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ABSTRACT

Background: Research progresses through accumulating knowledge such that a previously

unexplored subject (an unknown unknown) becomes an active research area exploring the

questions (known unknowns), until a body of established facts emerges (known knowns). This

work aims to help illuminate this process using biomedical natural language processing (BioNLP)

to identify, categorize, classify, and explore known unknowns or ignorance statements from the

scientific literature. The goal is to help researchers, students, funders, and publishers find the most

pertinent research questions or scientific goals for knowledge from the literature based on a topic

or experimental results. To do this, researchers must have foundations in both knowledge and

questions. However, staying up-to-date on both of them is difficult because of the exponential

growth of the scientific literature. Many tools exist to help with knowledge including information

extraction systems and knowledge-bases that can be explored by topic or help contextualize

experimental results. For the questions, there are some information extraction systems focused on

hedging, uncertainty, speculation, factuality, epistemics, and meta-knowledge and a search engine

focused on directions and challenges based on a topic (it cannot support queries by experimental

results). This prior work mainly focused on the phenomenon in relation to knowledge (i.e., how

hedged, certain, speculative, factual, or meta the knowledge is), with only the search engine

explicitly focused on new knowledge. With the importance of finding pertinent questions or goals

for scientific knowledge, there is a need to go a step further and categorize these statements based

on their entailed goal for scientific knowledge (i.e., actionable next steps). Further, no

knowledge-bases of such statements, i.e., ignorance-bases, exist that provide summaries and

visualizations of such statements based on a topic or experimental results. Thus, we aim to rectify

this to help students, researchers, funders, and publishers better understand the state of our

collective scientific ignorance (known unknowns or knowledge goals) at scale and across
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disciplines, hopefully resulting in an accelerated research process. To determine the feasibility of

these general computational ideas, we apply them to the prenatal nutrition field to help find

pertinent questions that could affect mothers and offspring globally.

Methods: To capture goals for scientific knowledge, we created a novel BioNLP task to identify,

characterize, and classify statements of ignorance based on their entailed knowledge goal.

Through manual annotation, we created a taxonomy of ignorance, annotation guidelines, a corpus,

and classification models. We also identified the biomedical concepts (ontology concepts) in the

ignorance statements to understand their biomedical subjects. We systematically characterized the

factors that contributed to the accuracy and efficiency of several approaches to biomedical concept

recognition, while aiming to improve performance. Together, the ignorance and biomedical

concept classification formed the first ignorance-base on the prenatal nutrition literature. To

demonstrate its power, we present two methods of exploration: (1) exploration by topic (e.g.,

vitamin D) to show that ignorance statements can provide new ideas for future research, and (2)

exploration by experimental results (e.g., vitamin D and spontaneous preterm birth gene list) to

help a researcher contextualize their results in the ignorance landscape providing questions that

their results may bear on potentially from other disciplines.

Results: We show that it is possible to characterize known unknowns as knowledge goals

(ignorance taxonomy), that humans can identify statements of ignorance in the literature

(annotation task to create a corpus), and that they can be automatically identified (ignorance

classification). For the biomedical concepts, we present an automatic biomedical concept

recognition system that performed comparably with state-of-the-art systems with some substantial

efficiencies in the time and computational resources required for tuning and training. Combining

these, we created the first ignorance-base on the prenatal nutrition literature. Exploring it by the

topic vitamin D showed that it is possible to find other areas of research (immune system,

respiratory system, and brain development) with lots of questions (ignorance statements) that are

ripe for future research. Exploring it by a gene list, provided a novel research area (the brain) that

implied a different discipline (neuroscience) of which could be explored for answers. Overall, the
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ignorance-base provided a question foundation rooted in knowledge goals and ideas for future

research.

Conclusion: Our goal is to help students, researchers, funders, and publishers better understand

the state of our collective scientific ignorance in order to help accelerate translational research

through illuminating the known unknowns and their respective goals for scientific knowledge.

The form and content of this abstract are approved. We recommend its publication.

Approved: Lawrence Hunter and Sonia Leach
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Dedicated to all researchers, especially students, searching for a question. The perfect one may

be in the place you least expect.



vii

ACKNOWLEDGEMENTS

This workwas funded by twoNational Library ofMedicine grants: T15 LM009451 awarded

to Mayla R. Boguslav and R01 LM013400 awarded to Dr. Lawrence E. Hunter.

I would like to thank my advisors, Drs. Larry Hunter and Sonia Leach for allowing me

to pursue my own ideas and interests. Thank you for always providing helpful feedback as both

breadcrumbs to the next big idea (Larry) or sitting with me to go line by line through code or a

paper (Sonia). Thank you for also seeing me as a whole person, not just as a researcher, when I

faced unexpected challenges in my personal life. Thank you for shaping me into the confident and

capable researcher I am today by fostering my curiosity and helping me through any struggles. I

would also like to thank my committee for their patience, support, and encouragement throughout

this process. To Dr. Jim Costello for guiding me and believing in me as a researcher starting from

my rotation project. To Dr. Teri Hernandez for her expertise and her warmth, encouragement, and

always havingmy best interest in mind. ToDrs. Michael Paul, Zhiyong Lu, andNoemie Elhadad for

serving as outside committee members and bringing new perspectives to my project and committee.

This dissertation would not have been possible without this mentorship and guidance.

To the current (and former) members of the Hunter and Leach labs, Dr. Kevin Bretonnel

Cohen, Dr. Anis Karimpour-Fard, Dr. Mike Bada, Dr. William Baumgartner Jr., Dr. Elizabeth

White, Dr. Ignacio Tripodi, Dr. Tiffany Callahan, Dr. Laura Stevens, Harrison Pielke-Lombardo,

Dr. Katherine Sullivan, Lucas Gillenwater, Brook Santangelo, Nourah Salem, Sagi Shaier, and

Dr. Adrien Bibal for supporting my research. I am very thankful to Anis, Mike, Bill, and Kevin

for their support, wisdom, and friendship. I am also thankful to the other students and postdocs

in the computational bioscience program, especially Dr. Brian Ross, Dr. Cody Glickman, Dr.

Tiffany Callahan, Rutendo Sigauke, Emily Mastej, and Brook Santangelo for their encouragement

and willingness to listen and help with my problems regardless of their personal deadlines. To

Dr. Kristen Wade, Dr. Iain Konigsberg, and Hamish Pike from the genetics program for their

friendship and support. I am incredibly thankful to Dr. Janet Siebert and Dr. Kristen Wade for

being my partners in graduate school through everything.



viii

I am incredibly grateful to all of the collaborators I have had the honor of working with

throughout my PhD, including many already mentioned. Their specific contributions are described

at the end of each forthcoming Chapter. I especially would like to thank all of my annotators, Dr.

Elizabeth White, Dr. Katherine Sullivan, Stephanie Araki, and Emily Dunn for their countless

hours of very detailed oriented work that not only helped me shape my task but also provided the

fundamental data for this work.

Finally, I owe a huge amount of gratitude to my family and friends for supporting me

throughout my program. My parents, Linda and Bruce, for teaching me to problem solve and

fostering my curiosity from a young age. To my siblings, Arielle and Louis, for the many fun and

philosophical conversations about life, questions, and knowledge. To my adopted Colorado dance

family, especially Laurie and Louis Morris, Joan and Ken Saliman, Sharon Swartz, Bev Michaels

and Scott Fisher, Lauren Gallagher, Bennett Robinson, the Bogan Family and the Boulder dance

group, for their support, friendship, and great dancing. To my adopted Chicago dance family,

especially Gabrielle Gordon and Iris Pinto for their friendship and emotional support. To Rabbi

Mendel and Estee Popack and their kids for welcoming me into their Jewish home. To Laurie and

Louis Morris, Marilyn Hirsch and Gary Gordon, Arielle Boguslav, Camp Ramah in the Rockies,

and Kristen Johnson for providing me with family and internet during difficult times. To Erica

Shear, Evan Goldstein, Mimi Kaplan, Jessie Leider, Dr. Oded Stein, Jenn Gutterman, and Katie

Palazzolo for being there for me from the beginning, providing support, encouragement, and laughs

along the way. Lastly, to Gabrielle Gordon and Joshua Mendel for being my people through all the

adventures, providing countless hours of emotional support and pancakes.



ix

TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ignorance Task Description and Results . . . . . . . . . . . . . . . . . . . . . . . . 5

Relevant Biomedical Natural Language Processing (BioNLP) Introduction . . . . . . 13

The Importance of Concept Recognition . . . . . . . . . . . . . . . . . . . . . . 14

The Scientific Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Automation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Personal Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Summary/Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II. IMPROVING BIOMEDICAL CONCEPT RECOGNITION: CONCEPT RECOGNI-

TION AS MACHINE TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . 24

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Materials and Evaluation Platform . . . . . . . . . . . . . . . . . . . . . . . . . 34

Span Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Conditional Random Fields (CRFs) . . . . . . . . . . . . . . . . . . . . . . 42

Bidirectional Long Short Term Memory (BiLSTM) . . . . . . . . . . . . . . 43

BiLSTM combined with CRF (BiLSTM-CRF) . . . . . . . . . . . . . . . . . 46

BiLSTM with character embeddings (Char-Embeddings) . . . . . . . . . . . 46

BiLSTM and Embeddings from a Language Model (BiLSTM-ELMo) . . . . 46

Bidirectional Encoder Representations from Transformers for Biomedical

Text Mining (BioBERT) . . . . . . . . . . . . . . . . . . . . . . . 47

Concept Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



x

Training Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Span Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Concept Normalization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Contributions and Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 80

III. KNOWN UNKNOWNS: CAPTURING AND CLASSIFYING IGNORANCE . . . . 82

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Ignorance Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Ignorance Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Annotation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Annotation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Automatic Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Statements of ignorance employed a rich vocabulary . . . . . . . . . . . . . . . . 100

Robust annotation guidelines yielded a high quality corpus . . . . . . . . . . . . 108

The scientific literature was rich in statements of ignorance . . . . . . . . . . . . 110

Statements of ignorance and lexical cues can be automatically identified . . . . . 113

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Contributions and Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 124



xi

IV. CREATING AN IGNORANCE-BASE: EXPLORING KNOWN UNKNOWNS IN

THE SCIENTIFIC LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Creating the Ignorance-Base: Combining ignorance and biomedical concept

classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Ignorance-Base: Exploration by topic . . . . . . . . . . . . . . . . . . . . . . . 144

Ignorance-Base: Exploration by experimental results . . . . . . . . . . . . . . . 146

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

The Ignorance-Base: The power of combining ignorance and biomedical concept

classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Focusing on ignorance statements provided an alternative targeted exploration of

a topic that was distinct from an unfiltered or standard approach . . . . . 152

Connecting experimental results (a gene list) to ignorance statements can identify

questions that may bear on it, providing new avenues for exploration,

potentially from other fields . . . . . . . . . . . . . . . . . . . . . . . . 160

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Contributions and Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 174

V. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Biomedical Concept Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 183



xii

Ignorance Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Ignorance-Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

VI. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



xiii

LIST OF TABLES

TABLE

1.1 Term definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Statistics for the concept annotations in the training (67-document) and evaluation

(30-document) data sets for all ontologies in CRAFT. Note: avg stands for average. 38

2.2 Statistics for the concept annotation classes (or unique concept annotations) used

in the training (67-document) and evaluation (30-document) data sets and for those

added as additional training data for concept normalization for all ontologies in

CRAFT. Note: avg stands for average. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 BIO(-) labeling for the discontinuous and overlapping ontology class mentions in

the phrase “red and white blood cells" (from PMCID:15314655). (The O- would

simply be O in the canonical BIO labeling.) . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Quantification of discontinuous and overlapping words in all concept mentions. All

numbers are based on the number of words, not concepts. . . . . . . . . . . . . . . 42

2.5 Full end-to-end system evaluation on the core set comparing F1 score. For all results

shown here, the span detection algorithm is listed, and the concept normalization

algorithm was OpenNMT. UZH@CRAFT-ST was the best performing system from

Furrer et al. [128] in the CRAFT-ST, shown as a comparison to our methods. The

best-performing algorithm is bolded with an asterisk*. . . . . . . . . . . . . . . . . 54

2.6 Full end-to-end system evaluation on the core+extensions set comparing F1 score

for the top two algorithms found in the core set. For all results shown here, the

span detection algorithm is listed, and the concept normalization algorithm was

OpenNMT. UZH@CRAFT-ST was the best performing system from Furrer et al.

[128] in theCRAFT-ST, shown as a comparison to ourmethods. The best-performing

algorithm is bolded with an asterisk*. . . . . . . . . . . . . . . . . . . . . . . . . . 54



xiv

2.7 Hardware, memory, and time used for training for all evaluated algorithms. A given

training time specifies the total hours if training for all ontology annotation sets

were run consecutively, but these can be parallelized by ontology. *Parallelized per

ontology due to time constraints. **Runs significantly faster on GPUs. ***Total

free RAM available. ConceptMapper runs on CPUs but has no training, as it is a

dictionary-based lookup tool, hence the specifications as N/A. . . . . . . . . . . . . 56

2.8 Span detection F1 score results for all algorithms tested against the core evalua-

tion annotation set of the 30 held-out articles. The best-performing algorithm per

ontology is bolded with an asterisk*. . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9 Span detection F1 score results for all algorithms tested against the core+extensions

evaluation annotation set of the 30 held-out articles. The best-performing algorithm

per ontology is bolded with an asterisk*. . . . . . . . . . . . . . . . . . . . . . . . 57

2.10 F1 score results for detection of discontinuous spans for all algorithms tested against

the core evaluation annotation set of the 30 held-out articles. (Note that there are no

discontinuous spans in the GO_MF, MOP, and NCBITaxon sets.) . . . . . . . . . . 58

2.11 F1 score results for detection of discontinuous spans for all algorithms tested against

the core+extensions evaluation annotation set of the 30 held-out documents. (Note

that there were no discontinuous spans in the MOP_EXT and NCBITaxon_EXT sets.) 58

2.12 CRF tuning parameters and resulting tuning F1 scores. The overall memory usage

for all tuning was 6 GB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.13 BiLSTM tuning parameters and resulting tuning F1 scores that were used for the

BiLSTM-CRF and Char-Embeddings models also. . . . . . . . . . . . . . . . . . . 60

2.14 BiLSTM-ELMoparameters and resulting tuning F1 scores. Due to limited resources,

the batch size was 18 for all ontologies. . . . . . . . . . . . . . . . . . . . . . . . . 61



xv

2.15 Concept normalization exact match results on the core evaluation annotation set of

the 30 held-out documents compared to the baseline ConceptMapper approach. We

report both the percent exact match at the class ID level and the character level.

We also report the percentage of false negatives (FN) for ConceptMapper (i.e., no

class ID prediction for a given text mention). Note that for each ontology the better

performance between OpenNMT and ConceptMapper is bolded with an asterisk*

for both class ID and character levels. . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.16 Exact match results for the unseen and seen text mentions (relative to the training

data) for the core evaluation annotation set of the 30 held-out documents. Reporting

the total number of mentions and the number of unique mentions along with the

percent exact match on the class ID level and character level for both unseen and

seen text mentions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.17 Concept normalization exact match results on the core+extensions evaluation anno-

tation set of the 30 held-out documents compared to the baseline ConceptMapper

approach. We report both the percent exact match on the class ID level and the char-

acter level. We also report the percentage of false negatives (FN) for ConceptMapper

(i.e., no class ID prediction for a given text mention). Note that the best performance

between OpenNMT and ConceptMapper is bolded with an asterisk* for both class

ID and character level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.18 Exact match results for the unseen and seen text mentions (relative to the training

data) for the core+extensions evaluation annotation set of the 30 held-out documents.

Reporting the total number of mentions and the number of unique mentions along

with the percent exact match on the class ID level and character level for both unseen

and seen text mentions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.19 Percentage of predicted non-existent class IDs out of the total number of predicted

mismatch class IDs for the core set for the training, validation and evaluation sets. . 66



xvi

2.20 Percentage of predicted non-existent class IDs out of the total number of predicted

mismatch class IDs for the core+extensions set for the training, validation and

evaluation sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.21 Exact match results for the concept normalization experiments on the core evaluation

annotation set of 30 held-out documents. We report the exact match percentage at

the class ID level. The highest percentage is bolded and with an asterisk*. . . . . . . 69

2.22 Exact match results for the concept normalization experiments on the core evaluation

annotation set of 30 held-out documents. We report the exact match percentage at

the character level. The highest percentage is bolded and with an asterisk*. . . . . . 70

3.1 Data split for automatic classification in order of annotation tasks. Note that E.K.W.

was Elizabeth K. White, M.R.B. was Mayla R. Boguslav, E.D. was Emily Dunn,

Gold standard was the previous gold standard up to that point (the first row), K.J.S.

was Katherine J. Sullivan, and S.A. was Stephanie Araki. *M.R.B. was an annotator

along with the others. **E.D. only annotated one article along with the other

annotators and then stopped. ***M.R.B. was the adjudicator in these batches. . . . 96

3.2 Ignorance Taxonomy: definitions, knowledge goals, example cues, and total cue

count. The categories in bold were only narrow categories. Abbreviations are in

italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Interannotator Agreement (IAA): IAA was calculated as F1 score for all annotation

tasks. The IAA for the training was between the two annotators, not including the

previous gold standard. *F1 score between annotator and final gold-standard version

after adjudication with M.R.B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 Annotation Statistics Per Ignorance Category: Total number of lexical cue annota-

tions in all articles and statistics per ignorance category. SCOPE was the number

of sentences that contain at least one ignorance lexical cue. Note that all categories

except for ALL CATEGORIES and SCOPE (had 1) had zero minimum number of

annotations. Note max = maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xvii

3.5 UniqueAnnotation Statistics Per IgnoranceCategory: Total number of unique lexical

cue annotations in all articles and statistics per ignorance category. We did not

include SCOPE because the number of sentences was the same; we only capture the

scope one time no matter how many lexical cue annotations occur within it. Note

that all categories except for ALLCATEGORIES (had 1) had zero minimum number

of unique annotations. Note max = maximum. . . . . . . . . . . . . . . . . . . . . 112

3.6 Annotation Counts per Section: Total number of annotations by section in all articles

with section delineation and statistics per article. Note that every article contained a

title and none of the titles had any ignorance annotations. Note avg = average, min

= minimum, and max = maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.7 Sentence Classification: the best model for sentence classification for each ignorance

category and all categories combined. . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8 ANN sentence classification: Note that one sentence can map to more than one

category and so they will not add up to the total binary. *Reporting the macro-

average F1 score of all the categories for one multi-classifier. . . . . . . . . . . . . 115

3.9 BERT sentence classification: Note that one sentence can map to more than one

category and so theywill not add up to the total binary. *Reporting themacro-average

F1 score of all the categories for one multi-classifier. . . . . . . . . . . . . . . . . . 116

3.10 BioBERT sentence classification: Note that one sentence can map to more than one

category and so theywill not add up to the total binary. *Reporting themacro-average

F1 score of all the categories for one multi-classifier. . . . . . . . . . . . . . . . . . 116

3.11 Word Classification: the best model for word classification for each ignorance

category and all categories combined. *Reporting the average F1 score of all the

categories for one multi-classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.12 CRFword classification. *Reporting themacro-average F1 score of all the categories

for one multi-classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



xviii

3.13 BioBERT word classification. *Reporting the macro-average F1 score of all the

categories for one multi-classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1 Term definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.2 Ignorance Taxonomy: definitions, knowledge goals, example cues, and total cue

count. The categories in bold were only narrow categories. Abbreviations are in

italics. The ignorance-base was built upon this ignorance taxonomy. (Duplicate of

Table 3.2 for reference in this Chapter) . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3 Articles with the most ignorance statements: The top eight articles for vitamin D

and immune system in order of the most ignorance statements. . . . . . . . . . . . 158

4.4 Gene list coverage enrichment information: The top 25 OBO concepts sorted by the

highest gene list coverage with enrichment information for all gene list sentences

and for ignorance. NO INFORMATION means that the ontology term existed in

PheKnowLator and was connected to our gene list, but there were no sentences

that contained it on the literature side. *Statistically significant with FDR but not

family-wise error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



xix

LIST OF FIGURES

FIGURE

1.1 Relationship between society, maternal nutrition (vitamin D), and the effects on

mother and offspring: a Sankey diagram created based on Figure 3 from [115].

