnormality detection in whole-body FDG-PET/CT. Nature Communications, 12(1),

1880.

Fasola, J. & Mataric, M. J. (2013). Using semantic fields to model dynamic spatial relations in a
robot architecture for natural language instruction of service robots. In 2013 IEEE/RS]

International Conference on Intelligent Robots and Systems (pp. 143—150).

188



Friedman, C., Alderson, P. O., Austin, J. H., Cimino, J. J., & Johnson, S. B. (1994). A general
natural-language text processor for clinical radiology. Journal of the American Medical

Informatics Association: JAMIA, 1(2), 161-174.

Friedman, C., Johnson, S. B., Forman, B., & Starren, J. (1995). Architectural requirements for a
multipurpose natural language processor in the clinical environment. Proceedings of the

Annual Symposium on Computer Application in Medical Care, (pp. 347-351).

Friedman, C., Shagina, L., Lussier, Y., & Hripcsak, G. (2004). Automated Encoding of Clinical
Documents Based on Natural Language Processing. Journal of the American Medical

Informatics Association : JAMIA, 11(s), 392—402.

Fries, J., Wu, S., Ratner, A., & Ré, C. (2017). SwellShark: A Generative Model for Biomedical

Named Entity Recognition without Labeled Data. arXiv:1704.06360 [cs].

Fries, J. A., Steinberg, E., Khattar, S., Fleming, S. L., Posada, J., Callahan, A., & Shah, N. H.
(20212). Ontology-driven weak supervision for clinical entity classification in electronic

health records. Nature Communications, 12(1), 2017.

Fries, J. A., Steinberg, E., Khattar, S., Fleming, S. L., Posada, J., Callahan, A., & Shah, N. H.
(2021b). Ontology-driven weak supervision for clinical entity classification in electronic

health records. Nature Communications, 12(1), 2017.

189



Fu, S., Chen, D, He, H,, Liu, S., Moon, S., Peterson, K. J., Shen, F., Wang, L., Wang, Y., Wen,
A.,Zhao, Y., Sohn, S., & Liu, H. (2020). Development of Clinical Concept Extraction

Applications: A Methodology Review. a7Xiv, 1910.11377 [cs].

Fu,S., Leung, L. Y., Wang, Y., Raulli, A.-O., Kallmes, D. F., Kinsman, K. A., Nelson, K. B., Clark,
M. S., Luetmer, P. H., Kingsbury, P. R., Kent, D. M., & Liu, H. (2019). Natural Language
Processing for the Identification of Silent Brain Infarcts From Neuroimaging Reports.

JMIR Medical Informatics, 7(2).

Garg, R., Oh, E., Naidech, A., Kording, K., & Prabhakaran, S. (2019). Automating Ischemic
Stroke Subtype Classification Using Machine Learning and Natural Language Processing. /

Stroke Cerebrovasc, 28(7), 2045—2051.

Govindarajan, P., Soundarapandian, R. K., Gandomi, A. H., Patan, R., Jayaraman, P., &
Manikandan, R. (2020). Classification of stroke disease using machine learning algorithms.

Neural Computing and Applications, 32(3), 817-828.

Guadarrama, S., Riano, L., Golland, D., Gohring, D., Jia, Y., Klein, D., Abbeel, P., & Darrell, T.
(2013). Grounding spatial relations for human-robot interaction. In JEEE International

Conference on Intelligent Robots and Systems (pp. 1640-1647).

Han, S., Tran, T., Rios, A., & Kavuluru, R. (2017). Team UKNLP: Detecting ADRs,

Classifying Medication Intake Messages, and Normalizing ADR Mentions on Twitter.

In SMMyH@AMIA. .

190



Hassanpour, S., Bay, G., & Langlotz, C. P. (2017). Characterization of Change and Significance

for Clinical Findings in Radiology Reports Through Natural Language Processing. Journal

of Digital Imaging, 30(3), 314—322.

Hassanpour, S. & Langlotz, C. P. (2016). Information extraction from multi-institutional

radiology reports. Artificial Intelligence in Medicine, 66,29-39.

Hayward, W. G. & Tarr, M. J. (1995). Spatial language and spatial representation. Cognition,

55(1),39-84.