The orange color represents the findings from the exploration methods that the

concepts related to brain development and immune system were enriched in igno-

rance statements and possible novel avenues to explore. SES/SDC = socioeconomic

status/sociodemographic characteristics; BP = blood pressure; GDM = gestational

diabetes mellitus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Graphical Abstract of the entire dissertation work. . . . . . . . . . . . . . . . . . . 12

2.1 Example of the full translation pipeline. Each step was seen as a translation problem.

The input was text and the final output was the ontology class identifiers for each

detected text mention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Methods Flowchart. A flowchart of the methods. . . . . . . . . . . . . . . . . . . . 88

3.2 Classification Flowchart. A flowchart of the different classification problems. . . . . 96

3.3 Ignorance taxonomy embedded in the research context: Starting from the top, re-

search starts from known unknowns or ignorance. Our ignorance taxonomy is in

green (an ignorance statement is an indication of each ignorance category) with

knowledge goals underneath. Research is then conducted based on the knowledge

goals to get answers; these then filter back to the known unknowns to identify the

next research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Article date distribution for the ignorance corpus (1979-2018). . . . . . . . . . . . . 108

3.5 Sentence classification summary: A bar plot summary of test F1 scores for sentence

classification. *Reporting the macro-average F1 score of all the categories for one

multi-classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



xx

3.6 Word Classification summary: A bar plot summary of test F1 scores for word

classification. *Reporting the macro-average F1 score of all the categories for one

multi-classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1 Relationship between society, maternal nutrition (vitamin D), and the effects on

mother and offspring: a Sankey diagram created based on Figure 3 from [115].

The orange color represents the findings from the exploration methods that the

concepts related to brain development and immune system were enriched in igno-

rance statements and possible novel avenues to explore. SES/SDC = socioeconomic

status/sociodemographic characteristics; BP = blood pressure; GDM = gestational

diabetes mellitus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2 Network representation of the ignorance-base: The top right corner is the literature

connecting the articles via tokenized sentences (in blue) to the ignorance taxonomy

(in yellow) through the ignorance classifiers (the annotated lexical cues). Note that

in order to capture lexical cues that map to the non-canonical ignorance category,

we mapped the annotated lexical cue both to the canonical ignorance category and

to the non-canonical one. The sentences also connect to the biomedical concepts on

the left with PheKnowLator [276, 277] using the biomedical concept classifiers with

the ontologies of interest in bold and larger font. Note that PheKnowLator [276,

277] does not include the Molecular Process Ontology or the NCBI Organismal

Classification Ontology, which is why they are at the top not integrated with the rest. 144

4.3 Ignorance vs. Standard Approach Results Chart: The interpretation of the results

comparing the ignorance approach to the standard approach. . . . . . . . . . . . . . 146

4.4 Exploration by experimental results (gene list) pipeline: The results are in yellow

highlights for the example presented here. For exploration at the end of the pipeline,

the three not highlighted are the same as exploration by topic and the three highlighted

are the new additions based on a gene list. . . . . . . . . . . . . . . . . . . . . . . . 148



xxi

4.5 Summary information for the ignorance-base. The ignorance-base was a combi-

nation of biomedical concept classifiers and ignorance classifiers over a corpus of

prenatal nutrition articles. The network representation connected the literature to

the ignorance theory and biomedical concepts via PhenKnowLator [276, 277]. Note

that 95.3% of the ontology annotations mapped to PheKnowLator. . . . . . . . . . . 150

4.6 Article date distribution for the ignorance-base (1939-2018). . . . . . . . . . . . . . 150

4.7 Ignorance taxonomy embedded in the research context: Starting from the top, re-

search starts from known unknowns or ignorance. Our ignorance taxonomy is in

green (an ignorance statement is an indication of each ignorance category) with

knowledge goals underneath. Research is then conducted based on the knowledge

goals to get answers; these then filter back to the known unknowns to identify the

next research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.8 Exploring the ignorance-base by vitamin D: Searching the ignorance-base for vi-

tamin D yielded many articles and sentences that can be explored using ignorance

statements to find new research areas with lots of questions, including the IMMUNE

SYSTEM and BRAIN DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . 153

4.9 Term frequency results: Frequent Biomedical Concepts and Words in (a) vitamin D

ignorance statements and (b) vitamin D sentences. Word clouds using biomedical

concepts and words are on the left and right respectively. Also underneath are

frequency tables of the top 5 most frequent concepts or words. . . . . . . . . . . . . 156



xxii

4.10 Comparison of standard and ignorance enrichment: A Venn diagram of biomedical

concept enrichment between ignorance vitamin D (green) and just vitamin D (pink)

sentences. Next to each bubble are concepts in their respective enrichment orders.

The concepts in the middle are the overlap and the numbers correspond to the

enrichment position for the ignorance vitamin D enrichment, with the standard

enrichment position in parentheses. SKELETON OF MANUS is an error and is

actually annotating autoimmune as in the parentheses. *Statistically significant with

FDR but not family-wise error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.11 Ignorance-category enrichment: Ignorance vitamin D sentences compared to all

ignorance sentences. The 10 categories highlighted in green were enriched for

vitamin D ignorance statements compared to all ignorance statements. . . . . . . . . 161

4.12 How ignorance changes over time: A bubble plot of vitamin D and immune system

sentences (including non-ignorance sentences). The x-axis is the articles sorted by

time. The y-axis is the ignorance categories. Each bubble represents the portion of

sentences in each article in that ignorance category (scaled by the amount of total

ignorance sentences in the category). For example, future prediction only appeared

in two different articles and was basically split in half between both. . . . . . . . . . 162

4.13 Enhancing canonical enrichment analysis using the ignorance-base: DAVID enrich-

ment analysis for the gene ontology (GO) in relation to the ignorance-base. The

DAVID initial analysis is on the left with 42 of the 43 genes found in DAVID map-

ping to 159 GO concepts. The right is a breakdown of where the 51 enriched GO

concepts from DAVID fall within the ignorance-base. . . . . . . . . . . . . . . . . . 164



xxiii

4.14 Comparison ofDAVID and ignorance enrichment: AVenn diagram of gene ontology

enrichment between the ignorance-base (green) and DAVID (pink). In parentheses

are the total number of concepts found in each category without enrichment. Next to

each bubble are the top three concepts for each enrichment method. The concepts in

the middle are the overlap. *Statistically significant with FDR but not family-wise

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.1 Summaries of articles example. A one sentence summary of each article based on

the first ignorance statement that is an indication of answered research question, a

statement of a goal or objective of a study that is attempted or completed during the

study. The knowledge goal is to find the answer(s) in the article to determine if the

question(s) is (are) fully answered in the article. The lexical cues are highlighted in

yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1 The scientific method from Wikipedia. . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2 Ignorance taxonomy embedded in the research context: Starting from the top, re-

search starts from known unknowns or ignorance. Our ignorance taxonomy is in

green (an ignorance statement is an indication of each ignorance category) with

knowledge goals underneath. Research is then conducted based on the knowledge

goals to get answers; these then filter back to the known unknowns to identify the

next research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



1

CHAPTER I

INTRODUCTION

Motivation

Research begins with a question. It progresses through accumulating knowledge such that

a previously unexplored subject (an unknown unknown) becomes an active research area

exploring the questions (known unknowns), until a body of established facts emerges (known

knowns) [1–3]. We aim to help illuminate this process using biomedical natural language

processing (BioNLP) to identify, categorize, classify, and explore known unknowns highlighting

their entailed goals for scientific knowledge (i.e., actionable next steps). These known unknowns

are discussed in the scientific literature as statements about knowledge that does not exist yet,

including goals for desired knowledge, statements about uncertainties in interpretation of results,

discussions of controversies, and many others; collectively we term them statements of

ignorance, borrowing the term from Firestein [1]. For example, “these inconsistent observations

point to the complicated role of vitamin D in the immune modulation and disease process"

(PMC4889866) is a statement of ignorance. The biomedical concepts within such statements are

also important to understand the biomedical subjects of these known unknowns (biomedical

concept recognition). These include “vitamin D" and “immune" from the example. We aim to

reveal both the statements of ignorance and the entailed biomedical concepts to help students,

researchers, funders, and publishers better understand the state of our collective scientific

knowledge and ignorance (known unknowns). This work provides all the necessary methods and

tools to create an ignorance-base, a knowledge-base containing representations of known

unknowns for students, researchers, funders, and publishers to explore the landscape of ignorance

at scale and across disciplines, hopefully resulting in an accelerated research process.

A knowledge foundation underlies known unknowns. Many knowledge-bases exist to

capture the known knowns from domain experts, the scientific literature, and other data sources

such as experimental results [4]. To capture the biomedical concepts, many of them utilized

biomedical ontologies (i.e., community controlled biomedical vocabularies) both to ameliorate
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ambiguity and variability, and for interoperability. These knowledge-bases are important based on

their variety of applications [4], including finding and interpreting information based on a single

input topic, such as a concept, or a set of input topics that may be related, such as those from

experimental results. For example, a graduate student or researcher interested in learning about

the field of prenatal nutrition might consult a database of dietary supplements [5]. Or a researcher

might perform a functional enrichment analysis to characterize a list of genes associated with

vitamin D and preterm birth by finding relevant known biomedical concepts [6].

Both of these examples explore knowledge-bases of known facts, but equally important are

the questions or known unknowns surrounding a topic or a set of experimental results. But how do

researchers find the most pertinent questions? Researchers gain these skills in graduate school,

where the goal is to identify and provide at least some solutions for a question that is unanswered.

There are many books [7–11] and articles [12–16] discussing how to choose the most pertinent

question or topic, and yet there is only one automated system, the COVID-19 challenges and

directions search engine [17]. Lahav et al. [17] created a search engine mainly focused on

COVID-19 to help researchers discover scientific challenges and directions (their two known

unknown categories) by providing relevant articles and sentences for each input biomedical MeSH

(Medical Subject Headings - a controlled vocabulary that is part of the Unified Medical Language

System from NLM used for indexing, cataloguing, and searching for biomedical information and

documents [18]) term. However, their two categories of known unknowns were quite broad, when

most other works included more nuanced categorizations (e.g.,[19–27]). Their input concepts

were not grounded in ontologies, limiting the ability to connect their work to other ontology-based

efforts (i.e., many knowledge-bases). Also, they cannot support queries by experimental results as

standard methods for contextualizing experimental results (functional enrichment analysis) use

knowledge-bases and ontologies [28–32]. Further, they did not go beyond the identification of

sentences to provide summaries or visualizations of the immense amount of data outputted.

Tables alone do not suffice to truly explore all the outputted data (thousands of sentences can be

found per input concept). They “hope to build more tools to explore and visualize challenges and
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directions across science" in future work [17]. Thus, no prior work has created a knowledge-base

to capture the nuance of the known unknowns drawing from prior work, connected them to

ontologies for integration with other knowledge-bases, and provided summaries and visualizations

of the outputs to help researchers find the most pertinent questions.

Such an automated system could be useful to a wide variety of scientists ranging from

graduate students looking for thesis projects (e.g., [12]) to funding agencies tracking emerging

research areas (e.g., [33]). It could help facilitate interdisciplinary interactions amongst

researchers by finding questions from another field that bear on a topic or a set of experimental

results (e.g., [34]). It could also help track the evolution of research questions over time as a

longitudinal analysis (e.g., [35]). Further, automatically identifying questions would allow us to

query existing databases for information (e.g., [36]). Thus, there is a need for such an automated

system to capture questions or known unknowns.

Many efforts exist to capture the known unknowns [4], but none have been used to create

an ignorance-base. Known unknowns were represented through understanding the phenomenon

[20, 21, 23–25, 27, 37–67], creating taxonomies where a hierarchy of terms was linked by

specified relationships [43, 46, 68–73] and ontologies specifying relationships among controlled

vocabularies [74–77], annotating literature to create corpora [40, 41, 50, 55, 63, 78–85], and

automating the identification of known unknowns through classification tasks [20, 42–45, 47–49,

51–54, 56, 58–62, 64–67, 86–94]. Some efforts have also sought to capture known unknowns

completely by creating theoretical frameworks, determining if the task was feasible for humans to

perform, and automating it [17, 19–27, 46, 95, 96]. However, none of these works, including

Lahav et al., focused on the entailed knowledge goal of the known unknowns nor have provided

summaries and visualizations of the results, especially for an input topic or a set of experimental

results. As such, no existing system can support exploring the questions surrounding a topic (a set

of ontology terms) or set of experimental results.

For experimental results specifically, current methods for contextualizing them (standard

functional enrichment analyses) use knowledge-bases and ontologies [28–32], and natural
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language processing (NLP) tools over the biomedical literature [34, 97–106]. Some of this prior

work not only aimed to characterize genes but also to help define new research areas (e.g., [34] as

one of a few goals), generate new hypotheses (e.g., [107]), and find information about genes of

unknown function and fill gaps in knowledge (e.g., a preprint [105] employs manual curation).

Thinking beyond a gene list, if we consider pathway models as experimental results, tools exist to

associate pathway models to the literature (e.g., [108]) and some took uncertainty into account

(e.g., [44, 109]). However, these works focused on confidence and relevance, respectively, rather

than explicitly representing statements of known unknowns. Thus, to the best of our knowledge,

there is no prior work that can facilitate the widespread search for questions to find new avenues

for exploration (knowledge goals) from a set of experimental results.

This work aims to change this by: (1) creating methods and tools to identify, categorize,

and classify known unknowns based on their entailed knowledge goals, (2) improving upon

existing methods to classify the biomedical concepts within the statements of ignorance to

ontologies, and (3) creating a knowledge-base containing representations of known unknowns,

formally defined as an ignorance-base (based on [1]), to explore by topic and explore by

experimental results, as done in the knowledge-bases. Identifying questions or knowledge goals

that need answers, allows us to then look to other fields and knowledge-bases to help answer them.

Our goal is to provide students, researchers, funders, and publishers with a mechanism to better

understand the state of our collective scientific ignorance (known unknowns) in order to help

accelerate translational research through the continued illumination of and focus on the known

unknowns and their respective goals for scientific knowledge.

While these ideas and methods are generally applicable across biomedical research, we

chose to apply this efficacy work to the field of prenatal nutrition as a starting point. Due to ethical

and legal considerations and complexities in studying pregnant mothers and fetuses, prenatal

nutrition is understudied and serves to benefit from the identification of questions that are well

studied in other fields [110–113]. Fetal development is a critical period and exposure to nutrition

has a lifelong impact [114]. For example, the micronutrient vitamin D is very important for
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maternal and fetal health, affecting the immune and musculoskeletal systems, neurodevelopment,

and hormones [115–119] (see Figure 1.1). Abnormal vitamin D levels are associated with

gestational diabetes mellitus, preterm delivery, frequent miscarriages, adipogenesis,

pre-eclampsia, obstructed labor, Cesarean sections, reduced weight at birth, respiratory issues,

postpartum depression, and autism [115]. If we can identify the known unknowns in prenatal

nutrition, even just with regard to the role of vitamin D, then we can look to other fields to help us

answer the questions raised, potentially avoiding the additional risks faced when studying

pregnant women and their offspring. Also the prenatal nutrition field is a good case study for these

ideas because it contains a diverse literature with all types of studies from all over the world,

meaning there is a higher potential for generalizability to other fields. Thus, this work has the

potential to generalize beyond prenatal nutrition, and more specifically to facilitate new

interdisciplinary interactions that could advance the study of an underserved population and

potentially help accelerate translational research for mothers globally.

Ignorance Task Description And Results

Our goal is to create an ignorance-base as a formal representation of statements of

ignorance using the example of the prenatal nutrition literature. We define statements of

ignorance as statements of incomplete or missing knowledge categorized based on the entailed

knowledge goals (i.e., the next actionable step based on the given unknown). A knowledge goal

focus allows us to provide actionable next steps to the students, researchers, funders, or publishers.

Following the example above, “these inconsistent observations point to the complicated role of

VITAMIN D in the IMMUNE modulation and disease process" (PMC4889866) is a statement of

ignorance with the entailed knowledge goal to determine the correct role of vitamin D in the

immune modulation and disease process by creating novel methods or conducting new

experiments to study the complicated role. The ignorance statement, with its entailed knowledge

goal, was identified based on the underlined words or lexical cues that communicate knowledge is

missing. All lexical cues map to a categorization of knowledge goals, an ignorance taxonomy.

For the example, the cue inconsistent is an indication of alternative research options or
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controversy of research, observations and point are indication(s) of proposed or incompletely

understood research topic or assertion, complicated is an indication of difficult research task, and

role is an indication of indefinite relationship among research variables. Using these definitions,

we show that it is possible to characterize known unknowns as knowledge goals (ignorance

taxonomy), that humans can identify statements of ignorance in the literature (annotation task to

create a corpus), and that they can be automatically identified (ignorance classification task). We

found that our annotation guidelines were robust to multiple annotation tasks and yielded a high

quality ignorance corpus that was rich in statements of ignorance. Statements of ignorance also

seemed to employ a rich vocabulary using many different types of lexical cues. With all the data,

we trained and evaluated high performing classifiers for statements of ignorance and lexical cues.

We created methods and tools to identify, categorize, and classify known unknowns or ignorance

statements based on their entailed knowledge goals.

However, identifying ignorance statements and lexical cues alone is not enough to fully

understand the known unknowns. The biomedical subjects (or concepts) of ignorance statements

are necessary to both understand them fully and be able to connect them to other

knowledge-bases. We identified biomedical concepts from the open biomedical ontologies

(OBOs) (e.g., the all caps words in the example sentence) using concept recognition methods,

i.e., automated recognition of references to specific ontology concepts from mentions in text [120,

121]. Concept recognition is a critical task in BioNLP that underlies information extraction from

the literature [120–122]. The ultimate goal is to run automatic concept recognition systems over

the entirety of the vast biomedical literature (with more than one million new articles per year

indexed in PubMed), which means that the efficiency of the such systems is important, as well as

the accuracy [123]. At the same time, this task is made difficult by the ambiguity and variability

of language with the non-standard usage of abbreviations, synonyms, homonyms, and phrases to

describe biomedical concepts [120, 124]. For example, if researchers are interested in the

“Golgi-associated PDZ and coiled-coil motif-containing protein" (PR:000008147) and want to

automatically extract sentences from the literature containing it, they will have difficulties due to a
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synonym: “FIG" is a synonym for this protein and also shorthand for a figure in a paper. To help

with these difficulties, many recent open shared tasks including BioCreAtIve [125], the BioNLP

Open Shared Tasks (BioNLP-OST) [126], and the recent Covid-19 Open Research Dataset

Challenge [127], made concept recognition a focus, creating a community wide effort. All of

these shared tasks provided data, evaluation details, and a community of researchers, making them

very useful frameworks for further development of such tasks. To continue these efforts, we

focused on the Concept Annotation Task of the CRAFT Shared Tasks at BioNLP-OST 2019

(CRAFT-ST): to systematically characterize the factors that contribute to the accuracy and

efficiency of several approaches to concept recognition, while aiming to improve state-of-the-art

performance. We found that our best-performing systems performed comparably with the state of

the art on the task [128] (occasionally extending it by a modest degree), and some offered

substantial efficiencies in the time and computational resources required for tuning and training.

Our best performing system was Conditional Random Fields (CRFs) [129] or Bidirectional

Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) [130] with

Open-Source Toolkit for Neural Machine Translation OpenNMT [131]. Furthermore, we

analyzed the strengths and weaknesses of all systems to suggest promising avenues for future

improvements as well as design choices that can increase computational efficiency at a small cost

in performance. The best performing biomedical concept recognizers were used to identify the

biomedical concepts (or subjects) in ignorance statements.

The ignorance-base then is a combination of the identification and classification of

ignorance statements and biomedical concepts over the prenatal nutrition literature (1,643 articles

in PMCOA). We explored it by topic and by experimental results. We show it is possible to

automatically find statements of ignorance related to a topic motivated by researcher’s search for a

pertinent question or topic in vitamin D. The goal was to find areas of research (biomedical

concepts) with lots of questions (ignorance statements) that are ripe for future research.

Analogous to exploring by topic using knowledge-bases, we used the ignorance-base to find other

keywords and knowledge goals for the researcher by determining if other concepts were enriched
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in vitamin D ignorance statements compared to all vitamin D statements (ignorance enrichment).

We found the concepts IMMUNE SYSTEM, BRAIN DEVELOPMENT, and RESPIRATORY

SYSTEM to be enriched. All of these biomedical concepts with their corresponding ignorance

statements provided lots of interesting questions and ideas. In a similar vein, to help the researcher

understand the general landscape of questions surrounding a topic and narrow in on a type of

question to ask (ignorance category), we present a summary of the ignorance categories and map

out how they change over time. We identified the ignorance categories that were over-represented

in a subset of ignorance statements as compared to all ignorance statements (ignorance-category

enrichment). By narrowing the researcher’s search to specific ignorance categories, we argue that

this provided the researcher with a filtered set of knowledge goals to explore as potential questions

for future work. For example, the researcher could choose a topic that is a complete unknown

(indication of unknown or novel research topic or assertion) or a topic where there are alternate

existing hypotheses to explore (indication of alternative research options or controversy of

research). Further, we argue how this can help track emerging research areas or perform a

longitudinal analysis of the evolution of research questions over time for funding agencies and

publishers [33, 35, 132–139]. Exploration by topic can be used by any researcher to better

understand the question landscape surrounding a topic or set of OBO concepts.

We also show that it is possible to contextualize experimental results in terms of

statements of ignorance to understand what questions may bear on them, potentially from another

field. Similar to exploration by topic, the goal was to find areas of research (biomedical concepts),

which ideally imply another field, with lots of questions (ignorance statements) that are ripe for

future research. We used a gene list connecting vitamin D and spontaneous preterm birth (sPTB)

from the literature [6] as our example. We mapped the genes to the OBOs to conduct the same

analyses as exploration by topic and some added analyses based on the connections between the

genes, including gene list coverage, functional enrichment analyses, and comparing our findings to

the paper. If vitamin D played a role in preventing sPTB, it would affect mothers everywhere. We

found ignorance enrichment of the concepts IMMUNE SYSTEM and BRAIN DEVELOPMENT.
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Yadama et al. also found the immune system through their functional enrichment analysis and

suggested it modulates the effects of maternal vitamin D intake and sPTB [6]. They suggested an

increase in maternal vitamin D intake and that future work needs to be done to fully determine the

relationship between vitamin D, the immune system, and sPTB. Our exploration provided immune

system ignorance statements that can be explored in future work. At the same time, they did not

find any concepts related to brain development or mention anything related to the brain in their

paper [6]. Thus, we found a novel concept that relates to questions based on their gene list and

provide all the ignorance statements for future exploration. Also, the concept brain development

implies the field of neuroscience, providing a field for the researchers to look to for answers. The

ignorance-base provided a novel putative research area and specific ignorance statements or

knowledge goals to pursue in future work based on a gene list. For all findings from the

ignorance-base we provide the ignorance statements of interest as a starting point to explore the

new found connections as well as discussions of possible conclusions and future questions to ask

based on reviewing them with a prenatal nutrition expert (see Figure 1.1 for our results shown in

orange). Any researcher with results that can connect to the OBOs can explore the ignorance-base

for insights into their results.

The purpose of this work was to highlight the power and importance of focusing on

ignorance statements as driven by knowledge goals. We began by improving upon the task of

concept recognition as it underlies most information extraction tasks [120–122], including our

ignorance task. For the ignorance task, we created a taxonomy of ignorance to characterize

statements of ignorance based on their entailed knowledge goals. We showed that humans can

identify such statements in the literature using novel annotation guidelines to create an ignorance

corpus of 91 articles. We automated classifying ignorance using the corpus drawing heavily from

the biomedical concept recognition work. Lastly, using both the ignorance and biomedical

concept classifiers, we created the an ignorance-base to explore by topic and experimental results,

motivated by a researcher looking for pertinent questions in vitamin D and a vitamin D and

spontaneous preterm birth gene list, respectively. Even with all this work, we only scratched the
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surface of the power and possibilities of focusing on ignorance statements. We suggest future

directions in each Chapter and overall in the Discussion section. (See Figure 1.2 for an overview

of this work.) (A list of the formal terms we have introduced here and their definitions are shown

in Table 1.1.)

The rest of this Chapter provides an introduction to the relevant BioNLP literature for

readers less familiar with the field, a personal motivation for the project, and a summary of the

work with contributions to the field of BioNLP. The rest of the dissertation is as follows:

• Chapter 2: Improving Biomedical Concept Recognition: Concept Recognition as Machine

Translation

• Chapter 3: Known Unknowns: Capturing and Classifying Ignorance

• Chapter 4: Creating an Ignorance-Base: Exploring Known Unknowns in the Scientific

Literature

• Chapter 5: Discussion
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Figure 1.1: Relationship between society, maternal nutrition (vitamin D), and the effects on mother and
offspring: a Sankey diagram created based on Figure 3 from [115]. The orange color represents the
findings from the exploration methods that the concepts related to brain development and immune system
were enriched in ignorance statements and possible novel avenues to explore. SES/SDC = socioeconomic
status/sociodemographic characteristics; BP = blood pressure; GDM = gestational diabetes mellitus.
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Figure 1.2: Graphical Abstract of the entire dissertation work.
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Table 1.1: Term definitions.

Term Definition
Ignorance community/collective/scientific known unknowns

Knowledge-base a database of known information
Statements of ignorance statements of incomplete or missing knowledge categorized

based on the entailed knowledge goal
Knowledge goal the next actionable step based on the given unknown
Ignorance-base a knowledge-base, created from the literature, with addi-

tional annotations for the sentences that are ignorance state-
ments

Biomedical concept classification/recognition automatically identifying and mapping biomedical entities
to ontologies

Ontologies controlled vocabularies with specified relationships
Open biomedical ontologies (OBOs) an effort to create standardized ontologies for use across

biological and medical domains
Lexical cue words or phrases that signify a statement of ignorance

Taxonomy of ignorance a categorization of ignorance statements based on the en-
tailed knowledge goal

Exploration by topic automatically find statements of ignorance related to a topic
from the ignorance-base

Exploration by experimental results contextualize experimental results in terms of statements
of ignorance from the ignorance-base to understand what
questions may bear on them

Ignorance enrichment a method to identify biomedical concepts that are over-
represented in a set of ignorance statements as compared
to all sentences, and thus may be a new promising avenue to
explore in relation to the input topic

Ignorance-category enrichment a method to identify ignorance categories that are over-
represented in a subset of ignorance statements as compared
to all ignorance statements in order to illuminate the types of
knowledge goals to pursue and to map out how they change
over time

Relevant Biomedical Natural Language Processing (BioNLP) Introduction

This work both helped improve a canonical BioNLP task as well as created a new task

using many BioNLP techniques. Thus, we provide a summary of the field of BioNLP, focusing on

tasks relevant to this work for those more unfamiliar with the field. NLP is a subfield of computer

science and linguistics that aims to create computer applications with inputs of natural or human

language. BioNLP is NLP applied to the biomedicine field. The two fundamental difficulties of

human language are ambiguity and variability. The context of a word can be critical to
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understanding its meaning (e.g., table can be a piece of furniture or a statistical table). There are

multiple words that mean the same or very similar things (e.g., street and road). Both of these

issues along with the massive number of words in language make analyzing text difficult in

general and is the reason there are still many open problems in BioNLP.

The Importance of Concept Recognition

BioNLP, as focused on the scientific literature, was originally motivated by the need to

stay up-to-date on the biomedical research as its vastness increased exponentially and continues to

[122, 140, 141]. Efforts in BioNLP continued through the observation that it can help find new

facts and generate hypotheses through piecing together facts scattered throughout the literature,

termed literature-based discovery (LBD) [122, 142, 143]. LBD aims to infer new relationships

between biomedical entities and processes. Our work has a similar goal to LBD, but focuses on

finding sentences with the entities instead of links between them. Both LBD and our ignorance

work rely on identifying and extracting the biomedical entities.

Thus, named-entity recognition or span detection (the task of delimiting a particular

textual region that refers to some specific semantic class or classes in text, i.e., a text mention),

became a major focus of BioNLP [144–146]. One of the first tasks was to identify text mentions

of genes for different model organisms. BioNLP grew alongside efforts to create genomic

databases like GeneBank (the earliest one in 1982) as genetic assays increased in size warranting

the synthesis of more information. Molecular biologists wanted to understand their experimental

results in the context of other biomedical entities, including other genes, drugs, and proteins, as

well as the relevant biomedical literature (early tools included MedMiner [147], iHOP [148], and

Textepresso [149]). Our work presents an analysis of some of the most currently widely used and

high-performing algorithms to help improve performance for span detection, the first step in

concept recognition. The best performing algorithms were used to help understand the biomedical

subjects of the ignorance statements. Further, just as previous work aimed to contextualize

experimental results in knowledge, one aim of our work is to contextualize experimental results in

the context of knowledge goals or ignorance. The goal is to help researchers find pertinent
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questions by staying up-to-date on the collective scientific ignorance, similar to the original goal

of BioNLP.

The second step of concept recognition is concept normalization. To fully understand

biomedical text mentions, mapping a text mention to a specific entry in a database or other model

of the world (i.e., concept normalization) is helpful [122]. The first main task focused on gene

normalization to both map found genes to a reference database such as Entrez Gene [150] and to

find information about it in the literature. The need for normalization has expanded as databases

have expanded. Concept normalization is not a simple task, since span detection is necessary for it.

We must identify what concepts to map and any errors in the span detection perpetuate to concept

normalization (i.e., if a text mention of a concept is not identified then it cannot be normalized).

For both tasks, the fundamental difficulties of language, the sheer massiveness of the biomedical

vocabulary, and the need for domain knowledge also cause problems [122]. This dissertation

presents a new way of thinking about concept normalization to improve performance, drawing on

another BioNLP task (machine translation - automating translation from one language to another).

To help with the difficulties of language and in an effort to formalize the biomedical

vocabulary, biomedical ontologies were created and much prior work normalized to them. The

goal of an ontology is to capture what is, i.e., what exists in the world. In practice an ontology is a

set of concepts in a controlled vocabulary, including definitions, unique identifiers, synonyms, and

relationships (is-a and has-part) between concepts [122, 151]. The definition constitutes the

concept, not the term; so if a term changes, there is no need to change the concept, but if the

definition changes then the concept identifier is deprecated and a new concept created. Thus, if

identified text mentions from span detection are mapped to ontology concepts through concept

normalization, the problems of ambiguity, variability, and the need for domain knowledge

(definitions in the ontology) are solved. We use the biomedical ontologies for the concept

recognition task in this dissertation. Further, we create a taxonomy of ignorance, similar to an

ontology but without the relationships. The goal of the ignorance taxonomy is to capture the

epistemics of what is not known, instead of what is known. This presents its own challenges.
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One of the first BioNLP ontologies was the Gene Ontology (GO) [152–154], invented to

help researchers determine if a gene from one organism had the same function as a gene from

another. As each model organism database had its own naming scheme, scientists from three

model organisms databases joined together to create a gene function ontology [122]. Today, the

goal of the GO is to develop consistent species-independent descriptions of gene products in

different model organism databases with three different branches: biological processes, cellular

components, and molecular function [154]. Many other biomedical ontologies also exist for other

types of biomedical entities such as, genomic sequences (the sequence types and features

ontology), proteins (the protein ontology), and chemicals (chemical entities of biological interest).

Since there are interactions between all of these entities, efforts to increase integration and

interoperability created the Open Biomedical Ontology (OBO) Foundry [155], which relies on

the basic formal ontology standards from philosophy [151]. We focus on ten different OBOs for

this work and create 13 categories of ignorance under our ignorance taxonomy.

The Scientific Literature

The main source of text for the biomedical scientific literature is PubMed [156], which is

used in this work. It is a repository of biomedical literature containing only abstracts with links out

to the full-text if available. Due to publishing requirements, the full-text is not always available.

With this limitation, many previous BioNLP systems focused only on abstracts and not the

full-text. In the last decade, there has been a move towards the full-text and the acknowledgement

that tools may and do perform differently on abstracts compared to full-text [157].

“Article bodies are typically separated into sections, with a common set of

sections being an introduction, a materials and methods section, a results section, and

a discussion section. Materials and methods sections are notorious sources of false

positives for many types of applications, and they are often omitted from processing

in system evaluations, but the ability to handle them is crucial for extracting the

information on methods and on biological context that biologists find crucial in

interpreting experiments and the output of text mining applications." [122]
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The length and the varieties of formatting also make full-text more difficult than abstracts.

Further, added features such as figures, tables, and captions are only in the full-text. Even with

these challenges, research has shown the need to use full-text articles over just abstracts because

of their richness and ability to help with search [158]. Full-text articles are available in PubMed

Central Open Access (PMCOA) [159], which is used in this work for all the same reasons.

With the continued growth of PubMed, the need for methods to help researchers keep up

with their field and possibly others is apparent. Thus, the goal is to find relevant documents to a

search, the tasks of information retrieval and document classification [122, 160]. Researchers

can no longer keep up with their field let alone other fields their work may touch on.

Interdisciplinary boundaries broke down as genomic science grew and continues to today.

“For example, the gene relaxin has recently been found to play a role in human

responses to drug treatment for heart failure [161]. This has required cardiologists to

research relaxin. However, it turns out that relaxin has been studied for years by

obstetricians, since it is also the hormone ripening protein, responsible for preparing

the uterus for labor. Thus, cardiologists find that they must not only stay current with

their own literature, but also must become familiar with a body of literature from the

obstetrics community." [122]

Information retrieval is central to our two novel ignorance-base exploration methods, with the goal

to help researcher sweep across disciplinary boundaries, like relaxin. Evaluations of information

retrieval systems often rely on experts in a field to either create a test set that identifies the relevant

literature including a relevance judgment or to evaluate the results of the systems [162]. We rely

on experts to judge the output of our exploration methods as to both relevance and ability to help

researchers stay up-to-date.

The ultimate goal of BioNLP is automation. In order to do so, many researchers have

turned to manually creating corpora for their specific task, a set of documents labelled for a

specific phenomenon using annotation guidelines. To ensure a high quality gold standard corpus,

the annotation task usually includes at least two annotators that independently mark up the text.
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From these two marked-up texts, the inter-annotator agreement (IAA) is calculated to measure

how well the annotations agree to get a value between 0.0 (no agreement) and 1.0 (full agreement)

[163]. The higher the IAA, the more the annotators (annotations) agree with each other. Any

disagreements amongst annotators are adjudicated and the corpus is updated accordingly. For the

biomedical space, not only is linguistic expertise necessary, but also expertise in the biomedical

domain of interest. For example, GENIA [164, 165] is one of the most influential corpora for

genomic NLP with 1,999 PubMed abstracts manually marked up for both semantic/biological

information and aspects of linguistic structure, including sentence boundaries and part of speech.

For the biological information, the GENIA project built their own ontology, which has not been

widely adopted and is captured in the other OBOs. Another widely used corpus is The Colorado

Richly Annotated Full Text corpus (CRAFT) [166–170]. It represents the first attempt to do

extensive linguistic and semantic annotation of a large collection of full-text journal articles and

has been updated regularly to add new semantic and linguistics annotations. It contains 97 articles

from PMCOA randomly selected from the mouse genome literature and contains annotations to

ten OBOs:

1. Chemical Entities of Biological Interest (ChEBI): compositionally defined chemical entities

(atoms, chemical substances, molecular entities, and chemical groups), subatomic particles,

and role-defined chemical entities (i.e.,, defined in terms of their use by humans, or by their

biological and/or chemical behavior)

2. Cell Ontology (CL): cells (excluding types of cell line cells)

3. Gene Ontology Biological Processes (GO_BP): biological processes, including genetic,

biochemical/molecular-biological, cellular and subcellular, organ- and organ-system level,

organismal, and multiorganismal processes

4. Gene Ontology Cellular Components (GO_CC): cellular and extracellular components and

regions; species-nonspecific macromolecular complexes
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5. Gene Ontology Molecular Function (GO_MF): molecular functionalities possessed by

genes or gene products, as well as the molecular bearers of these functionalities (though

note that only five of the proper classes of the ontology were used for annotation, while the

corresponding extension classes were instead used for the large majority of the classes of

this ontology)

6. Molecular Process Ontology (MOP): chemical reactions and other molecular processes

7. NCBI Taxonomy (NCBITaxon): biological taxa and their corresponding organisms; taxon

levels

8. Protein Ontology (PR): proteins, which are also used to annotate corresponding genes and

transcripts

9. Sequence Ontology (SO): biomacromolecular entities, sequence features, and their

associated attributes and processes

10. Uberon (UBERON): anatomical entities; multicellular organisms defined in terms of

developmental and sexual characteristics

For each OBO, there is also a corresponding extension OBO, OBO_EXT. These extension classes

were created by the CRAFT semantic annotation lead for the concept annotations but are based on

proper OBO classes; they were created for various reasons, particularly for the purposes of

semantic unification of similar classes from different ontologies, unification of multiple classes

that were difficult to consistently differentiate for annotation, and creation of similar but

corresponding classes that were either easier to use or better captured the ambiguity of the

annotated text mentions. The CRAFT corpus is our gold standard data for improving performance

on biomedical concept recognition. Further, the best models are used to identify biomedical

concepts from these ten OBOs in the ignorance statements.
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Automation and Evaluation

For automation, there are three main types of algorithms: (1) rule-based, (2)

machine-learning based, and (3) a hybrid of the two methods. Rule-based methods rely on a set of

rules to determine the outcome of the task. These rules tend to be both linguistic and biological in

nature. The goal is to identify patterns and create rules. For concept recognition, dictionary-based

methods, a type of rule-based, aim to find exact matches of concepts from an ontology in text.

Thus, the rule is to find exact matches between the text and a concept. Adding more rules or

changing the existing ones updates the method. In general, rule-based methods rely on the

examination of many examples of the phenomenon, expert information, and pattern recognition.

Machine-learning based methods rely on computers to “learn" the patterns and

distinguishing factors for a specific problem. The two main types of machine learning are

supervised - the correct answers are provided (e.g., corpora) so the machine can check its work

(classification), and unsupervised - the correct answers are not provided and so the machine has to

find hidden patterns in the data (clustering). With the many complications of language, supervised

machine learning is used more often then unsupervised, but with the very time-consuming

trade-off of needing to create manually annotated corpora for each task (CRAFT and ignorance

corpora for this work). The supervised machine learning algorithm aims to infer a “function" that

captures the relationship between the input data (e.g., text) and the output results (e.g., a concept

label), while minimizing the error of doing so. Many classical algorithms exist including

support-vector machines, regression, k-nearest neighbor, and naive Bayes. Newer methods include

neural networks that aim to mimic the neural connections in animal brains, using a weight

function to determine if information should be transmitted between neurons or nodes similar to

the function of a synapse. The hybrid method combines both the previous two methods in any

order. Some systems do pre-processing rule-based steps and others post-process. All of these

methods, except for unsupervised machine learning, are used in this work.