Huang, X, Fang, Y., Lu, M., Yao, Y., & Li, M. (2019). An Annotation Model on End-to-End

Chest Radiology Reports. In JEEE Access, volume 7: IEEE.
Hui, C., Tadi, P., & Patti, L. (2020). Ischemic Stroke. In StatPearls. StatPearls Publishing.

Humbert-Droz, M., Mukherjee, P., & Gevaert, O. (2022). Strategies to Address the Lack of
Labeled Data for Supervised Machine Learning Training With Electronic Health Records:
Case Study for the Extraction of Symptoms From Clinical Notes. [MIR Medical

Informatics, 10(3), €32903.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B.,
Ball, R., Shpanskaya, K., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg, J. K., Jones, R.,
Larson, D. B., Langlotz, C. P., Patel, B. N., Lungren, M. P., & Ng, A. Y. (2019). CheXpert:
A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. In

AAAI Conference on Artificial Intelligence.

191



Ji, Z., Wei, Q., & Xu, H. (2019). BERT-based Ranking for Biomedical Entity Normalization.

arXiv, 1908.03548 [cs].
Johns Hopkins Medicine (2022). Effects of Stroke.

Johnson, A. E., Pollard, T. J., Shen, L., wei H. Lehman, L., Feng, M., Ghassemi, M., Moody, B.,
Szolovits, P., Celi, L. A., , & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care

database. Scientific Data, 3, 16003 5.

Karimi, S., Metke-Jimenez, A., Kemp, M., & Wang, C. (2015). Cadec: A corpus of adverse drug

event annotations. Journal of Biomedical Informatics, s5,73-81.

Kergosien, E., Alatrista-Salas, H., Gaio, M., Giittler, F. N., Roche, M., & Teisseire, M. (2015).
When textual information becomes spatial information compatible with satellite images. In
2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering

and Knowledge Management (IC3K), volume o1 (pp. 301-306).

Kim, C., Zhu, V., Obeid, ]J., & Lenert, L. (2019). Natural language processing and machine
learning algorithm to identify brain MRI reports with acute ischemic stroke. PloS One,

14(2), eo212778.

Kordjamshidi, P., Otterlo, M. V., & Moens, M.-F. (2010). Spatial Role Labeling : Task Definition
and Annotation Scheme. In Proceedings of the Language Resources € Evaluation

Conference (pp. 413—420).

192



Kordjamshidi, P., Rahgooy, T., & Manzoor, U. (2017). Spatial Language Understanding with
Multimodal Graphs using Declarative Learning based Programming. In Proceedings of the

2nd Workshop on Structured Prediction for Natural Language Processing (pp. 33—43).

Kordjamshidi, P., Roth, D., & Moens, M.-F. (2015). Structured learning for spatial information

extraction from biomedical text: Bacteria biotopes. BMC Bioinformatics, 16(1), 1-15.

Krasakis, A. M., Kanoulas, E., & Tsatsaronis, G. (2019). Semi-supervised Ensemble Learning with

Weak Supervision for Biomedical Relationship Extraction. In AKBC.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural

Architectures for Named Entity Recognition. In Proceedings of NAACL-HLT (pp. 260-

270).

Langlotz, C. P. (2006). RadLex: a new method for indexing online educational materials.

Radiographics, 26(6), 1595-1597.

Laparra, E., Bethard, S., & Miller, T. A. (2020). Rethinking domain adaptation for machine

learning over clinical language. JAMIA Open, 3(2), 146-150.

Leaman, R., Khare, R., & Lu, Z. (2015). Challenges in Clinical Natural Language Processing for

Automated Disorder Normalization. Journal of Biomedical Informatics, 57, 28-37.

Levin, D. I. & Janiga, N.]J. (2021). 2021 Outlook: Diagnostic Imaging Centers and Radiology

Practices.

193



Levy, O., Seo, M., Choi, E., & Zettlemoyer, L. (2017). Zero-Shot Relation Extraction via Reading
Comprehension. In Proceedings of the 2 15t Conference on Computational Natural Language

Learning (CONLL z017) (pp. 333—342).

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: Visualization

of Intersecting Sets. [EEE transactions on visualization and computer graphics, 20(12),
1983-1992.
Li, F., Peng, W., Chen, Y., Wang, Q., Pan, L., Lyu, Y., & Zhu, Y. (2020a). Event Extraction as Multi-

turn Question Answering. In Findings of the Association for Computational Linguistics:

EMNLP z0z0 (pp. 829-838).

Li, F., Zhang, M., Fu, G., & Ji, D. (2017). A neural joint model for entity and relation extraction

from biomedical text. BMC Bioinformatics, 18(1), 198.

Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., & Li, J. (2020b). A Unified MRC Framework for
Named Entity Recognition. In Proceedings of the 5 8th Annual Meeting of the Association

for Computational Linguistics (pp. $849—5859).

Li, X.,Yin, F,, Sun, Z., Li, X., Yuan, A., Chai, D., Zhou, M., & Li, J. (2019). Entity-Relation
Extraction as Multi-Turn Question Answering. In Proceedings of the s 7th Annual Meeting

of the Association for Computational Linguistics (pp. 1340-1350).

Li, Y., Shetty, P,, Liu, L., Zhang, C., & Song, L. (2021). BERTitying the Hidden Markov Model

for Multi-Source Weakly Supervised Named Entity Recognition. 4rXzv.

194



Limsopatham, N. & Collier, N. (2016). Normalising Medical Concepts in Social Media Texts by

Learning Semantic Representation. In Proceedings of the s 4th Annual Meeting of the ACL

(pp. 1014-1023).

Lison, P., Hubin, A., Barnes, J., & Touileb, S. (2020). Named Entity Recognition without

Labelled Data: A Weak Supervision Approach. In ACL.

Liu, J., Chen, Y., Liu, K., Bi, W., & Liu, X. (2020). Event Extraction as Machine Reading
Comprehension. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP) (pp. 1641-1651).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &
Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.

arXiv:1907.11692 [cs].

Luo, X. (2005). On Coreference Resolution Performance Metrics. In Proceedings of Human
Language Technology Conference and Conference on Empirical Methods in Natural

Language Processing (pp. 25—32).

Luo, X., Pradhan, S., Recasens, M., & Hovy, E. (2014). An Extension of BLANC to System
Mentions. Proceedings of the conference. Association for Computational Linguistics. Meeting,

2014, 24—29.

195



Luo, Y.-F., Sun, W., & Rumshisky, A. (2019a). A Hybrid Normalization Method for Medical
Concepts in Clinical Narrative using Semantic Matching. AMIA Jt Summits Transl Sci

Proc, 2019, 732—740.

Luo, Y.-F., Sun, W., & Rumshisky, A. (2019b). MCN: A comprehensive corpus for medical

concept normalization. Journal of Biomedical Informatics, 92, 103132.

Mabotuwana, T., Hall, C. S., Hombal, V., Pai, P., Raghavan, U. N., Regis, S., McKee, B., Dalal,
S., Wald, C., & Gunn, M. L. (2019). Automated Tracking of Follow-Up Imaging

Recommendations. A/R. American journal of roentgenology, (pp. 1-8).

Mabotuwana, T., Hall, C. S., Tieder, J., & Gunn, M. L. (2018). Improving Quality of Follow-Up
Imaging Recommendations in Radiology. AMIA Annual Symposium Proceedings, 2017,

1196—-1204.

Majersik Jennifer J, Mowery Danielle, Zhang Mingyuan, Hill Brent, Cannon-Albright Lisa A, &
Chapman Wendy (2018). Towards High-Precision Stroke Classification Using Natural

Language Processing. Stroke, 49(Suppl_1), 92.

Mallory, E. K., de Rochemonteix, M., Ratner, A., Acharya, A, Re, C,, Bright, R. A., & Altman,
R. B. (2020). Extracting chemical reactions from text using Snorkel. BMC Bioinformatics,

21(1), 217.

196



Mani, I, Doran, C., Harris, D., Hitzeman, J., Quimby, R., Richer, J., Wellner, B., Mardis, S., &
Clancy, S. (2010). SpatialML: Annotation scheme, resources, and evaluation. Language

Resonrces and Evaluation, 44(3), 263—280.