For the rule-based and supervised machine learning algorithms where the answers are

known, the most common evaluation metrics are precision, recall, and F1 measure. Precision is
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a measure of how often the right answers appear in the chosen right answers (false positives).

Recall is the measure of how often the right answers appear compared to all right answers (false

negatives). F1 measure is the harmonic mean between the two, aiming to balance false positives

and false negatives. 
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These are the evaluation metrics used in this work.

There are many other types of tasks in BioNLP [122]. Relation extraction aims to extract

information about a very focused type of relationship from free text. Summarization aims to

reduce a document to a shorter form usually by extracting segments of text to assemble into a

summary. Question answering is the task of generating answers to questions in natural language.

Many more tasks exist in BioNLP, but are not used in this work. However, they could be

applicable to future work.

Lastly, many tasks, corpora, classification models, and evaluation frameworks exist

because of shared tasks. A shared task is a community competition or challenge with a stated

task and evaluation metric. In general, shared tasks have created new test collections, fostered new

algorithm development and improved results, formed and strengthened research communities,

pushed research into real-world applications, and provided education and outreach [171, 172]. For

example, the BioCreAtIvE community (Critical Assessment of Information Extraction systems in

Biology) has conducted many shared tasks since their inception in 2004 [125], with explicit goals

to attract researchers, address problems of biomedical importance, create legacy training and test

data suites, and allow for the assessment of the state of the art on real biological tasks. We used

the framework from another open shared task community, the BioNLP Open Shared Tasks

(BioNLP-OST) [126], to improve biomedical concept recognition for the Concept Annotation

Task of the CRAFT Shared Tasks (CRAFT-ST) [170]. Further, we create a task, a corpus, and

classification algorithms for our ignorance work that could be used in a future shared task. The
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ultimate goal is to harness community wide effort and focus on identifying, categorizing,

classifying, and exploring ignorance to help researchers find the most pertinent questions to

research.

Personal Motivation

My motivation for this project stemmed from my need to find a pertinent question to study

and not knowing where to start. Coming into a computational biology (compbio) graduate school

program I did not know the questions in compbio let alone in mathematics, the field I studied as

an undergraduate. How would I find a question to answer for my dissertation given this situation?

This then became my focus and question: How do we help researchers, especially students,

understand the questions in a field so that they themselves can decide on a question to answer for

their work? Everyone needs a knowledge foundation and researchers especially also need a

curiosity and question foundation. This was the motivation for the ignorance-base and exploration

methods. I hope this work not only helps students and researchers find and understand questions,

but also sparks continued efforts that focus on the questions to provide better curiosity and

question foundations for research.

Summary/Contributions

Questions drive science. This work shows that harnessing the questions in the scientific

literature can lead to new and exciting avenues for exploration by researchers interested in a

specific topic or provide questions that may bear on a specific set of experimental results. I

provide an initial characterization of the ignorance task through an annotation task with a

taxonomy of ignorance and a classification task to show automation is possible [173]. To identify

the biomedical subjects of the ignorance statements, we improve upon biomedical concept

recognition creating state-of-the-art classifiers [174]. Combining the ignorance work and the

biomedical concept recognition work [174], I create a novel ignorance-base, along with two new

exploration methods (preprint [175]). As all of this work was done in the prenatal nutrition field, I

also made contributions to the field through the results and discussions of the results.
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Separately, I have also made contributions to the understanding of the inter-annotator

agreement (IAA) and whether it is the upper limit of machine performance [176]; to speeding up

calculations for simulating heterogeneous populations, such as the development of cancer, using

Boolean models [177]; to providing pre- and post-processing techniques to improve precision in

concept normalization based on an error analysis [178]; to improving performance on relation

extraction for chemicals and proteins (or genes) by conducting an error analysis [179]; and to the

understanding of how the focus on a given disease in research papers has changed over time

through discussions of the ideas [136].
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CHAPTER II

IMPROVING BIOMEDICAL CONCEPT RECOGNITION: CONCEPT RECOGNITION
AS MACHINE TRANSLATION

Background

Automatic recognition of references to specific biomedical concepts from mentions in text

(hereafter concept recognition) is a critical task in biomedical natural language processing

(BioNLP) and underlies many other BioNLP tasks [122, 180–183], including our ignorance task.

Biomedical concept recognition is necessary to understand the biomedical subjects of the

ignorance statements. The identification of such concepts ameliorates ambiguity and provides the

biomedical subjects of text, but its automation poses many difficult computational challenges. For

example, if researchers were interested in the “Golgi-associated PDZ and coiled-coil

motif-containing protein" (PR:000008147) and wanted to automatically extract sentences from

the literature containing it, they would have difficulties due to a synonym: “FIG" is a synonym for

this protein and also shorthand for a figure in a paper. The ability to distinguish between the

protein and a figure is necessary for automatic extraction of the information and any other

downstream analyses of it, such as automatically summarizing the other biomedical concepts

within the protein sentences. The identifier in parentheses next to the protein helps with this. It is

an ontology ID from the Protein Ontology [184], an ID in a controlled biomedical vocabulary

focused on proteins that require semantically coherent definitions, regardless of the variability in

textual expression of the represented concept [155] (i.e., there is a canonical definition provided

by the ontology for each term even if there are multiple ways to express it in text).

The target of most biomedical concept recognition efforts have been the Open Biomedical

Ontologies (OBOs), including the Protein Ontology [184] and others such as the Gene Ontology

[153] and the Human Phenotype Ontology [185], which provide canonical definitions. Each of

these ontologies contain more than 10,000 specific classes. Thus, treating concept recognition as

a classification task requires tens of thousands of classes, rendering machine learning approaches

for this multi-classification problem impractical. The current state of the art (e.g., [128]) was a
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hybrid system which involved the use of a rule-based dictionary lookup system, neural networks,

and language models. The rule-based dictionary lookup system was specifically to combat the

problem that the models will only ever predict concepts seen in training data. The very large

number of ontology classes to be recognized and the limited amount of gold-standard training

data have impeded the creation of end-to-end systems based entirely on machine learning that can

also predict concepts not seen in the training data.

Thus, our goal was to create an end-to-end system based entirely on machine learning that

can also predict concepts not seen in the training data. Recently, Hailu et al. [186] recast the

concept recognition problem as a type of machine translation and demonstrated that

sequence-to-sequence machine learning models have the potential to outperform multi-class

classification approaches. They and others in the NLP literature, often divided concept recognition

into two tasks that were performed separately and differently (see Figure 2.1): Span detection

(also referred to as named entity recognition or mention detection), which delimits a particular

textual region that refers to some ontological concept (i.e., a text mention) [180–182]; and concept

normalization (also referred to as named entity normalization or entity linking), which identifies

the specific ontological class to which the textual region or mention refers (an ontology class

ID) [183]. It was possible to approach these problems jointly with a single system, but evaluation

approaches generally scored them separately and then combined the scores for the full system.

Further, different tasks may require only one. Thus, approaching the problem separately allowed

these methods to be useful for either task or the combination. The ultimate goal is to be able to run

such systems over the entirety of the vast biomedical literature (with more than one million new

articles per year indexed in PubMed), meaning that the efficiency of such systems is important, as

well as their accuracy [123]. Thus, we systematically characterized the factors that contributed to

the accuracy and efficiency of several approaches to sequence-to-sequence machine learning.

Span detection [180–182] has long been conceived of as a sequence-to-sequence analysis

task. The outputs are defined as sequences of tags identifying the beginning words or characters

of mentions (labelled “B"), words or characters inside mentions (labelled “I"), and words or
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characters outside of mentions (labelled “O"), collectively referred to as BIO tags [187]. We

evaluate the most widely used and high-performing sequence-to-sequence algorithms for span

detection to determine the best-performing algorithm as well as options for low-resource settings.

This included conditional random fields (CRFs) [129] (which may be utilized with limited

resources), bidirectional long short-term memory networks (BiLSTMs) [188, 189] (which

required substantial resources, spurring us to evaluate whether hyperparameter settings tuned on a

simple model can be reused in more complex models to save some resources), and language

models (in particular, ELMo [190] and BioBERT [130], which were the current state of the art in

NLP). In our evaluation, these systems showed widely varying performances and resource

requirements, and the performance was not strongly correlated with resource requirements.

Furthermore, though they were relatively rare, we attempted to identify discontinuous concept

mentions, i.e., mentions that span two or more discontinuous strings of text, a textual phenomenon

that only a few researchers have specifically focused on recently [191, 192] and that others have

chosen to ignore [128, 186]. We propose a simple extension to BIO tags that captured at least

some discontinuous spans for almost all evaluated ontologies.

For concept normalization, we recast the classic multi-class classification problem as a

machine translation problem. Most of the previous rule- or machine-learning based methods fell

short on predicting text mentions not seen in the training data because of the very large number of

classes and the very limited number of examples [183]. To combat this, Hailu et al. [186]

proposed the idea to use sequence-to-sequence methods for concept normalization, expressing

both the text mentions and the concept IDs as character sequences thinking of the task as machine

translation (i.e., mapping each letter or character of the example protein above to the

corresponding character of the ontology ID: G o l g i - a s s o c i a t e d P D Z a n d c o i l e d - c o i

l m o t i f - c o n t a i n i n g p r o t e i n to the ontology ID P R : 0 0 0 0 0 8 1 4 7). They investigated

several alternative approaches used in machine translation to apply here and found that the popular

Open Neural Machine Translation system (OpenNMT) [131] was the best-performing, although

many other neural machine translation systems had very similar performance [193]. To the best of
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our knowledge, this was the first attempt to use machine translation for concept normalization and

we continue this endeavor. We focus solely on OpenNMT for this exploration because the good

performance of sequence-to-sequence approaches to normalization with the ontology class

identifiers (e.g., PR:000008147) as the targets was surprising, as the identifiers were intended to

be arbitrary and devoid of semantic content [155, 194]. We explored the reasons underlying this

surprisingly good performance by evaluating a variety of alternative identifier schemes,

suggesting that there are, in fact, semantic signatures in the class identifiers.

We used the Concept Annotation Task of the CRAFT Shared Tasks at BioNLP Open

Shared Tasks 2019 (CRAFT-ST) as the framework for this work [170]. Concept recognition has

been the subject of many open shared tasks, including BioCreAtIve [125], the BioNLP Open

Shared Tasks (BioNLP-OST) [126], and the recent Covid-19 Open Research Dataset Challenge

[127]. Shared tasks are valuable because they provide data, evaluation details, and a community

of researchers, making them very useful frameworks for further development of such tasks. We

chose CRAFT-ST not only because it was one of the most recent shared tasks involving concept

recognition, but also because of the richness of data in the CRAFT (Colorado Richly Annotated

Full-Text) corpus [166, 168, 169] and the ability to compare our results to the current state of the

art [128]; however, all methods described here can be applied to other corpora as well. The

CRAFT corpus contains 97 full-text articles from PubMed Central Open Access with extensive

linguistic and semantic annotations to multiple OBOs. Further, it has been used for training and/or

evaluation in many concept recognition tasks [166] including the CRAFT Shared Task [170] and

this work. We found that our best-performing sequence-to-sequence systems performed

comparably with the top performing system on the shared task (occasionally extending it by a

modest degree), and some offered substantial efficiencies in the time and computational resources

required for tuning and training. Furthermore, our analysis of the strengths and weaknesses of

such systems suggested promising avenues for future improvements as well as design choices that

could increase computational efficiency at a small cost in performance. Thus, we report on

extensive studies of alternative methods and hyperparameter selections in an exhaustive
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evaluation framework that has been previously developed for open shared tasks [126]. These

results not only identified the best-performing systems and parameters across a wide variety of

ontologies but were illuminating with regard to the widely varying resource requirements and

hyperparameter robustness of alternative approaches. Further, we aimed to be transparent about

our classification process in order to facilitate usability and reproducibility [195]. Thus, we

present the full end-to-end system for concept recognition along with its components of span

detection and concept normalization. Although all of this work focused on identifying biomedical

concepts, it can be applied to other types of concepts and potentially many other types of

linguistic phenomena.

"billions of 
circulating red and 
white blood cells" 
(PMCID:15314655)

"white blood cells"

B, I, I

CL:0000738

"red ... blood cells"

B, O-, I, I

CL:0000232

Ontology Concepts

Span Detection: BIO- Tags

Concept Normalization

Figure 2.1: Example of the full translation pipeline. Each step was seen as a translation problem. The input
was text and the final output was the ontology class identifiers for each detected text mention.

Related Work

Dictionary-based and rule-based methods mainly dominated concept recognition

approaches for the Open Biomedical Ontologies due to the enormous number of concepts to

identify. Funk et al. [196] performed a systematic evaluation of some of these dictionary-lookup

systems, finding that ConceptMapper [197, 198] generally performed the best. They not only
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identified the highest-performing systems but also the best parameter settings (finding they were

not the default settings), for each of the ontologies from CRAFT version 1.0 [168, 169]. They

achieved F1 scores between 0.14 and 0.83. The most recent dictionary-based approach was

NOBLE Coder [199], which implemented a “general algorithm for matching terms to concepts

from an arbitrary vocabulary set". Tseylin et al. [199] compared the performance and speed

between NOBLE Coder and ConceptMapper, and found that their system outperformed

ConceptMapper, but ConceptMapper was the fastest. (It was unclear if the parameters found in

Funk et al. [196] were used for this work.) This highlights the importance and sometimes

trade-off between speed and accuracy. These dictionary-based methods have remained popular

because of their interpretability and configurability with no necessary training [200].

Going beyond rule-based systems, recent advances in machine learning have resulted in

many hybrid systems that apply machine-learning-based post-processing to dictionary-based

systems. Many of these works utilized the CRAFT corpus [166, 168, 169] for training and

evaluation. For example, Campos et al. [201] proposed a hybrid system employing dictionary

matching and a machine learning system for biomedical concept recognition. Nunes et al. [202]

used this system to create a a biomedical concept recognition annotation and visualization service

named BeCAS. Groza et al. [203] approached the task as an information retrieval problem and

explored case sensitivity and information gain. Basaldella et al. [204] proposed a hybrid system

named OntoGene’s Entity Recognizer (OGER), which focused first on high recall through a

dictionary-based entity recognizer, followed by a high-precision machine learning classifier (see

[205] for an updated version of this system). Furthermore, the group who developed this system

had the highest-performing method in the 2019 CRAFT Shared Task [128] (UZH@CRAFT-ST),

combining an updated version of OGER with two neural approaches, thereby tackling concept

recognition as a single task instead of two. As we tackled the same task through the same

framework, we used their results as a baseline for the full concept recognition system. Full

machine-based systems have only recently been developed with the advent of deep learning (e.g.,

[206, 207]). Even these deep learning methods seemed to fail when there were not enough



30

examples in the training data. Thus, our work continues the use of deep learning models to test

efficiency, accuracy, and generalizability over the CRAFT corpus [166, 168, 169], especially for

concepts not in the training data.

As mentioned earlier, much prior work in concept recognition split the task into two

sub-tasks: span detection (named entity recognition or mention detection) [180–182] and concept

normalization (named entity normalization or entity linking) [183]. Concept recognition was spilt

to apply different approaches for different applications. Our work focuses on

sequence-to-sequence algorithms for both tasks and many recent publications have used these

approaches for span detection but not concept normalization. For example, Huang et al. [208]

proposed a model based on a BiLSTM combined with a CRF for BIO tagging and achieved better

tagging accuracy for part-of-speech tagging, chunking, and span detection than with a CRF alone.

Throwing in character and word embeddings, Lample et al. [209] used the same neural

architecture as Huang et al. for span detection. Adding a CNN to the mix, Ma et al. [210]

proposed an end-to-end sequence-tagging model based on a BiLSTM-CNN-CRF approach.

Thinking beyond any specific language, Gillick et al. [211] created an LSTM-based model that

reads text as bytes and outputs the span annotations. With their focus on bytes, their

representations and models generalized across many languages, creating the first multilingual

named entity recognition system.

In the biomedical domain, Habibi et al. [212] applied the BiLSTM-CRF proposed by

Lample et al. [209] for span detection on a wide range of biomedical datasets and found that their

model outperformed the state-of-the-art methods. The same architecture was used by Gridach

[213] to identify spans of genes and proteins. Zhao et al. [214] proposed a multiple-label strategy

to replace the CRF layer of a deep neural network for detecting spans of disease mentions. To

identify spans of chemicals, Korvigo et al. [215] applied a CNN-RNN network, Luo et al. [216]

proposed an attention-based BiLSTM-CRF, and Corbett et al.[217] explored a BiLSTM and CRF

separately as well as combined to create ChemListem and further added transfer learning. Similar

to Luo et al., Unanue et al. [218] used a BiLSTM-CRF to identify spans of drug names and
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clinical concepts, while Lyu et al. [189] proposed a BiLSTM-RNN model to detect spans of a

variety of biomedical concepts, including DNA, genes, proteins, cell lines, and cell types. Wang

et al. [219] applied multitask learning with cross-sharing structure using a BiLSTM-CNN-CRF

model, which included a BiLSTM that learns shared features between ten datasets with gene,

protein, and disease categories, and a private BiLSTM specific for each task, borrowing their base

model from Ma et al. [210]. Sequence-to-sequence algorithms were quite popular for span

detection.

More recent advances in deep learning for a variety of different NLP tasks, including span

detection, have been achieved with language models. BERT [220], the science-specific language

model SciBERT [221], and the biomedicine-specific language model BioBERT [130], all required

little fine-tuning to perform well for named entity recognition. The other main language model,

ELMo [222], and its biomedical equivalent [190], also performed well on named entity

recognition. Peng et al. [223] evaluated both BERT and ELMo on the Biomedical Language

Understanding Evaluation (BLUE) benchmark and found that BERT, with extra

biomedicine-specific documents, outperformed ELMo. The success of these methods showed the

value of deep learning and language models for span detection. However, the performance of

machine learning methods in NLP depends crucially on hyperparameter selection (as does the

performance of many dictionary- and rule-based methods, e.g., [196]). Large computational

resources and time requirements, particularly for repeated training and testing under different

hyperparameterizations, can limit the extent of hyperparameter searches to find optimal values.

None of these works conducted extensive studies of alternative approaches based on efficiency

and resources as we do here.

We also applied a sequence-to-sequence method (machine translation) by character for

concept normalization for generalizability. To the best of our knowledge this has not been

attempted before. Due to the very large number of ontology classes to be recognized and the

limited amount of gold-standard training data, the first approaches to concept normalization were

rule-based dictionary lookup systems that mapped text mentions looked up in a dictionary to the
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corresponding ontology identifier [183, 197, 198, 224]. For example, the Gene Ontology Cellular

Component class GO:0005886 might be textually referenced by “plasma membrane", “cell

membrane", “cytoplasmic membrane", or “plasmalemma", among others, e.g., abbreviations such

as “PM". All concept normalization methods must cope with the challenges related to the

variability and ambiguity of human language. Not only are there many lexical variants that refer

to the same ontological concept, but each of those words have morphological variants (e.g.,

nucleus, nuclei, nuclear, nuclearly). Furthermore, many individual words are ambiguous,

depending on the surrounding context for the proper mapping to an ontological class; for example,

the word “nucleus" can refer to an atomic nucleus (ChEBI:33252), a cell nucleus (GO:0005634),

or an anatomical nucleus (UBERON:0000125), among other senses, depending on the

surrounding context. Thus, these dictionary-based methods have remained popular because of

their interpretability and configurability with no necessary training [200].