Mbagwu, M., French, D. D., Gill, M., Mitchell, C., Jackson, K., Kho, A., & Bryar, P. J. (2016).
Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity

from Ophthalmology Electronic Health Record Notes. JMIR Medical Informatics, 4(2),
e14.
Miftahutdinov, Z. & Tutubalina, E. (2019). Deep Neural Models for Medical Concept

Normalization in User-Generated Texts. In Proceedings of the s 7th Annual Meeting of

the ACL: Student Research Workshop (pp. 393-399).

Miller, T., Dligach, D., Bethard, S., Lin, C., & Savova, G. (2017). Towards generalizable entity-

centric clinical coreference resolution. Journal of Biomedical Informatics, 69, 251-258.

Miwa, M. & Bansal, M. (2016). End-to-End Relation Extraction using LSTMs on Sequences
and Tree Structures. In Proceedings of the s 4th Annual Meeting of the Association for

Computational Linguistics (pp. 1105-1116).

Nogueira, R. & Cho, K. (2019). Passage Re-ranking with BERT. 4rX7v, 1901.04085 [cs].

Ong, C.]., Orfanoudaki, A., Zhang, R., Caprasse, F. P. M., Hutch, M., Ma, L., Fard, D., Balogun,
O., Miller, M. I, Minnig, M., Saglam, H., Prescott, B., Greer, D. M., Smirnakis, S., &

Bertsimas, D. (2020). Machine learning and natural language processing methods to

197



identify ischemic stroke, acuity and location from radiology reports. PLOS ONE, 15(6),

€0234908.

Pattisapu, N., Anand, V., Patil, S., Palshikar, G., & Varma, V. (2020). Distant supervision for

medical concept normalization. Journal of Biomedical Informatics, 109, 103522.

Peng, Y., Wang, X., Lu, L., Bagheri, M., Summers, R., & Lu, Z. (2018). NegBio: a high-
performance tool for negation and uncertainty detection in radiology reports. In AMIA4

Joint Summits on Translational Science Proceedings., volume 2018 (pp. 188-196).

Pesce, E., Withey, S. J., Ypsilantis, P.-P., Bakewell, R., Goh, V., & Montana, G. (2019). Learning to
detect chest radiographs containing lung nodules using visual attention networks. Medical

Image Analysis, 53, 26-38.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C,, Lee, K., & Zettlemoyer, L. (2018).
Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the

NAACL: Human Language Technologies (pp. 2227-2237).

Peterson, K. J., Jiang, G., & Liu, H. (2020). A corpus-driven standardization framework for

encoding clinical problems with HL7 FHIR. Journal of Biomedical Informatics, (pp.
103541).

Petruck, M. R. & Ellsworth, M. (2018). Representing Spatial Relations in FrameNet. In
Proceedings of the First International Workshop on Spatial Language Understanding (pp.
41-45).

198



Pons, E., Braun, L. M., Hunink, M. M., & Kors, J. A. (2016). Natural Language Processing in

Radiology: A Systematic Review. Radiology, 279(2).

Price, C., Seghier, M., & Leff, A. (2010). Predicting Language Outcome and Recovery After

Stroke (PLORAS). Nature reviews. Neurology, 6(4), 202—2.10.

Pustejovsky, J. & Moszkowicz, J. L. (2008). Integrating Motion Predicate Classes with Spatial and
Temporal Annotations. In Coling 2008: Companion Volume: Posters (pp. 95—-98).: Coling

2008 Organizing Committee.

Qi, P, Zhang, Y., Zhang, Y., Bolton, J., & Manning, C. D. (2020). Stanza: A Python Natural
Language Processing Toolkit for Many Human Languages. In Proceedings of the 5 8th

Annual Meeting of the Association for Computational Linguistics: System Demonstrations
(pp. 101-108).

Qu, C,, Yang, L., Qiu, M., Croft, W. B., Zhang, Y., & Iyyer, M. (2019). BERT with History
Answer Embedding for Conversational Question Answering. In Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in Information

Retrieval (pp. 1133-1136).

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & R¢, C. (2020). Snorkel: Rapid training

data creation with weak supervision. The VLDB Journal, 29(2), 709-730.

Recasens, M. & Hovy, E. (2011). Blanc: Implementing the rand index for coreference evaluation.

Natural Language Engineering, 17(4), 4855 10.

199



Rink, B., Roberts, K., Harabagiu, S., Scheuermann, R. H., Toomay, S., Browning, T., Bosler, T.,
& Peshock, R. (2013). Extracting actionable findings of appendicitis from radiology reports
using natural language processing. In AMIA Joint Summits on Translational Science

Proceedings, volume 2013 (pp. 22.1).

Roberts, K., Demner-Fushman, D., & Tonning, J. M. (2017). Overview of the TAC 2017 Adverse

Reaction Extraction from Drug Labels Track. In TAC. .

Roberts, K., Rink, B., Harabagiu, S. M., Scheuermann, R. H., Toomay, S., Browning, T., Bosler,
T., & Peshock, R. (2012). A machine learning approach for identifying anatomical
locations of actionable findings in radiology reports. In AMIA Annual Symposium

Proceedings, volume 2012 (pp. 779-788).

Roberts, K., Rodriguez, L., Shooshan, S., & Demner-Fushman, D. (2015). Automatic Extraction
and Post-coordination of Spatial Relations in Consumer Language. In AMIA Annual

Symposium Proceedings, volume 2015 (pp. 1083-1092).

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & Gatford, M. (1996). : (pp.

109-126).

Rosse, C. & Megjino, J. L. V. (2008). The Foundational Model of Anatomy Ontology. In
A. Burger, D. Davidson, & R. Baldock (Eds.), Anatomy Ontologies for Bioinformatics:

Principles and Practice (pp. s9-117).

200



Rubin, D. L., Willrett, D., O’Connor, M. J., Hage, C., Kurtz, C., & Moreira, D. A. (2014).
Automated Tracking of Quantitative Assessments of Tumor Burden in Clinical Trials.

Translational Oncology, 7(1), 23-35.

Safranchik, E., Luo, S., & Bach, S. H. (2020). Weakly Supervised Sequence Tagging from Noisy

Rules. In AAAI

Sarker, A., Belousov, M., Friedrichs, J., Hakala, K., Kiritchenko, S., Mehryary, F., Han, S., Tran,
T., Rios, A., Kavuluru, R., de Bruijn, B., Ginter, F., Mahata, D., Mohammad, S. M.,
Nenadic, G., & Gonzalez-Hernandez, G. (2018). Data and systems for medication-related
text classification and concept normalization from Twitter: Insights from the Social Media
Mining for Health (SMM4H)-2017 shared task. /. Am Med Inform Assoc, 25(10), 1274—

1283.

Sedghi, E., Weber, J. H., Thomo, A., Bibok, M., & Penn, A. M. W. (2015). Mining clinical text for

stroke prediction. Network Modeling Analysis in Health Informatics and Bioinformatics,

4(1), 16.

Sevenster, M., Van Ommering, R., & Qian, Y. (2012). Automatically correlating clinical findings
and body locations in radiology reports using MedLEE. Journal of Digital Imaging, 25(2),

240-249.

Shang, J., Liu, L., Ren, X, Gu, X, Ren, T., & Han, J. (2018). Learning Named Entity Tagger

using Domain-Specific Dictionary. arXiv:1809.03599 [cs].

201



Shen, Z.,Yi, Y., Bompelli, A., Yu, F., Wang, Y., & Zhang, R. (2021). Extracting Lifestyle Factors
for Alzheimer’s Disease from Clinical Notes Using Deep Learning with Weak Supervision.

arXiv:2101.09244 [cs].

Shi, Y., Zeng, Y., Wu, L., Liu, Z., Zhang, S., Yang, J., & Wu, W. (2017). A Study of the Brain
Functional Network of Post-Stroke Depression in Three Different Lesion Locations.

Scientific Reports, 7(1), 14795.

Shin, H.-C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., & Summers, R. M. (2016).
Learning to Read Chest X-Rays : Recurrent Neural Cascade Model for Automated Image
Annotation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(pp- 2497-2506).

Si, Y., Wang, J., Xu, H., & Roberts, K. (2019). Enhancing clinical concept extraction with
contextual embeddings. Journal of the American Medical Informatics Association, (pp.