At the same time, research has moved on to machine-learning based methods due to the

superior performance, applying everything from linear methods to deep learning methods [183].

For example, Li et al. [225] generated concept normalization candidates using a rule-based

system and then ranked them using a convolutional neural network that harnessed semantic

information. Liu et al. [226] used an LSTM to represent and normalize disease names. Similarly,

Tutubalina et al. [227] used recurrent neural networks, including LSTMs, to normalize medical

concepts in social media posts. However, most of these methods fall short on predicting text

mentions not seen in the training data because of the very large number of classes and the very

limited number of examples. Thus, we evaluated the use and surprisingly good results of machine

translation on the character level to help with generalizability.

To the best of our knowledge, this was the first attempt to use machine translation for

concept normalization, and so there was no prior literature for this application. Machine

translation usually aims to translate from one language to another (see, e.g., [193, 228]). Here we

were translating text mentions to ontology identifiers (OBO IDs). Deep learning has been applied

to machine translation, and recently, neural machine translation had proven superior to previous
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methods. Successful approaches belonged to the family of encoder-decoders, which encode

source text into fixed-length vectors from which a decoder generates translations [193]. This was

a sequence-to-sequence method that mapped sequences of characters or tokens in one language

into sequences of characters or tokens in another language. Bahdanau et al. [229] introduced a

key innovation by adding an attention mechanism to the decoder to relieve the encoder of needing

to encode all information from the source text to fixed-length vectors. With this approach, the

information can be spread throughout the sequence of text, and the decoder can select the most

useful parts to predict the next character or token. It was this approach that Hailu et al. exploited

[186] and the approach we further explore here. Since this has never been attempted, we

compared our results to ConceptMapper [196, 198, 230], as a baseline model.

Lastly, concept recognition, span detection, and concept normalization used a variety of

text representations ranging from bags of words to embeddings of words and characters [231,

232]. However, how to represent complex mentions, including overlapping and discontinuous

mentions (see Figure 2.1 for an example) was unclear. Previous research had mostly ignored these

complex mentions due to their rarity and difficulty, and only recently have some researchers tried

specifically to tackle them by extending existing sequence tagging frameworks (as we did here), or

by looking at a given sentence as a whole to determine the relationships between concept

mentions (see [191, 192] for an overview of previous work). To represent them explicitly, we

evaluated alternative text representations using a modified sequence-to-sequence BIO tag

representation [187]. The method proposed here is simpler than previous methods and still

identified some of these complex mentions.

Methods

Our goal was to improve and evaluate the performance of different methods on concept

recognition. Specifically, to explore the performance, efficiency, and underlying reasons for the

surprisingly good performance of the proposed machine learning approach toward concept

recognition, using the 2019 CRAFT Shared Task framework from the BioNLP-OST task [170].

This framework provided all data and an evaluation pipeline, facilitating direct comparison to the
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best-performing system in that evaluation [128]. Per the setup of the CRAFT Shared Task, 67

full-text documents were provided as training with 30 unseen documents held out as an external

evaluation set (CRAFT version 3.1.3). Every Open Biomedical Ontology in CRAFT (e.g., the

ChEBI chemical ontology, the Uberon anatomical ontology) presented different challenges and

benefited from different methods, hyperparameters, and/or training regimes. Thus each OBO was

trained, tuned, and evaluated independently for both span detection and concept normalization.

Furthermore, training all ontologies separately solved both the problems of overlapping ontology

annotations from different ontologies and the multi-classification problem between ontologies,

and it simplified the process of adding new ontologies. For all ontologies, the goal was to

optimize F1 score, the harmonic mean between precision and recall, which was the metric for

comparison of all models. We also considered the resources needed for all models.

Materials and Evaluation Platform

The Colorado Richly Annotated Full-Text (CRAFT) corpus [166, 168, 169] was used to

train, tune, and evaluate our models. CRAFT has had four major releases. The CRAFT Shared

Task used version 3.1.3, which was released in July 2019 [170]; we thus used this release for all

tasks and we refer to it as CRAFT without the version number going forward. Each release

contained the ontology files corresponding to the annotations at that time (most ontologies do not

have version numbers). CRAFT version 3.1.3 included 67 full-text documents with 30 documents

held back, whereas more recent versions included the previously held-back 30 documents [233].

The total corpus was thus a collection of 97 full-text articles. These articles were focused (though

not exclusively) on the laboratory mouse and have been extensively marked up with both

gold-standard syntactic and semantic annotations. Among the syntactic annotations, segmented

sentences, tokens, and part-of-speech tags were used to extract features for all algorithms tested.

CRAFT versions 3.0 and above were a significant improvement from version 2.0 with regard to

the concept annotations. Among other changes, relative to version 2.0, the concept annotations

were updated using newer versions of the ontologies at the time, annotations were created based

on the classes of two additional ontologies (the Molecular Process Ontology and the Uberon
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anatomical ontology), and extension classes of the OBOs were created and used to annotate the

articles, resulting in a substantial increase in annotation counts. (The extension classes were

created by the CRAFT semantic annotation lead for the concept annotations but were based on

proper OBO classes; they were created for various reasons, particularly for the purposes of

semantic unification of similar classes from different ontologies, unification of multiple classes

that were difficult to consistently differentiate for annotation, and creation of similar but

corresponding classes that were either easier to use or better captured the ambiguity of the

annotated text mentions.) CRAFT contained the semantic annotations to single or multi-word

concepts from ten OBOs (all from 2019):

1. Chemical Entities of Biological Interest (ChEBI): compositionally defined chemical entities

(atoms, chemical substances, molecular entities, and chemical groups), subatomic particles,

and role-defined chemical entities (i.e., defined in terms of their use by humans, or by their

biological and/or chemical behavior)

2. Cell Ontology (CL): cells (excluding types of cell line cells)

3. Gene Ontology Biological Processes (GO_BP): biological processes, including genetic,

biochemical/molecular-biological, cellular and subcellular, organ- and organ-system level,

organismal, and multiorganismal processes

4. Gene Ontology Cellular Components (GO_CC): cellular and extracellular components and

regions; species-nonspecific macromolecular complexes

5. Gene Ontology Molecular Function (GO_MF): molecular functionalities possessed by

genes or gene products, as well as the molecular bearers of these functionalities (though

note that only five of the proper classes of the ontology were used for annotation, while the

corresponding extension classes were instead used for the large majority of the classes of

this ontology)
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6. Molecular Process Ontology (MOP): chemical reactions and other molecular processes (not

in version 2.0)

7. NCBI Taxonomy (NCBITaxon): biological taxa and their corresponding organisms; taxon

levels

8. Protein Ontology (PR): proteins, which are also used to annotate corresponding genes and

transcripts

9. Sequence Ontology (SO): biomacromolecular entities, sequence features, and their

associated attributes and processes

10. Uberon (UBERON): anatomical entities; multicellular organisms defined in terms of

developmental and sexual characteristics (not in version 2.0)

For each of the ten ontologies used in the CRAFT corpus, there were two annotation sets:

a core set and a core+extensions set, each with their own challenges. The core set consisted solely

of annotations made with proper classes of the given OBO, and the core+extensions set consisted

of annotations with proper OBO classes as well as classes created as extensions of the ontologies.

The unique identifier for an OBO class was a class identifier (class ID) that consisted of the

ontology namespace, a colon, and a unique number identifier; for example, NCBITaxon:10088

was the unique identifier for Mus, the taxonomic genus of mice. The lengths of the class IDs were

not consistent within and between ontologies: CL, GO, MOP, SO, and UBERON classes had

seven-digit IDs (e.g., CL:0000014 (germ line stem cell), GO:0016020 (membrane),

MOP:0000590 (dehydrogenation), SO:0000040 (genomic clone), UBERON:0001004 (respiratory

system)), while PR classes had nine-digit IDs (e.g., PR:000000035 (BMP receptor-type 1A)).

ChEBI class IDs ranged from one (e.g., ChEBI:7 ((+)-car-3-ene)) to six (e.g., ChEBI:139358

(isotopically modified compound)) digits, and NCBITaxon entry IDs (other than those

representing taxonomic ranks) ranged between one (e.g., NCBITaxon:2 (Bacteria)) and seven

(e.g., NCBITaxon:1000032 (Enterobacter sp. P19-19)) digits. An extremely small subset of
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classes of the OBOs used for CRAFT concept annotation instead have textual IDs, e.g.,

NCBITaxon:species, the NCBI Taxonomy class representing the taxonomic rank of species.

For the extension classes, which were identifiable by their namespace prefixes always

ending in “_EXT", concept normalization was even more difficult because the class IDs were even

more varied. For four of the OBOs used, one or more parallel hierarchies of extension classes

were programmatically created for either the entire OBO or for one or more subhierarchies of the

OBO so as to create corresponding classes that were more abstract and/or more straightforward to

use for concept annotation. The class ID for such an extension class was the same as the original

OBO class on which it was based with the exception of “_EXT" appended to the namespace, e.g.,

GO_EXT:0004872 (bearer of signaling receptor activity), based on the original GO:0004872

(signaling receptor activity). In addition to these programmatically created extension classes, there

were many manually created extension classes, which had entirely textual IDs of human-readable

labels with the namespaces of the ontologies of which they were extensions appended with

“_EXT", e.g., ChEBI_EXT:calcium. In the case of a manually created extension class that was an

extension of more than one ontology, the namespace was an underscore-delimited concatenation

of the namespaces of the extended ontologies, e.g., GO_MOP_EXT:glycosylation. Of relevance

to our concept normalization work, many of the manually created extension classes had long

textual IDs, e.g., GO_UBERON_EXT:innervation_entity_or_process. This variance contributed

to poor performance on concept normalization generally.

CRAFT generally contained many examples for each ontology providing enough training

and evaluation data for our models, except for GO_MF, MOP, and MOP_EXT. Statistics regarding

the annotations and annotation classes of the training and evaluation data sets can be seen in

Tables 2.1 and 2.2, respectively. For GO_MF, only a very small number of proper classes were

used for annotation, while the corresponding extension classes (GO_MF_EXT) were instead used

for the large majority of classes. Both MOP and MOP_EXT did not have many examples in

general. Even so, CRAFT contained 68,027 core training annotations with 28,516 core evaluation

annotations and 112,415 core+extensions training annotations with 46,820 core+extensions
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evaluation annotation over all the ontologies, which was a lot of data. More information about the

CRAFT Corpus can be found at [233].

Table 2.1: Statistics for the concept annotations in the training (67-document) and evaluation (30-document)
data sets for all ontologies in CRAFT. Note: avg stands for average.

Ontology # training set
annotations

avg/median # train-
ing set annotations
per article

# evaluation set
annotations

avg/median # evalu-
ation set annotations
per article

ChEBI 4548 68/45 2200 73/45
ChEBI_EXT 11915 178/142 5248 175/142

CL 4043 60/32 1749 58/32
CL_EXT 6276 94/64 2872 96/64
GO_BP 9280 139/108 3681 123/108

GO_BP_EXT 13954 208/158 5847 195/158
GO_CC 4075 61/33 1184 39/33

GO_CC_EXT 8495 127/91 3217 107/91
GO_MF 375 6/2 94 3/2

GO_MF_EXT 4070 61/34 1822 61/34
MOP 240 4/2 101 3/2

MOP_EXT 386 6/2 111 4/2
NCBITaxon 7362 110/90 3101 103/90

NCBITaxon_EXT 7592 113/97 3219 107/97
PR 17038 254/198 6409 214/198

PR_EXT 19862 296/246 7932 264/246
SO 8797 131/118 3446 115/118

SO_EXT 24955 372/341 9136 305/341
UBERON 12269 183/130 6551 218/130

UBERON_EXT 14910 223/165 7416 247/165

With all the data, performance of all systems was measured using the CRAFT Shared Task

evaluation platform [170], which gave partial credit for predictions on either task. The benefit of a

shared task framework was the standardization of the evaluation framework. Briefly, for the

concept annotation task, the evaluation platform made use of the method proposed by Bossy et al.

[234], which incorporated flexibility in matching both the boundaries (i.e., the start and end

character positions) of a predicted concept mention to the reference (span detection), and in the

predicted ontology class identifiers (concept normalization). This flexibility allowed the scoring

metric to assign partial credit to inexact matches in two different ways. Partial credit was assigned

for overlapping boundaries using a Jaccard index scheme over the characters in the matches, and
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partial credit for inexact ontology class ID matches was computed using a semantic similarity

metric that made use of the hierarchical structure of the ontologies. The final score for a given

predicted concept was based on a hybrid of both the boundary and ontology class ID match

scores, and included precision, recall, F1 score, and an aggregate score called the slot error rate

(see Bossy et al. [234] for the exact equations). The evaluation platform was made available as a

versioned Docker container, in order to facilitate reproducibility and comparison of future systems

to those that participated in the 2019 CRAFT Shared Task. Version 4.0.1_0.1.2 was used to

evaluate the systems described here. All evaluation information can be found at the CRAFT

GitHub site (specifically at https://github.com/UCDenver-ccp/craft-shared-

tasks/wiki/Concept-Annotation-Task-Evaluation).

Table 2.2: Statistics for the concept annotation classes (or unique concept annotations) used in the training
(67-document) and evaluation (30-document) data sets and for those added as additional training data for
concept normalization for all ontologies in CRAFT. Note: avg stands for average.

Ontology # training
set an-
notation
classes

avg/median # train-
ing set annotation
classes per article

# classes
added to
training set

# evalu-
ation set
annotation
classes

avg/median # evalu-
ation set annotation
classes per article

ChEBI 1463 22/18 58214 627 21/20
ChEBI_EXT 2852 43/38 58439 1167 39/39

CL 581 9/7 2163 253 8/9
CL_EXT 651 10/8 2168 286 10/10
GO_BP 1586 24/21 29213 682 23/23

GO_BP_EXT 2511 37/33 29301 1090 36/37
GO_CC 677 10/9 4052 212 7/6

GO_CC_EXT 896 13/12 4086 296 10/9
GO_MF 49 1/1 10951 19 1/1

GO_MF_EXT 738 11/11 10031 377 13/12
MOP 85 1/1 3574 32 1/1

MOP_EXT 108 2/1 3578 40 1/1
NCBITaxon 690 10/9 1175661 315 11/9

NCBITaxon_EXT 757 11/10 1175682 346 12/10
PR 1278 19/18 213371 466 16/16

PR_EXT 1534 23/22 213531 588 20/19
SO 1216 18/18 2256 544 18/19

SO_EXT 3172 47/47 2405 1409 47/48
UBERON 2048 31/24 14057 1040 35/31

UBERON_EXT 2409 36/29 14113 1217 41/38
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We report on the performance, as well as the necessary resources and efficiencies of the

algorithms. Some computations were performed on a contemporary laptop (MacBook Pro Mid

2015), but many required the use of an NIH-funded shared supercomputing resource [235] that

included:

• 55 standard compute nodes with 64 hyperthreaded cores and 512GB of RAM

• 3 high-memory compute nodes with 48 cores and 1TB of RAM

• GPU nodes with Nvidia Tesla k40, Tesla k20, and Titan GPUs

• A high-speed Ethernet interconnect between 10 and 40 Gb/s

We used both the CPUs and all GPUs. All computation was written in Python 3 with associated

packages. All code and models can be found at:

https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation. For our

concept normalization evaluation, the ConceptMapper baseline model for comparison can be

found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-

Translation-ConceptMapper-Baseline.

Span Detection

Span detection was the first task of our two-part approach to concept recognition. Even

though there was quite a lot of previous work on this task, we aimed not only to explore the

state-of-the-art methods (using language models), but also to find low-resource methods (using a

CRF) and explore whether we can exploit hyperparameter tuning of simpler methods for more

complex ones that build on the simple methods (using BiLSTMs). Thus, the goal was to explore

the performance and resources of six canonical span detection algorithms [130, 222, 236] using

the CRAFT shared task framework [170]. The underlying target representation for all algorithms

were BIO tags [187], which were used to label each word in the sequence as beginning (B), inside

(I), or outside (O) an ontological concept mention; for example, the BIO tagging for the text

mentions “red blood cells" and “white blood cells" in the phrase “red and white blood cells" can

be seen in Table 2.3.
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Table 2.3: BIO(-) labeling for the discontinuous and overlapping ontology class mentions in the phrase “red
and white blood cells" (from PMCID:15314655). (The O- would simply be O in the canonical BIO labeling.)

red and white blood cells
labels for the annotation of red blood cells B O- O- I I
labels for the annotation of white blood cells O O B I I

final labeling B O- B I I

We also aimed to determine if we could capture complex mentions including overlapping

and discontinuous concepts using a modest extension of BIO tags. Discontinuous annotations and

overlapping annotations [192] made BIO labeling challenging to define formally. Discontinuous

annotations were annotations composed of two or more non-contiguous text spans. The difficulty

in translating these text mentions to a sequence of BIO tags was how to label the intervening text

between the two discontinuous spans, i.e., as I (inside) or O (outside)? Since discontinuous

annotations were rare (no more than 7% of the total words in all concept mentions (see Table 2.4),

many previous systems ignored them (e.g., [128, 186]). Here we introduced and evaluated a novel

approach simpler than previous work (e.g., [191, 192]) to represent such annotations. We

observed that discontinuous annotations contained fewer words within their component text spans

compared to the words between the spans, except for PR (see Table 2.4). Thus, to exploit more

data, we created a new label, O-, which signified the text between the discontinuous spans of these

annotations (see Table 2.3 for an example of “O-"). We refer to this expanded set of BIO tags as

BIO(-) tags. We report the results on these discontinuous spans.

Overlapping spans created a different problem: the possibility of multiple labels for a word

in the sequence, only one of which can persist for training purposes. For example “red", “and",

and “white" all had two conflicting labels depending on the concept mention labeled (see Table

2.3). To address this problem, we prioritized the beginnings of concept mentions (B) to capture as

many concepts as possible, even if some words in the multi-word concepts will not formally be

captured. In our example then, the annotations based on the BIO(-) tags would be “red..." and

“white blood cell" separately. Other approaches (e.g., [237]) rewrote texts with conjunctions to

unwind them, but that would not allow us to use the shared task framework, which depends on the
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Table 2.4: Quantification of discontinuous and overlapping words in all concept mentions. All numbers are
based on the number of words, not concepts.

Ontology #words in all con-
cept mentions

% words in dis-
continuous men-
tions

% words between
text spans of discon-
tinuous mentions

% words over-
lapping multiple
mentions

ChEBI 5985 0.3% 0.6% 0.1%
CL 6576 4.3% 4.3% 2.6%

GO_BP 12956 5.2% 7.0% 1.6%
GO_CC 5864 1.5% 2.1% 0.5%
GO_MF 376 0% 0% 0%
MOP 257 0% 0% 0%

NCBITaxon 7696 0.03% 0.03% 0.03%
PR 23261 0.5% 0.2% 0.9%
SO 10348 1.2% 1.8% 0.5%

UBERON 15681 2.0% 2.3% 0.8%

unaltered text for evaluation. Our approach received partial credit for the overlapping concepts in

the total score.

With CRAFT preprocessed into word-tokenized BIO(-) tag format, the preprocessed data

was used to train, tune, and evaluate all span detection algorithms. The input to each algorithm

was a sentence as a sequence of words represented as word features, word embeddings, character

embeddings, or language-model-contextualized word embeddings that were then mapped to a

sequence of BIO(-) tags as the output. Most tuning was parallelized among the ten different

ontologies for time and memory efficiency. We report both the macro- and micro-F1 scores for

tuning because the “O" (outside) category for the BIO(-) tags appeared significantly more often

than any other tag. The micro-F1 scores take this into account and thus were significantly higher,

whereas the macro-F1 scores only look at the raw scores, weighting each tag equally. Thus, the

macro-F1 scores were low due to the infrequent “O-" tag. Each algorithm and its corresponding

input representation is described in more detail below, focusing on the resources needed, the

parameters to tune, and the final training framework used.

Conditional Random Fields (CRFs)

CRFs represented a low resource setting option for span detection because they use the

least computational resources of any of the sequence-to-sequence approaches and can generally be
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easily trained on contemporary laptops (MacBook Pro Mid 2015). Thus, if the performance is the

best or close to the best, then it is a good low resources option. A CRF is a discriminative

algorithm that utilizes a combination of arbitrary, overlapping and agglomerative observation

features from both the past and future to predict the output sequence [129]. The words in a

sentence were the input sequence along with features for each word including the case of the word,

the three words before the word for added context, its part-of-speech tag, and the part-of-speech

tags for the two words ahead of the word of interest. The output sequence was a BIO(-) tag for

each word. The output sequences were directly connected to the inputs via the sentence- and

word-level features. To optimize F1 score for each ontology, we tuned the CRF by conducting a

randomized search of the hyperparameter space of both the L1 and L2 regularization penalties,

with 3-fold cross-validation, which guaranteed that the global optimum was found [129]. With

these optimal parameters, we evaluated the model using 5-fold cross-validation. All of this can be

done on a contemporary laptop (MacBook Pro Mid 2015).

Bidirectional Long Short Term Memory (BiLSTM)

BiLSTMs represented a resource-intense option that much prior work has used and built

upon. All of these works required significant efforts and resources put into tuning. To create

efficiencies, we aimed to test whether the parameters for the simplest model could generalize to

more complex models built on the simple one, instead of tuning more complex systems each time.

An LSTM is a special form of a recurrent neural network that by default remembers information

for long periods of time, allowing for more distant context to be used by the algorithm [188]. It is

a chain of memory cells stitched together to allow long-term and short-term memory. Each

memory cell contains four neural networks, including a forget gate (information to drop), a new

information gate (information to add), and an output gate to the next cell (information to

propagate). The LSTM architecture lends itself to sequence-to-sequence tasks such as ours, in

which the input was a sequence of words and the output was the corresponding sequence of

BIO(-) tags. However, the inputs must be vectors, so we used an embedding layer that mapped

each word in the training data to a fixed-length vector to create the semantic vector space of the
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training data. Due to varying lengths of sentences, we padded all input sequences and output

sequences to the maximum number of words among all sentences (approximately 400).

Additionally, since the context for a word can be before or after the word itself, we used

Bidirectional LSTMs (BiLSTMs), which first run through the sequence forwards and then again

backwards, thereby allowing the usage of the context on either side of a word [189].

Tuning a BiLSTM is resource-intensive, so we aimed to test whether the parameters tuned

on a simple BiLSTM could translate across more complex BiLSTM models. The hyperparameter

search attempted to optimize F1 score; however, unlike the CRF setting, there were no guarantees

of finding optimal parameters. The large hyperparameter space and the high cost of each

evaluation were barriers to identifying optimal values. We followed established heuristics for

tuning a BiLSTM [238], using GPUs to speed up evaluation. The four main hyperparameters to

tune were the optimizer, the batch size, the number of epochs, and the number of neurons or

hidden units [238]. The classic optimizer is the stochastic gradient descent (SGD), but newer

approaches have proven less variant and faster [239], including RMSProp [240] and Adam [241].

For named entity recognition tasks, many have used SGD [208–210, 212–214, 216, 218], and a

smaller number have used RMSProp (Root Mean Square Propagation) [217, 219] and Adam

[215]. We chose to focus on RMSProp, which updates the learning rate for each parameter

separately and automatically using the exponential average of the square of the gradient in order to

weight the more recent gradient updates over the less recent ones [240]. Thus, the learning rate

required very little tuning, and so we chose not to change the default learning rate of 0.0001.

Additionally, it implicitly performed simulated annealing in that it automatically decreases the

size of the gradient step if it was too large, so as not to overshoot the minima. Note that that there

was no guarantee that a global minima will be reached with any of these optimizers and testing

each one was very time consuming.

More time and resources were necessary to tune the other hyperparameters. Since, batch

sizes, epochs, and neurons are interrelated, multiple time-consuming experiments of different

combinations of the three were needed to find the best parameters. The batch size determined the
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number of examples to run together to help speed up the time-consuming training process. The

larger the batch, the faster the runs, but the less nuanced the results. Typical batches range from 1

to 64, and thus we tested 18, 36, 53, and 106 (all of which cleanly divided a test set of 10% of the

training data). The epochs were the number of repeat experiments to run, as the LSTM can result

in very different results based on each random initial condition. The larger the number of epochs,

the more time the LSTM takes to run. Due to our limited memory and time, we tested a small (10)

and larger (100) number of epochs. For all runs, 10% of the data was used for validation for each

epoch, as well as overall. Lastly, the number of neurons or the hidden states (#ℎ), can be

determined with the formula [242]:

#ℎ =
#B

(U∗(#8+#0))

#8 = number of input neurons

#0 = number of output neurons

#B = number of samples in training data set

U = an arbitrary scaling factor, usually between 2 and 10

We found that varying U between 2 and 10 yields between 3 and 12 neurons. Testing every

number between 3 and 12 would be very time consuming, and so we took the two extremes of 3

and 12 to test.

Overall, tuning a simple BiLSTM is very time consuming. We conducted 16 experiments

(one optimizer, four batch sizes, two epoch sizes, and two neuron sizes) per ontology to find the

optimal hyperparameters for the BiLSTM for each of the ten ontologies (160 experiments total).

In terms of evaluation, F1 score cannot be optimized directly with an LSTM; instead, the models

aim to minimize errors. We chose the categorical cross-entropy as the loss function, as it is the

default loss function for multi-class classification problems such as ours, in which four categories

were used for BIO(-) tagging. After all this work, training and tuning a more complex BiLSTM

would be even more time-consuming. Thus, we tested the hyperparameters tuned here for all other

more complex BiLSTM approaches (specifically, BiLSTM-CRF, char-embeddings, and

BiLSTM-ELMo), in hopes that we can save resources going forward.
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BiLSTM combined with CRF (BiLSTM-CRF)

A BiLSTM-CRF is the architecture of a regular BiLSTM with a CRF as the last layer

[208]. The BiLSTM provides the feature weights for the CRF, which provides sequence-level

features. The tuning processes would be exactly the same as for the previously discussed BiLSTM;

however, we used the same tuned hyperparameters for each ontology found for the BiLSTM and

then added the CRF layer on top. This determined if the simple BiLSTM parameters could be used

in a more complex model, a BiLSTM-CRF. Thus, since the tuning for the BiLSTM was already

done, the added CRF layer was trained and tuned on CPUs, saving significant time and resources.

BiLSTM with character embeddings (Char-Embeddings)

The BiLSTM and BiLSTM-CRF approaches used word embeddings for all of the words in

the training data; thus, any word not in the training set cannot be translated to a BIO(-) tag and

will be unknown. Our goal was also generalizability to words not seen in the training data and so

to combat this, we tried a different underlying sequence representation based on the characters,

creating character embeddings for each word. As each word was a sequence of characters, this

approach can create a representation for any unknown word using these character embeddings.

Training the character embeddings added a significant amount of CPU time and memory. Thus,

we again utilized the same parameters as the tuned BiLSTM to save time and resources.

BiLSTM and Embeddings from a Language Model (BiLSTM-ELMo)

To provide even better word representations that included context and generalizability, we

tested our simple BiLSTM parameters applied to BiLSTM-ELMo. It was a BiLSTM with a new

underlying sequence representation from the language model ELMo [222]. The original ELMo

was a language model trained on the 1 Billion Word Benchmark set that included approximately

800 million tokens of news crawl data from the general-domain WMT 2011. ELMo

representations were contextual (with modeling of word polysemy), deep (as the BiLSTM was

pretrained on a large text corpus), and character-based (thus allowing for representations of words

unseen in training). In testing the BiLSTM-ELMo with our simple BiLSTM parameters, our

resources did not suffice and we ran out of memory quickly. Thus, we experimented with the same
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aforementioned batch sizes and found that a batch size of 18 could run for all ontologies. Thus, we

used the optimal hyperparameters with a batch size of 18 for each ontology, saving us from

needing more resources.

Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT)

Lastly, we tested and determined the resources for another state-of-the-art language model,

BioBERT [130], that has been shown to perform quite well for span detection with limited tuning.

BioBERT was a biomedical-specific language model pre-trained on biomedical documents from

both PubMed abstracts (PubMed) and PubMed Central full-text articles (PMC) based on the

original BERT architecture [130]. Briefly, BERT was a contextualized word representation model

pre-trained using bidirectional transformers. It then used a masked language model to predict

randomly masked words in a sequence from the full context on either sides of the word (instead of

scanning one direction at a time), creating bidirectional representations. BioBERT added the

additional layer of biomedical-specific training data, as it is known that general-domain-trained

algorithms do not usually perform well in the biomedical domain [243, 244]. For our task, we

chose to use the BioBERT+PubMed+PMC model because it was the most similar to CRAFT, the

articles of which all appear in PMC. Due to the generalizability of BERT and BioBERT, they

require minimal fine-tuning to utilize for other tasks, especially for this task since the documents

in CRAFT were most likely included in the PMC training data. Thus, we utilized the default

fine-tuning parameters for named entity recognition, including a learning rate of 1 × 10−5, a

training batch size of 32, evaluation and prediction batch sizes of 8 each, and 10 training epochs

[130]. Similar to the LSTM models, validation was done within each epoch. Training and tuning

BioBERT required minimal resources, aside from a GPU for speed.

Concept Normalization

With text mentions identified as biomedical concepts, the final step in the concept

recognition task was concept normalization, i.e., the normalization of the detected spans or text

mentions of concepts to their respective unique ontology class identifiers (class IDs). For

example, the text mention “white blood cell" would be normalized to the class ID CL:0000738
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and the text mention “red ... blood cell" to the class ID CL:0000232 (see Figure 2.1). Our goal

was to create a machine-learning based model that can generalize beyond the training data. To do

so, we extended the idea from Hailu et al. [186] to determine if machine translation works for

concept normalization, “translating" from text mentions to class IDs. Surprisingly it worked.

Aiming to automate concept normalization beyond rule-based systems, we reframed and

explored this task as a translation problem by translating the characters of all the text mentions to

the characters of the ontology class identifier. To the best of our knowledge, this was the first

attempt at such reframing. Usually, for translation from one language to another, there is an

assumed underlying structure and semantics of both languages that is captured at least in part by

any algorithm that aims to automate the translation process. For this task, the input in the form of

English text mentions contained the structure and semantics of the English language [245], as well

as the rich history of its development [246, 247]. On the other hand, the unique numeric class IDs

to which these text mentions were annotated supposedly contained no structure or semantics [155,

194]. Thus, from the outset, one would not expect translation from text mentions to class IDs to

work, yet our results suggest that it does. We designed a series of experiments to understand what

signals in the ontology class IDs were important to the performance. We used

ConceptMapper [196] run on CRAFT (v3.1.3) as a baseline to compare and evaluate performance.

To implement this idea, we used the popular Open Neural Machine Translation system

(OpenNMT) [131] for machine translation. It implemented stacked BiLSTMs with attention

models and learned condensed vector representations of characters from the training data,

processing one character at a time. One layer of the sequence-to-sequence LSTM model included

four main components: an encoder, a decoder, an attention mechanism, and a softmax layer.

There were stacks of multiple layers of encoders, attention mechanisms, and decoders before the

softmax layer at the top. The input to OpenNMT was the sequence of characters for the text

mentions (e.g., “w h i t e b l o o d c e l l", with each character separated by a space to show it was a

sequence of characters and not words). The size of this input sequence for the encoder was the

length of the longest text mention in the training data by character count, which could be from 1 to
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1000 characters depending on the ontology (e.g., “white blood cell" has 16 characters including

the spaces between words). Any input that was shorter than the maximum character length was

padded at the end with null characters. Then for each text mention, the output was the class ID,

similarly in the form of characters (e.g., for the input “w h i t e b l o o d c e l l", the output was “C

L : 0 0 0 0 7 3 8" including the ontology namespace and the colon). Analogously, the output size

was the maximum number of characters among the ontology class IDs, with added null characters

if the sequence was shorter (e.g., “CL:0000738" has 10 characters). The maximum number of

characters in the class IDs ranged among the ontologies from 7 to 20 characters in the core

annotation sets and 10 to 83 in the core+extensions sets. This discrepancy arose from the naming

convention of extension classes with both the additional “_EXT" in the namespace along with the

textual class IDs, as detailed in the materials for CRAFT. We used the default parameter settings

to begin to explore this idea as this approach was resource-intensive, requiring large amounts of

memory and CPUs.

Training OpenNMT required pairs of text mentions and class IDs (concept pairs). Since

generalizability was our goal, in addition to the linked text mentions and class IDs of the CRAFT

concept annotations for training, we also added the primary labels and synonyms (extracted from

the .obo files distributed as part of the corpus) of classes not used for annotation in the corpus

simply due to the fact that they were not mentioned in the articles of the corpus. Dictionary-based

systems include the entire ontologies with synonyms in their dictionaries and so we too included

all data. For each of these classes, we used the name of the class and its synonyms as the text

mentions that map to it; for example, CL:0000019, the Cell Ontology class representing sperm

cells, did not occur in the CRAFT training data, so we added to the training data its primary label

“sperm" and its exact synonyms “sperm cell", “spermatozoon", and “spermatozoid" as

quasi-mentions that map to this ontology class. (See Table 2.2 for counts of ontology classes

whose primary labels and synonyms were added to the training data.) Note that CRAFT

annotators curated lists of unused classes that either were too difficult to reliably annotate with

and/or for which extension classes were alternatively created or used; the labels and synonyms of
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these classes were not added as training data. By adding the metadata of these classes from the

.obo files, we not only added a significant amount of training data (amounting to thousands of

more classes per ontology), but also ensured that all current ontology classes were captured by

OpenNMT (with the exception of those purposefully not used by the CRAFT curators). We

discuss if adding more data helped or hindered generalizability.

The added ontology concept pairs only occurred once in the training data, but in the

CRAFT annotations, there exist multiple pairs of the same string and class ID (the same text

occurs in different places). We assessed how the frequency of a concept pair affects the results.

With all of these concepts, training sets can be assembled at the type level (for which there was

one mapping of a given text mention to a class ID regardless of frequency) or the token level (for

which all mappings of text mentions to class IDs were included, even though some were the same

string and class ID, only occurring in different places in the text). Training and testing with tokens

took into account the frequency of occurrence in the corpus (token-ids), while using types ignored

frequency of occurrence in training and evaluation (type-ids). The token-ids were used for the full

end-to-end system as it captured all the data including frequency. However, we compared

token-ids to type-ids as well to determine if there was a performance difference, and type-ids were

used for some experiments to better understand how concept normalization as machine translation

worked. We further explored the performance with and without the extension classes. The

extension classes greatly increased the size of the training data, and had somewhat different

performance characteristics. Tuning was over a 90-10 data split for training to validation over all

tokens, and default training parameter settings were used. These experiments with differing

amounts of data, helped determine the optimal amount of data for generalizability to the

evaluation set.

As framing concept normalization as a machine translation problem was unconventional,

we aimed to explore how this approach might be exploiting general semantic information in the

ontology class IDs used as output (the core set only) by transforming them in various ways to see

how performance changed. To start, the type-ids were compared to the token-ids, and going
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forward all further experiments used the type-ids, as they were a smaller set and thus faster to run.

If the frequency of the text mention and class ID mattered, then we would see a drop in

performance from token-ids to type-ids. The next approach was to use the same IDs but scramble

the relationship between text mention and class ID (“shuffled-ids"). Another was to replace the

class IDs with random numbers of the same length, drawn without replacement as to have no

repeats (“random-ids"). If there was information in the specific class IDs, we would expect to see

a drop in performance for shuffled-ids relative to type-ids. If there were information in the

distribution of class IDs but not in specific ones, then we would expect a further drop in

performance for random-ids relative to shuffled-ids. We further tested to see if we could add

information to the class IDs by alphabetizing them by the text mention and assigning consecutive

IDs (“alphabetical-ids"). Text mentions that had similar prefixes (e.g., proteins “BRCA1" and

“BRCA1 C-terminus-associated protein") had consecutive alphabetical IDs (PR:089212 and

PR:089213, respectively), potentially giving the sequence-to-sequence learner additional

information. For all experiments, we maintained the ontology prefixes before the unique number

identifiers and only changed the numbers (as seen in the example above for alphabetical-ids).

However, not all text mentions mapped to class IDs solely with numbers. For example, the class

ID for the text mention “phylum" was NCBITaxon:phylum. These types of text mentions and class

IDs were rare in ontologies in the core set and thus were not changed in any experiments. In the

evaluation of alternative output targets, we calculated the percentages of both exact matches

between ontology class identifiers overall and on a per-character basis, as OpenNMT translates

per character. Furthermore, we conducted error analyses of these runs to better understand what

underlies the translation and to suggest future improvements.

Results

Overall we achieved near- or above-state-of-the-art performance on the concept annotation

task of the CRAFT Shared Tasks using only machine learning, BioBERT for span detection and

OpenNMT for concept normalization, with direct comparison to Furrer et al. [128] on the full

end-to-end system using the corresponding evaluation platform as described above (see Tables 2.5
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and 2.6). Not surprisingly, BioBERT outperformed almost all other span detection algorithms,

except for the CRF (for GO_BP, NCBITaxon, GO_MF_EXT, and NCBITaxon_EXT). Note that

due to resource limitations, we tested all span detection algorithms on the core set and applied

only the top two algorithms (CRF and BioBERT) to the core+extensions set. The BiLSTMs

overall did not perform the best, but it did seem that reusing the simplest model parameters in the

more complex models of BiLSTM-CRF and a BiLSTM with character embeddings

(Char-Embeddings) either maintained the same performance or sometimes increased

performance, especially for the Char-Embeddings model. However, these simple model

parameters could not be reused for the BiLSTM-ELMo model. OpenNMT performed quite well

for concept normalization. Overall, in comparison to UZH@CRAFT-ST, among the core sets, our

best models modestly outperformed the best system for ChEBI, CL, GO_CC, MOP, SO, and

UBERON, whereas among the core+extensions sets it just barely outperformed the best system for

CL_EXT, GO_CC_EXT, and MOP_EXT. Even for the ontologies whose results were lower than

the best system, the results were usually in close proximity (within 0.10 F1 score), except for PR

and PR_EXT with our results significantly lower than UZH@CRAFT-ST. Note that

UZH@CRAFT-ST yielded the best performance for GO_MF among all ontologies, most likely

due to the very few annotation classes included in the ontology (see Tables 2.1 and 2.2). Also, for

some ontology annotation sets (specifically, ChEBI, CL, GO_CC, UBERON, CL_EXT,

GO_MF_EXT, and UBERON_EXT), all systems (including UZH@CRAFT-ST) performed less

competently, with F1 scores below 0.80. Even with this state-of-the-art performance, there is still

room for improvement for all ontologies in the core and core+extensions sets.