1-8).

Smit, A,, Jain, S., Rajpurkar, P., Pareck, A., Ng, A., & Lungren, M. (2020). Combining Automatic
Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP) (pp. 1500-1519).

Son, R. Y, Taira, R. K., & Kangarloo, H. (2004). Inter-document coreference resolution of

abnormal findings in radiology documents. Studies in Health Technology and Informatics,

202



ro7(Pt2), 1388-1392.

Srivastava, R. K., Greft, K., & Schmidhuber, J. (2015). Highway NetWorks: Training Very
Deep Networks. In NIPS’rs Proceedings of the 2 8th International Conference on Neural

Information Processing Systems (pp. 2377-2385).

Stein, J. D., Rahman, M., Andrews, C., Ehrlich, J. R., Kamat, S., Shah, M., Boese, E. A,
Woodward, M. A., Cowall, J., Trager, E. H., Narayanaswamy, P., & Hanauer, D. A. (2019).
Evaluation of an Algorithm for Identifying Ocular Conditions in Electronic Health

Record Data. JAMA ophthalmology, 137(s), 491-497.

Steinkamp, J. M., Chambers, C., Lalevic, D., Zafar, H. M., & Cook, T. S. (2019). Toward
Complete Structured Information Extraction from Radiology Reports Using Machine

Learning. Journal of Digital Imaging, 32(4), 554—564.

Stenetorp, P., Pyysalo, S., Topi¢, G., Ohta, T., Ananiadou, S., & Tsujii, J. (2012a). Brat: A Web-
based Tool for NLP-Assisted Text Annotation. In Demonstrations at the 13th Conference of

the European Chapter of the ACL (pp. 102-107).

Stenetorp, P., Pyysalo, S., Topi¢, G., Ohta, T., Ananiadou, S., & Tsujii, J. (2012b). Brat: A Web-
based Tool for NLP-Assisted Text Annotation. In Proceedings of the Demonstrations at the

13th Conference of the European Chapter of the Association for Computational Linguistics

(pp. 102-107).

203



Sugimoto, K., Takeda, T., Oh, J.-H., Wada, S., Konishi, S., Yamahata, A., Manabe, S., Tomiyama,
N., Matsunaga, T., Nakanishi, K., & Matsumura, Y. (2021). Extracting clinical terms from

radiology reports with deep learning. Journal of Biomedical Informatics, 116, 103729.

Sun, C,, Yang, Z., Wang, L., Zhang, Y., Lin, H., & Wang, J. (2020). Biomedical named
entity recognition using BERT in the machine reading comprehension framework.

arXiv:2009.01560 [cs].

Sung, S.-F., Lin, C.-Y,, & Hu, Y.-H. (2020). EMR-based phenotyping of ischemic stroke using
supervised machine learning and text mining techniques. IEEE Journal of Biomedical and

Health Informatics, (pp. 1-1).

Syeda-Mahmood, T., D, P., Wong, K. C. L., D, P., Wu, ]. T,, D., M., H, M. P,, Jadhav, A., D, P,
Boyko, O., & D, M. D. P. (2020). Extracting and Learning Fine-Grained Labels from Chest

Radiographs. arXiv:2o11.09517 [cs].

Tahmasebi, A. M., Zhu, H., Mankovich, G., Prinsen, P., Klassen, P., Pilato, S., van Ommering,
R., Patel, P., Gunn, M. L., & Chang, P. (2019). Automatic Normalization of Anatomical

Phrases in Radiology Reports Using Unsupervised Learning. / Digit Imaging, 32(1), 6-18.

Tutubalina, E., Miftahutdinov, Z., Nikolenko, S., & Malykh, V. (2018). Medical concept
normalization in social media posts with recurrent neural networks. Journal of Biomedical

Informatics, 84, 93—102.

204



Ulinski, M., Coyne, B., & Hirschberg, J. (2019). SpatialNet: A Declarative Resource for Spatial
Relations. In Proceedings of the Combined Workshop on Spatial Language Understanding

(SpLU) and Grounded Communication for Robotics (RoboNLP) (pp. 61—70).: Association

for Computational Linguistics.