This work not only provided a state-of-the-art machine learning concept recognition

pipeline, but also the factors and resources that contributed to it for usability and reproducibility

[195]. Since partial credit was awarded both for span detection and concept normalization, we

evaluated each separately to understand what drove the performance in the full end-to-end system

(see Tables 2.8- 2.14 for span detection and Tables 2.15- 2.22 for concept normalization). For

span detection, most F1 scores were around or above 0.9. The small drop in performance from
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span detection to the full system seems to mainly be from discontinuous spans and concept

normalization. All span detection algorithms were able to capture some discontinuous spans

using our modified BIO(-) tag representation (see Tables 2.10 and 2.11), but the performance was

still quite low at around 0.10. For concept normalization, it does appear that machine translation

was a salient avenue to explore, which at least for the core set was comparable to the state of the

art on the task at hand (see Tables 2.15- 2.18). However, generalizability to concepts not seen in

the training data was still quite poor overall with only 15% of the 6,940 unseen core concepts and

18% of the 8,151 unseen core+extensions concepts mapped correctly. At the same time, the

character-level match was much higher and there seems to be structure in the OBO IDs (see

Table 2.21 and 2.22). It seems plausible that we can add more structure to the IDs to increase

performance potentially (e.g., alphabetical-ids). There is still room for improvement for both span

detection and concept normalization.

In terms of resources (see Table 2.7), the CRF was a good low-resource option compared

to BioBERT for span detection. Our results suggest that we can save lots of resources by reusing

the simplest model parameters (BiLSTM) in the more complex models as a starting point (see

Tables 2.8 and 2.9). OpenNMT required a lot of resources for concept normalization. To conserve

resources, we provide the best hyperparameters for all algorithms and ontologies.

Overall, it seems that translation was a salient avenue to explore for a machine-learning

based approach to concept recognition. The rest of this section provides more details on the

overall training resources, the span detection results, and the concept normalization results.

Training Resources

Training these algorithms required significant computational resources due to the amount

of data, tuning, and optimizing necessary. It is important to consider access to hardware, memory,

and time when deciding on which algorithms to use for a task. Thus, here we report on those

factors to aid other users in making these decisions (see Table 2.7). We report on these resources

for the core annotation set only, as those for the core+extensions annotation set were similar.
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Table 2.5: Full end-to-end system evaluation on the core set comparing F1 score. For all results shown
here, the span detection algorithm is listed, and the concept normalization algorithm was OpenNMT.
UZH@CRAFT-ST was the best performing system from Furrer et al. [128] in the CRAFT-ST, shown as a
comparison to our methods. The best-performing algorithm is bolded with an asterisk*.

Ontology CRF BiLSTM BiLSTM-
CRF

Char-
Embeddings

BiLSTM-
ELMo

BioBERT UZH@CRAFT-ST

ChEBI 0.7882 0.6394 0.5027 0.5942 0.0550 0.7885* 0.7700
CL 0.6779 0.5134 0.3859 0.5611 0.0526 0.6994* 0.6657

GO_BP 0.7505 0.5137 0.3642 0.6182 0.0720 0.7405 0.8037*
GO_CC 0.7225 0.1689 0.3049 0.3244 0.0506 0.7762* 0.7645
GO_MF 0.9778 0.9770 0.9778 0.8906 0.3704 0.9783 0.9838*
MOP 0.8129 0.7721 0.7158 0.5985 0.0930 0.8742* 0.8705

NCBITaxon 0.9026 0.7736 0.8391 0.8518 0.0948 0.8910 0.9694*
PR 0.4040 0.3136 0.2827 0.2732 0.0516 0.5295 0.8026*
SO 0.8987 0.4106 0.4096 0.7815 0.0813 0.9054* 0.9027

UBERON 0.7474 0.6812 0.5029 0.6901 0.0793 0.7670* 0.7488

Table 2.6: Full end-to-end system evaluation on the core+extensions set comparing F1 score for the top two
algorithms found in the core set. For all results shown here, the span detection algorithm is listed, and the
concept normalization algorithm was OpenNMT. UZH@CRAFT-ST was the best performing system from
Furrer et al. [128] in the CRAFT-ST, shown as a comparison to our methods. The best-performing algorithm
is bolded with an asterisk*.

Ontology CRF BioBERT UZH@CRAFT-ST
ChEBI_EXT 0.7891 0.8039 0.8209*
CL_EXT 0.7381 0.7491* 0.7484

GO_BP_EXT 0.7279 0.7353 0.8138*
GO_CC_EXT 0.8738 0.8983* 0.8936
GO_MF_EXT 0.6413 0.6255 0.7438*
MOP_EXT 0.8000 0.8651* 0.8437

NCBITaxon_EXT 0.8710 0.8624 0.9722*
PR_EXT 0.4397 0.5188 0.8011*
SO_EXT 0.7682 0.7829 0.9187*

UBERON_EXT 0.7558 0.7711 0.7714*

The availability of hardware including normal laptop CPUs, hyperthreaded CPUs, and

GPUs, both changed the time and the possible experiments that could be tested. For most

algorithms, CPUs were sufficient. ConceptMapper, used as the baseline for concept

normalization, ran on a normal laptop using CPUs (MacBook Pro Mid 2015). The CRF,

BiLSTM-CRF, and Char-Embeddings models ran in reasonable amounts of time on the

hyperthreaded CPUs for all ontology annotation sets. However, as the time to train increased, we
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switched to GPUs because they often speed up the processes significantly [248]. For the BiLSTM,

we tuned it on GPUs and continued the runs on GPUs once we had the optimized parameters.

BioBERT also performed significantly faster on GPUs than on CPUs. Some algorithms (such as

that for the BiLSTM-ELMo model, for which the portion involving ELMo was the rate-limiting

step) needed a GPU for practical running times due to the amount of tasks performed in it [248].

Access to GPUs was helpful in speeding up training time as were hyperthreaded CPUs, since

advanced hardware was quite important for some algorithms.

The hardware also dictated the available memory, dictating which algorithms and how

many ontologies could be run. Each algorithm was trained, tuned, and tested on each of the ten

ontologies. For the BiLSTM alone, that was 160 experiments total. Thankfully, most algorithms

required a small amount of memory, except for OpenNMT, which required more than 600GB to

train all ontologies. To combat this memory requirement, we parallelized it among the ten

ontologies, averaging around 60-80 GBs per ontology. We also parallelized BiLSTMs and

BiLSTM-ELMo due to the sheer number of experiments. For the BiLSTM-ELMo, our resources

were not sufficient to truly test if the BiLSTM hyperparameters would generalize to it because we

ran out of memory quickly. We had to modify our experiment and the results were poor. Thus,

memory was an important factor in choosing algorithms.

Time was also an important factor. Choosing the right hardware with the right memory

also hinged on the training time of the algorithm. This is particularly relevant for a shared task,

where time is very important for meeting deadlines. Time is also important for responsiveness and

scalability [200]. We found that the fastest algorithm was the CRF, followed by BiLSTM-CRF

and BioBERT. The UZH@CRAFT-ST also used BioBERT, and it took significantly longer than

our BioBERT due to a differing number of epochs (55 and 10, respectively). The most

time-consuming algorithms were BiLSTM-ELMo, with ELMo taking the majority of the time,

and OpenNMT. In both cases though, similar to memory issues, we parallelized among the ten

different ontologies to speed up the process. Still though, each ontology required 50-100 hours of
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supercomputer time. Since time, memory, and hardware were valuable, we provide all models and

the best performing hyperparamter information to hopefully speed up future experiments.

Table 2.7: Hardware, memory, and time used for training for all evaluated algorithms. A given training
time specifies the total hours if training for all ontology annotation sets were run consecutively, but these
can be parallelized by ontology. *Parallelized per ontology due to time constraints. **Runs significantly
faster on GPUs. ***Total free RAM available. ConceptMapper runs on CPUs but has no training, as it is a
dictionary-based lookup tool, hence the specifications as N/A.

Algorithm Hardware Training Memory (GBs) Training Time (hrs)
CRF CPUs 2-13 1-4

BiLSTM* GPUs/CPUs** 17 29
BiLSTM-CRF CPUs 7 15

Char-Embeddings CPUs 30 84
BiLSTM-ELMo* GPUs 42 700-1000

BioBERT GPUs/CPUs** 5 20
UZH@CRAFT-ST BioBERT* [128] GPUS 120*** 200

OpenNMT* CPUs 620 515
ConceptMapper [196] CPUs N/A N/A

Span Detection Results

Overall, BioBERT and CRF performed best for span detection on both the core and

core+extensions annotation sets (see Tables 2.8 and 2.9, respectively) as evaluated on the set of 30

held-out documents. In low-resource settings, the CRF would suffice. In general, performance

was very good, with all ontology F1 scores for both sets above 0.77 and most above 0.90. Note

that the best results were seen for GO_MF, MOP, and MOP_EXT, most likely due to the fact that

there were relatively few annotations in these sets (see Tables 2.1 and 2.2). Even though the

BiLSTM models did not have the best performance, the hyperparameters from our simple model

were a good starting point for the more complex models, except for BiLSTM-ELMo. The

BiLSTM-ELMo model performed the worst and was most likely the reason the full end-to-end

system was so poor for this algorithm. Even with some poor results, all algorithms could detect

some discontinuous spans, and some discontinuous spans could be detected by at least one

algorithm for all ontologies except for ChEBI, ChEBI_EXT, and GO_MF_EXT, which have

among the fewest discontinuous spans (see Tables 2.10 and 2.11 for the core and core+extensions

annotation sets, respectively). Due to the rarity of discontinuous spans, these tables suggest that



57

we can just barely detect them and that more work is needed on these complex mentions

specifically. Overall though, sequence-to-sequence algorithms performed quite well for span

detection.

Table 2.8: Span detection F1 score results for all algorithms tested against the core evaluation annotation
set of the 30 held-out articles. The best-performing algorithm per ontology is bolded with an asterisk*.

Ontology CRF BiLSTM BiLSTM-CRF Char-Embeddings BiLSTM-ELMo BioBERT
ChEBI 0.7234 0.6545 0.5000 0.5280 0.0620 0.9091*
CL 0.8333 0.5882 0.3774 0.8000 0.0000 0.9231*

GO_BP 0.8677* 0.5498 0.3661 0.6346 0.0685 0.8646
GO_CC 0.9412 0.1379 0.2689 0.2581 0.1000 0.9444*
GO_MF >0.9999* >0.9999* >0.9999* 0.8421 0.0000 >0.9999*
MOP >0.9999* >0.9999* >0.9999* >0.9999* 0.0000 >0.9999*

NCBITaxon 0.9959* 0.8551 0.9440 0.9569 0.0711 0.9453
PR 0.4351 0.2979 0.2151 0.0995 0.0339 0.8199*
SO 0.9435* 0.4935 0.4897 0.8203 0.1059 0.9081

UBERON 0.7913 0.7206 0.4758 0.7440 0.0854 0.8826*

Table 2.9: Span detection F1 score results for all algorithms tested against the core+extensions evaluation
annotation set of the 30 held-out articles. The best-performing algorithm per ontology is bolded with an
asterisk*.

Ontology CRF BioBERT
ChEBI_EXT 0.8802 0.9291*
CL_EXT 0.8000 0.9677*

GO_BP_EXT 0.8800* 0.8516
GO_CC_EXT 0.8667 0.9524*
GO_MF_EXT 0.9211 0.9231*
MOP_EXT >0.9999* >0.9999*

NCBITaxon_EXT 0.9959* 0.9919
PR_EXT 0.5598 0.7717*
SO_EXT 0.8054 0.8244*

UBERON_EXT 0.8418 0.9157*

Our goal was for others to benefit from these extensive studies of alternative methods and

hyperparameter selections, and so we present the tuning results for all algorithms since it was the

most-time consuming and difficult part of this work (see Tables 2.12- 2.14). Running and

evaluating the models was generally quite fast. Note that the micro-F1 scores were higher because
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Table 2.10: F1 score results for detection of discontinuous spans for all algorithms tested against the core
evaluation annotation set of the 30 held-out articles. (Note that there are no discontinuous spans in the
GO_MF, MOP, and NCBITaxon sets.)

Ontology Support CRF BiLSTM BiLSTM-CRF Char-Embeddings BiLSTM-ELMo BioBERT
ChEBI 14 0 0 0 0 0 0
CL 175 0.1176 0.1158 0.1171 0 0.0107 0.1818

GO_BP 272 0.0952 0 0.014 0 0.007 0.2742
GO_CC 14 0.1053 0 0 0.0526 0 0.3

PR 44 0 0 0 0 0 0.08
SO 45 0.0408 0 0 0 0 0.3

UBERON 118 0.04 0 0 0 0 0.0915

Table 2.11: F1 score results for detection of discontinuous spans for all algorithms tested against the
core+extensions evaluation annotation set of the 30 held-out documents. (Note that there were no discontin-
uous spans in the MOP_EXT and NCBITaxon_EXT sets.)

Ontology Support CRF BioBERT
ChEBI_EXT 19 0 0
CL_EXT 175 0.1164 0.1608

GO_BP_EXT 287 0.085 0.2651
GO_CC_EXT 30 0.1579 0.3721
GO_MF_EXT 20 0 0

PR_EXT 44 0 0.1224
SO_EXT 72 0.1505 0.2979

UBERON_EXT 133 0.0485 0.2128

the “O" (outside) category for the BIO(-) tags appeared significantly more often than any other tag

and the macro-F1 scores were lower because of the infrequent “O-" tag.

The CRF required the least amount of resources and was good in a low-resource setting.

The optimal L1 and L2 regularization penalties (see Table 2.12) were found in about three hours

for each ontology. Of note was that for ChEBI, GO_BP, MOP, and NCBITaxon the model shared

the same parameters and yielded very similar F1 scores. This may mean that these ontologies

need more tuning with larger parameter spaces or that this signifies a universal parameter for most

ontologies. Even still, most macro-F1 scores were above 0.6 except for GO_CC and PR, which

were still above 0.5. The lowest score was for PR and the highest for CL, with room for

improvement in both. These parameters could be reused for the same model on a similar task or as

a starting point for training a new model with minimal resources.
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Table 2.12: CRF tuning parameters and resulting tuning F1 scores. The overall memory usage for all tuning
was 6 GB.

Ontology L1 L2 Time (hours) F1 Score (macro) F1 Score (micro)
ChEBI 0.0862 0.000186 3 0.61 0.99
CL 0.00477 0.0473 3 0.73 >0.99

GO_BP 0.0862 0.000186 3.17 0.63 0.99
GO_CC 0.269 0.00892 3 0.55 0.99
GO_MF 0.215 0.00392 3 0.66 0.99
MOP 0.0862 0.000186 3 0.65 >0.99

NCBITaxon 0.0862 0.000186 3 0.61 >0.99
PR 0.00477 0.0473 3.25 0.54 0.97
SO 0.315 0.00578 3.22 0.66 >0.99

UBERON 0.221 0.003005 3.3 0.63 0.99

Even though none of the BiLSTM models achieved the best results, it seems beneficial to

reuse the hyperparamters from a simple BiLSTM model for more complex models, at least as a

starting point (see Table 2.8). Also, tuning the BiLSTM required a significantly longer amount of

time to achieve optimal performance on the training data (see Table 2.13) compared to other

algorithms. Thus, we provide the BiLSTM hyperparameters as a starting point to help others save

resources.

All of the values tested for each hyperparameter were necessary for at least one ontology.

On average, training took around 98 hours per ontology, which was due in part to the number of

parameters tested. That being said, each tested parameter value for batch size, epochs, and

neurons was required by at least one ontology for optimal performance. For batch size, the two

most common, 106 (the largest value tested) and 36 (the second lowest value tested), were found

to be optimal for four ontologies each, while optimal batch sizes of 53 and 18 were found for

ChEBI and UBERON, respectively. As for epochs, an optimal number of 10 was found for most

of the ontologies, while an optimal number of 100 was found for GO_CC, NCBITaxon, and SO.

For neurons, an optimal number of 12 was found for all ontologies except for GO_MF, for which

an optimal number of 3 was found. About the same amount of memory (6.5 GB) was used for

tuning all ontologies.
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In terms of optimization metrics, we calculated tuning macro- and micro-F1 scores, as for

the CRF model. In this case, all micro-F1 scores were above 0.99, while macro-F1 scores were

equal to or greater than those for the CRF model, with all scores greater than 0.6. This was in

contrast to the results for the final end-to-end system, for which the CRF model outperformed all

BiLSTM algorithms. The highest F1 score was that for GO_MF and the lowest for MOP (with

GO_MF and MOP having the smallest amount of training data, see Tables 2.1 and 2.2). Overall,

we saved a significant amount of resources by using the same hyperparameters for the

BiLSTM-CRF and Char-Embeddings models, along with modified values for the BiLSTM-ELMo

models, even though none of them performed the best in the full-system evaluation.

Table 2.13: BiLSTM tuning parameters and resulting tuning F1 scores that were used for the BiLSTM-CRF
and Char-Embeddings models also.

Ontology Batch Size # Epochs # Neurons Time
(hours)

Memory
(GBs)

F1 Score
(macro)

F1 Score
(micro)

ChEBI 53 10 12 99 6.5 0.67 >0.99
CL 36 10 12 92 6.5 0.74 >0.99

GO_BP 36 10 12 99 6.5 0.68 >0.99
GO_CC 106 100 12 97 6.5 0.66 >0.99
GO_MF 106 10 3 108 8.4 0.99 >0.99
MOP 106 10 12 99 6.4 0.61 >0.99

NCBITaxon 106 100 12 95 6.5 0.96 >0.99
PR 36 10 12 95 6.5 0.71 >0.99
SO 36 100 12 98 6.5 0.66 >0.99

UBERON 18 10 12 97 6.5 0.68 >0.99

Our reuse of hyperparamters to save resources failed with BiLSTM-ELMo due to memory

issues. The limit of our resources was reached. Even though this model performed the worst

overall, we report the modified hyperparamters used and the training results because the span

detection results were on par with the other algorithms (see Table 2.14).

The BiLSTM-ELMo model required the most resources for training. Due to memory

issues using the simplest model parameters, we needed to restrict the batch size to 18 and thus

took the best results from the tuning of the aforementioned BiLSTM with this batch size. Using a

batch size of 18 (the smallest batch size we tested) resulted in some differences in the optimal
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numbers of epochs and neurons compared to the BiLSTM results shown in Table 2.13. Most

ontologies still required 10 epochs for optimal performance, but a few (GO_CC, GO_MF and

MOP) changed from 10 to 100 or vice versa, with the rest remaining the same. For neurons, most

ontologies remained at 12, but two switched to 3, including ChEBI and GO_CC, with GO_MF

remaining at 3 as well. Comparing F1 scores to the previous algorithms, the tuning micro-F1

scores were exactly the same as those for the BiLSTM, but the macro-F1 scores either decreased

slightly (for ChEBI, CL, GO_BP, GO_CC, GO_MF, and SO) or stayed the same (for MOP,

NCBITaxon, PR, and UBERON) as those for the BiLSTM. UBERON was the only ontology for

which the parameters remained the same from the BiLSTM to BiLSTM-ELMo because it already

required a batch size of 18 for optimal performance. It is not clear why all of these shifts occurred,

getting at the difficulty in tuning a BiLSTM [238]. Further, the training F1-scores were similar to

the CRF and BiLSTM scores, but the evaluation performance was very low. It is also unclear why

this is true. More work including time and resources are necessary to understand and tune the

BiLSTM-ELMo model.

Table 2.14: BiLSTM-ELMo parameters and resulting tuning F1 scores. Due to limited resources, the batch
size was 18 for all ontologies.