Vilain, M., Burger, J., Aberdeen, J., Connolly, D., & Hirschman, L. (1995). A model-theoretic

coreference scoring scheme. In MUC.

Wang, S., Tseng, B., & Hernandez-Boussard, T. (2022). Deep Learning Approaches for Predicting
Glaucoma Progression Using Electronic Health Records and Natural Language Processing.

Ophthalmology Science, o(o).

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). ChestX-ray8:
Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification
and localization of common thorax diseases. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (pp. 3462—3471).

Wang, X., Peng, Y., Lu, L., Lu, Z., & Summers, R. M. (2018). TieNet: Text-Image Embedding
Network for Common Thorax Disease Classification and Reporting in Chest X-Rays. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 9049—

9058).

Wang, X. D., Weber, L., & Leser, U. (2020). Biomedical Event Extraction as Multi-turn Question

Answering. In Proceedings of the 11th International Workshop on Health Text Mining and

205



Information Analysis (pp. 88-96).

Wang, Y., Sohn, S., Liu, S., Shen, F., Wang, L., Atkinson, E. J., Amin, S., & Liu, H. (20192). A
clinical text classification paradigm using weak supervision and deep representation. BAMC

Medical Informatics and Decision Making, 19(1), 1.

Wang, Y., Sun, L., & Jin, Q. (2019b). Enhanced Diagnosis of Pneumothorax with an Improved
Real-time Augmentation for Imbalanced Chest X-rays Data Based on DCNN. /EEE/ACM

Transactions on Computational Biology and Bioinformatics, 14(8), 1-1.

Wang, Z., Ng, P., Ma, X., Nallapati, R., & Xiang, B. (2019c). Multi-passage BERT: A Globally

Normalized BERT Model for Open-domain Question Answering. EMNLP/IJCNLP.

Wheater, E., Mair, G., Sudlow, C., Alex, B., Grover, C., & Whiteley, W. (2019). A validated natural
language processing algorithm for brain imaging phenotypes from radiology reports in UK

electronic health records. BMC Med Inform Dec Mak, 19(1), 184.

Wood, D., Guilhem, E., Montvila, A., Varsavsky, T., Kiik, M., Siddiqui, J., Kafiabadji, S., Gadapa,
N., Busaidi, A. A., Townend, M., Patel, K., Barker, G., Ourselin, S., Lynch, J., Cole, J., &
Booth, T. (2020). Automated Labelling using an Attention model for Radiology reports of

MRI scans (ALARM). In Medical Imaging with Deep Learning.

Woodward, M. A., Maganti, N., Niziol, L. M., Amin, S., Hou, A., & Singh, K. (2021).

Development and Validation of a Natural Language Processing Algorithm to Extract

206



Descriptors of Microbial Keratitis From the Electronic Health Record. Cornea, 40(12),
1548-1553.
Wright-Bettner, K., Palmer, M., Savova, G., de Groen, P., & Miller, T. (2019). Cross-document

coreference: An approach to capturing coreference without context. In Proceedings of the

Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI

2019)(pp. 1-10).

Yan, K., Peng, Y., Sandfort, V., Bagheri, M., Lu, Z., & Summers, R. M. (2019). Holistic and
Comprehensive Annotation of Clinically Significant Findings on Diverse CT Images:

Learning from Radiology Reports and Label Ontology. arXiv:1904.04661 [cs].

Yang, P., Fang, H., & Lin, J. (2018). Anserini: Reproducible Ranking Baselines Using Lucene. /.

Data and Information Quality, 10(4), 16:1-16:20.

Yim, W.-W., Denman, T., Kwan, S. W, & Yetisgen, M. (2016). Tumor information extraction
in radiology reports for hepatocellular carcinoma patients. In AMIA Joint Summits on

Translational Science Proceedings, volume 2016 (pp. 455-64).

Yuan, Y. (2011). Extracting spatial relations from document for geographic information retrieval.

In Proceedings - zo11 19th International Conference on Geoinformatics: IEEE.

Zech, J. R., Badgeley, M. A,, Liu, M., Costa, A. B, Titano, J. J., & Oermann, E. K. (2018).
Variable generalization performance of a deep learning model to detect pneumonia in chest

radiographs: A cross-sectional study. PLoS Medicine, 15(11), 1-17.

207



Zeng, X., Li, Y., Zhai, Y., & Zhang, Y. (2020). Counterfactual Generator: A Weakly-Supervised

Method for Named Entity Recognition. In EMNLP.

Zhang, Y., Zhang, Y., Qi, P., Manning, C. D., & Langlotz, C. P. (2021). Biomedical and clinical
English model packages for the Stanza Python NLP library. Journal of the American

Medical Informatics Association, 28(9), 1892—1899.

Zhao, X., Ding, H., & Feng, Z. (2021). GLaR A: Graph-based Labeling Rule Augmentation for

Weakly Supervised Named Entity Recognition. In EACL.

Zheng, C., Luo, Y., Mercado, C., Sy, L., Jacobsen, S. J., Ackerson, B., Lewin, B., & Tseng, H. F.
(2019). Using natural language processing for identification of herpes zoster ophthalmicus

cases to support population-based study. Clinical € Experimental Ophthalmology, 47(1),

7—14.

Zolnoori, M., Fung, K. W,, Patrick, T. B., Fontelo, P., Kharrazi, H., Faiola, A., Wu, Y. S. S,
Eldredge, C. E., Luo, J., Conway, M., Zhu, J., Park, S. K., Xu, K., Moayyed, H., &
Goudarzvand, S. (2019). A systematic approach for developing a corpus of patient reported
adverse drug events: A case study for SSRI and SNRI medications. Journal of Biomedical

Informatics, 90, 103091.

208



	Introduction
	Background
	Spatial Representation Framework for Text
	Information Extraction from Radiology Reports
	Medical Concept Normalization
	Data
	Methods

	Weak Supervision in the Medical Domain
	Applications using Radiology Information
	Phenotyping
	Automated Tracking
	Automated Image Labeling


	Spatial Representation Schema for Radiology Language 
	RadSpRL - Radiology Spatial Role Labeling
	Schema Description
	Dataset Annotation

	Rad-SpatialNet - Radiology SpatialNet
	Schema Description
	Dataset Annotation

	Limitations of Rad-SpRL and Rad-SpatialNet

	Deep Learning-based Natural Language Processing Methods for Spatial Information Extraction
	Sequence Labeling
	Description for Rad-SpRL
	Description for Rad-SpatialNet
	Results on RadSpRL
	Results on Rad-SpatialNet

	Information Extraction as Question Answering
	Description for Rad-SpatialNet
	Results on Rad-SpatialNet


	Normalization of Radiological Entities using RadLex
	Dataset Annotation
	Annotation Process

	Entity span detection
	Normalization Methods
	BM25
	BERT as re-ranker
	BERT as span detector

	Experimental Settings and Evaluation
	Results
	Discussion

	Generalizability of Rad-SpatialNet: Extending to Ophthalmology Domain
	Eye-SpatialNet Schema Description
	New spatial frame elements
	New descriptive frame elements

	Dataset Annotation
	Annotation Statistics

	Information Extraction as Question Answering
	System overview
	Query generation

	Experimental Settings and Evaluation
	Results
	Discussion

	Weak Supervision for Spatial Information Extraction
	Data
	Method
	Candidate Generation
	Labeling functions
	Weak label generation
	Weak label filtering
	Weakly supervised model - BERT

	Experimental settings
	Without gold data
	Sequential fine-tuning
	Varying amounts of gold data

	Evaluation
	Results
	Discussion

	Application of Rad-SpatialNet for Ischemic Stroke Phenotyping
	Introduction
	Dataset
	Dataset Annotation
	Phenotyping Method

	Experimental Settings and Evaluation
	Results
	Discussion

	Application of Radiology Information for Automated Tracking
	Introduction
	Dataset
	Annotation Process
	Identify references of the same finding
	Identify references of the same device
	Challenges
	Statistics

	Methods
	Rule-based
	BERT-based

	Evaluation
	Results
	Discussion

	Conclusion
	Key Findings
	Limitations and Future Work

	Appendix Labeling functions developed for our weak supervision approach to identify spatial information
	References