Ontology Batch size # Epochs # Neurons F1 Score (macro) F1 Score (micro)
ChEBI 18 10 3 0.65 >0.99
CL 18 10 12 0.72 >0.99

GO_BP 18 10 12 0.66 >0.99
GO_CC 18 10 3 0.65 >0.99
GO_MF 18 100 3 0.66 >0.99
MOP 18 100 12 0.61 >0.99

NCBITaxon 18 100 12 0.96 >0.99
PR 18 10 12 0.71 >0.99
SO 18 100 12 0.65 >0.99

UBERON 18 10 12 0.68 >0.99

Concept Normalization Results

Overall, the implementation of concept normalization as a sequence translation task via

OpenNMT performed well on almost all ontologies in both the core and core+extensions sets,

providing the last step in a fully machine-learning based concept recognition pipeline (see Tables
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2.15 and 2.17). OpenNMT significantly outperformed ConceptMapper, except for PR and

NCBITaxon_EXT, on the 30 held-out document evaluation set. Further, our results suggest that

OpenNMT provided some generalizability to concepts not seen in the training data (see

Tables 2.16 and 2.18). However, a weird side-effect of this generalizability was that OpenNMT

can predict class IDs that do not exist, i.e., an ID that does not represent an OBO concept (see

Tables 2.19 and 2.20). These weird non-existent class IDs seem to exist because it appears that

OpenNMT has found some structure in the OBO class IDs (see Tables 2.21 and 2.22). Thus,

concept normalization as machine translation is a worthwhile avenue to continue exploring for

generalizability and to understand the structure in the OBO IDs.

OpenNMT significantly outperformed ConceptMapper, except for PR and

NCBITaxon_EXT, on the 30 held-out document evaluation set, with high character-level matches

especially (see Tables 2.15 and 2.17). Evaluation was performed at both the class ID level, in

which a correctly predicted class ID in its entirety counts as an exact match, and at the character

level, in which each character of the predicted class ID was evaluated and a fractional score was

calculated for a partial match. For example, while a text mention of “Brca2" was annotated in the

gold standard with the Protein Ontology class PR:000004804, it was predicted to refer to

PR:000004803, which differed from the gold standard only in the last digit. (The predicted

ontology class ID PR:000004803 represents BRCA1, which also differed from the gold-standard

protein BRCA2 in only its last digit.) At the class ID level, this was a mismatch, but at the

character level it received a score of 1112 = 0.92, as 11 of the 12 predicted characters matched.

Scores greater than 69% were achieved at the class ID level for all ontologies except for PR and

PR_EXT. Comparing the core set to the corresponding core+extensions set, scores for the latter

were higher than those of the former for half of the ontologies (ChEBI_EXT, CL_EXT,

GO_CC_EXT, PR_EXT, and UBERON_EXT). The class IDs of the extension classes may be

easier to predict because there was less variation of text mentions annotated with the extension

classes and also possibly due to the use of English words in the extension class IDs (e.g.,

ChEBI_EXT:calcium, CL_GO_EXT:cell) rather than the numeric IDs of the proper OBO classes.
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At the character level, all match scores were above 69% for both sets. Scores for the core set were

generally higher than those of the corresponding core+extensions set, except for CL and GO_CC.

For all ontologies, in most cases, the character level match scores were near or greater than the

class ID scores, indicating that many of the predicted IDs were partly correct (in that they

contained correct substrings). Future work can look at these partial matches for improvements.

For OpenNMT all text mentions were normalized to class IDs and so it can capture unseen

text mentions, getting at generalizability (see Tables 2.16 and 2.18). Overall, only 15% of the

6,940 unseen core concepts and 18% of the 8,151 unseen core+extensions concepts were

normalized correctly. However, more than 50% of the unseen text mentions were normalized

correctly for the MOP, SO, MOP_EXT, and SO_EXT sets, and only the NCBITaxon, PR, and

PR_EXT sets had none of the unseen mentions normalized. Otherwise around 20-30% were

normalized for the rest. On the character-level, the unseen concept results were much higher,

suggesting that these models can generalize to some extent beyond the text mentions seen in the

training data, most likely due to the character-level translation of OpenNMT. For ConceptMapper,

not all text mentions were normalized to ontology class IDs, indicating false negatives. These

false negatives were the main reason performance of ConceptMapper was so poor (e.g., no class

IDs were predicted for MOP). Since ConceptMapper was a dictionary-based lookup tool, any text

mention not in the dictionary will not be captured, but OpenNMT can capture these unseen text

mentions. Even though, the text mentions seen in the training data performed far better than the

unseen ones on both the class-ID and character levels, our results suggest that OpenNMT was

somewhat generalizable and this can be improved upon based on the character-level results.

Even though OpenNMT normalized all text mentions and seemed generalizable, not all

predicted class IDs were correct or even real class IDs. These types of mismatches, especially a

weird side-effect of our character translation, helped us better understand these results and elicit

future research directions. At the class ID level, two scenarios arose: (1) A different real class ID

was predicted or (2) a completely non-existent class ID was predicted. The aforementioned

Protein Ontology example involving Brca1 and Brca2 was an example of the first scenario. This
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Table 2.15: Concept normalization exact match results on the core evaluation annotation set of the 30
held-out documents compared to the baseline ConceptMapper approach. We report both the percent exact
match at the class ID level and the character level. We also report the percentage of false negatives (FN)
for ConceptMapper (i.e., no class ID prediction for a given text mention). Note that for each ontology the
better performance between OpenNMT and ConceptMapper is bolded with an asterisk* for both class ID
and character levels.

Ontology % Open-
NMT Class
ID

% ConceptMap-
per Class ID

% Con-
ceptMapper
FN Class ID

% Open-
NMT
Character

% ConceptMap-
per Character

ChEBI 82%* 55% 41% 94%* 58%
CL 72%* 52% 12% 92%* 77%

GO_BP 82%* 29% 59% 93%* 36%
GO_CC 81%* 54% 44% 91%* 55%
GO_MF 98%* 0% 100% 99%* 0%
MOP 95%* 65% 34% 99%* 66%

NCBITaxon 87%* 86% 13% 97%* 87%
PR 10% 47%* 26% 76%* 57%
SO 97%* 75% 21% 99%* 78%

UBERON 78%* 64% 34% 95%* 65%

Table 2.16: Exact match results for the unseen and seen text mentions (relative to the training data) for the
core evaluation annotation set of the 30 held-out documents. Reporting the total number of mentions and
the number of unique mentions along with the percent exact match on the class ID level and character level
for both unseen and seen text mentions.

Ontology Total/Unique #
Unseen Mentions

% Unseen
OpenNMT
Class ID

% Seen Open-
NMT Class ID

% Unseen Open-
NMT Character

% Seen Open-
NMT Charac-
ter

ChEBI 345/148 17% 94% 69% 99%
CL 774/208 39% 98% 92% >99%

GO_BP 727/367 17% 98% 65% 99%
GO_CC 301/85 29% 99% 67% >99%
GO_MF 3/3 33% >99% 70% >99%
MOP 18/7 83% 98% 96% >99%

NCBITaxon 81/52 0% 89% 72% 98%
PR 2926/388 0% 19% 71% 80%
SO 181/105 62% 99% 89% >99%

UBERON 1584/514 20% 97% 80% 99%

also occurred with concepts both within an ontology subhierarchy, such as a prediction of

ChEBI:24867 (monoatomic ion) for a gold-standard mention of ChEBI:23906 (monoatomic

cation), which is a child of the former. One can see the striking resemblance between the two
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Table 2.17: Concept normalization exact match results on the core+extensions evaluation annotation set of
the 30 held-out documents compared to the baseline ConceptMapper approach. We report both the percent
exact match on the class ID level and the character level. We also report the percentage of false negatives (FN)
for ConceptMapper (i.e., no class ID prediction for a given text mention). Note that the best performance
between OpenNMT and ConceptMapper is bolded with an asterisk* for both class ID and character level.

Ontology % OpenNMT
Class ID

% Con-
ceptMapper
Class ID

% Con-
ceptMapper
FN Class ID

% OpenNMT
Character

% Con-
ceptMapper
Character

ChEBI_EXT 86%* 64% 26% 84%* 66%
CL_EXT 82%* 67% 11% 93%* 84%

GO_BP_EXT 80%* 34% 44% 76%* 38%
GO_CC_EXT 93%* 80% 18% 94%* 84%
GO_MF_EXT 69%* 60% 30% 69%* 64%
MOP_EXT 92%* 64% 35% 97%* 44%

NCBITaxon_EXT 83% 86*% 13% 93%* 87%
PR_EXT 15%* 9% 28% 72%* 21%
SO_EXT 92%* 19% 40% 91%* 22%

UBERON_EXT 81%* 68% 29% 92%* 75%

Table 2.18: Exact match results for the unseen and seen text mentions (relative to the training data) for
the core+extensions evaluation annotation set of the 30 held-out documents. Reporting the total number of
mentions and the number of unique mentions along with the percent exact match on the class ID level and
character level for both unseen and seen text mentions.

Ontology Total/Unique #
Unseen Men-
tions

% Unseen
OpenNMT
Class ID

% Seen Open-
NMT Class ID

% Unseen Open-
NMT Character

% Seen Open-
NMT Charac-
ter

ChEBI_EXT 476/188 32% 92% 67% 85%
CL_EXT 775/209 36% 99% 77% 97%

GO_BP_EXT 861/431 26% 89% 57% 78%
GO_CC_EXT 339/113 39% 99% 57% 98%
GO_MF_EXT 515/146 31% 83% 45% 78%
MOP_EXT 21/10 67% 98% 85% >99%

NCBITaxon_EXT 123/79 1% 86% 68% 94%
PR_EXT 3114/429 0% 25% 66% 75%
SO_EXT 318/183 51% 94% 69% 92%

UBERON_EXT 1609/532 23% 96% 79% 95%

concepts; the only difference is the added “cat", which OpenNMT did not pick up on. However,

we did receive partial credit in the final evaluation, as ChEBI:’monatomic cation’ is subsumed by

ChEBI:’monoatomic ion’ in the ChEBI ontology. Note that the predicted and the true class IDs

were not always very similar such as for Brca1 and Brca2 and were sometimes even very different.
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The first scenario seems to be a false negative and we found some syntactic relationships between

the error and the truth (more exploration in the Discussion section).

Much less frequent were occurrences of the second scenario (see Tables 2.19 and 2.20).

For example, OpenNMT predicted the class ID SO:0002000 and there was no such SO class. The

correct class ID was SO:0001179 (U3 snoRNA), which was quite different. It is unclear how to

handle these non-existent IDs, aside from assigning it as an automatic error. Interestingly, these

errors were evenly distributed between training and validation; there was not much difference

between the percentage of predicted non-existent class IDs for the training and validation sets.

However, there did seem to be quite a difference between those and the evaluation set, with more

predicted non-existent class IDs in the evaluation set, especially for GO_MF (50%) and

GO_CC_EXT and NCBITaxon_EXT (more than 20%). Intriguingly, there were no predicted

non-existent class IDs in any of the CL data sets nor in the MOP_EXT training and evaluation

sets. This could be a proxy for whether these ontologies could stay within the “vocab" of the class

IDs only using true class IDs (0% means fully within vocab), and not predicting non-existent ones

(>0%). For the second scenario, it is unclear how to interpret these predicted non-existent class

IDs and we explore them in the Discussion section.

Table 2.19: Percentage of predicted non-existent class IDs out of the total number of predicted mismatch
class IDs for the core set for the training, validation and evaluation sets.

Ontology % Non-existent Class
IDs in Training

% Non-existent Class
IDs in Validation

% Non-existent Class
IDs in Evaluation

ChEBI 3% 4% 11%
CL 0% 0% 0%

GO_BP 2% 2% 2%
GO_CC 2% 4% 1%
GO_MF 1% 1% 50%
MOP 0% 2% 0%

NCBITaxon 7% 7% 11%
PR 10% 10% 2%
SO 0% 1% 0%

UBERON 0% 1% 2%
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Table 2.20: Percentage of predicted non-existent class IDs out of the total number of predicted mismatch
class IDs for the core+extensions set for the training, validation and evaluation sets.

Ontology % Non-existent Class
IDs in Training

% Non-existent Class
IDs in Validation

% Non-existent Class
IDs in Evaluation

ChEBI_EXT 8% 8% 17%
CL_EXT 1% 1% 9%

GO_BP_EXT 2% 2% 3%
GO_CC_EXT 4% 4% 21%
GO_MF_EXT 2% 2% 4%
MOP_EXT 0% 6% 0%

NCBITaxon_EXT 9% 9% 25%
PR_EXT 7% 7% 5%
SO_EXT 1% 1% 2%

UBERON_EXT 1% 1% 1%

Another contributor to both generalizability and the mismatches, aside from the character

level translation, seemed to be the amount of data and the apparent structure in the OBO class IDs

(see Tables 2.21 and 2.22 at the class ID and character levels, respectively). Focusing only on the

core set, concept frequency in the training data had a modest effect on the performance of

OpenNMT, except for NCBITaxon and PR. Interestingly, the match results for the token-ids

relative to those for the type-ids were the same or very close (CL, GO_MF, and SO) or slightly

decreased at both the class ID and character levels, except for MOP at the class ID level and

GO_CC at the character level, for which the performance for the type-ids increased. Note that at

the class ID level, the match result for PR was already very low for token-ids (under 10%), so any

drop was comparatively minuscule. For NCBITaxon, performance completely dropped to zero at

the class ID level, indicating that frequency of annotation concepts (which was taken into account

in token-ids) was necessary for performance (which is analyzed further in the Discussion section).

Whether frequency of concepts helped improve performance depended on the ontology.

At the character level, the drop was nowhere near as drastic as the class ID level, especially

for NCBITaxon, due to partial-match scoring. Looking at some of the mismatches for both

type-ids and token-ids, different errors were made. For example, for “penicillin" (annotated with

ChEBI:173334 in the gold standard), ChEBI:7986 (which is the class ID for “pentoxifylline") was
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predicted. These class IDs were nothing alike, but we can see similar structure (specifically, “pen"

and “in") in the English concept mention and label of the predicted ID, which was identified by

the token-ids method but not by the type-ids method. Our results show that it was better to use the

token-ids approach for all ontologies except for MOP, for which the type-ids approach performed

better. This suggests that more data was useful.

We also found that the class IDs have some semantic content or structure that may be

contributing to the mismatches (see shuffled-ids and random-ids in Tables 2.21 and 2.22). As

expected, we did see a decrease in performance from type-ids to shuffled-ids to random-ids at both

the class ID and character levels for at least half of the ontologies. The match results for ChEBI,

NCBITaxon, PR, and UBERON reduced to 0% for both shuffled-ids and random-ids at the class

ID level, whereas those for CL, GO_MF, MOP, and SO generally maintained their level of exact

matching between type-ids, shuffled-id, and random-ids, with random-ids performing the best for

GO_CC of all experiments (only slightly). Note that NCBITaxon was already at zero for the

type-ids. Furthermore, since OpenNMT works at the character level, we could see the structure

breaking at the character level (see Table 2.22): for all ontologies there was a large decrease from

type-ids to shuffled-ids to random-ids, except for GO_CC, GO_MF, MOP, and SO. This may

suggest some accidental structure in the shuffled-ids and/or random-ids generated. The results at

the class ID and character levels suggest that OpenNMT identified some structure in the current

ontology class IDs.

Adding in more semantic content to the ontology class IDs may be a promising avenue to

increase performance. We added in more semantic content by alphabetizing the text mentions and

it seemed to perform close to the token-ids results for most ontologies, although it may have added

in too much structure (see the alphabetical-ids columns in Tables 2.21 and 2.22). At the class ID

level, the token-ids approach performed the best for all ontologies; however, the alphabetical-ids

approach recovered the losses from the shuffled-ids and/or random-ids approaches to perform

close to the token-ids results for most ontologies, except for CL, GO_MF, MOP, and NCBITaxon,

with a similar trend at the character level. This suggests that the alphabetical-ids approach may
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have imposed too much structure on the ontology concepts, as incremented alphabetized IDs were

given to all text mentions even if they were annotated with the same class ID. For example, the

class ID GO:0097617 was used for “annealing", “hybridization", and “hybridizations" mentions,

which in the alphabetical-ids approach were mapped to GO:05728, GO:15701, and GO:15702,

respectively. Therefore, in the predictions, hybridization was mapped to GO:15702, which was

one number different but incorrect nonetheless, whereas annealing was predicted correctly. Thus,

performance may be boosted by incorporating stemming and lemmatization into ID mapping, e.g.,

providing the same alphabetized ID to “hybridization" and “hybridizations" and a different one for

“annealing". Future work can explore other mapping methods to both help understand and

improve upon the good performance of machine translation for concept normalization. Machine

translation is a promising avenue for concept normalization.

Table 2.21: Exact match results for the concept normalization experiments on the core evaluation annotation
set of 30 held-out documents. We report the exact match percentage at the class ID level. The highest
percentage is bolded and with an asterisk*.

Ontology Token-ids Type-ids Shuffled-ids Random-ids Alphabetical-ids
ChEBI 82%* 65% 0% 0% 78%
CL 72%* 72%* 69% 70% 56%

GO_BP 82%* 79% 64% 27% 52%
GO_CC 81% 80% 81% 84%* 76%
GO_MF 98%* 98%* 98%* 98%* 51%
MOP 95% 97%* 97%* 92% 80%

NCBITaxon 87%* 0% 0% 0% 0%
PR 10%* 3% 0% 0% 8%
SO 97%* 96% 97%* 97%* 96%

UBERON 78%* 74% 0% 0% 74%

Discussion

By reframing concept recognition as a translation problem, we not only sidestepped the

multi-class classification problem, but also achieved above or near state-of-the-art performance

(see Tables 2.5 and 2.6) on the concept annotation task of the CRAFT Shared Task with direct

comparison to Furrer et al. [128] via the corresponding evaluation framework. Overall, on the full

system run for the core set, our approach using BioBERT with OpenNMT slightly outperformed
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Table 2.22: Exact match results for the concept normalization experiments on the core evaluation annotation
set of 30 held-out documents. We report the exact match percentage at the character level. The highest
percentage is bolded and with an asterisk*.

Ontology Token-ids Type-ids Shuffled-ids Random-ids Alphabetical-ids
ChEBI 94%* 89% 60% 58% 94%*
CL 92%* 92%* 86% 80% 65%

GO_BP 93%* 91% 85% 56% 84%
GO_CC 91% 92%* 92%* 89% 82%
GO_MF 99%* 99%* 99%* 99%* 94%
MOP 99% >99%* 99% 99% 86%

NCBITaxon 97%* 74% 73% 68% 74%
PR 76%* 75% 40% 30% 74%
SO 99%* 99%* 99%* 98% 96%

UBERON 95%* 93% 69% 54% 88%

the best run from the participants in the CRAFT Shared Task (UZH@CRAFT-ST) [128] for six of

the ten ontologies, whereas the latter modestly outperformed our best system for three of the four

other ontologies (except for PR which was significantly lower). Furthermore, the BioBERT used

here required less resources than the BioBERT for UZH@CRAFT-ST, but the OpenNMT in our

system negated that (see Table 2.7). For the core+extensions set, our best-performing run slightly

outperformed the best UZH@CRAFT-ST run for CL_EXT, GO_CC_EXT, and MOP_EXT, while

the UZH@CRAFT-ST system outperformed our approach for all other ontologies. However, our

BioBERT+OpenNMT system attained F1 scores within 0.2 of the UZH@CRAFT-ST scores for

six of the seven ontologies, with PR_EXT as the exception. Overall, we achieved above or near

state-of-the-art performance.

The errors that led to lower performance in these full runs resulted from issues with span

detection, concept normalization, or an interaction between the two. For span detection, there

were four classes of errors relative to the gold-standard text mentions: (1) the text mention was

not detected at all; (2) the text mention was partially detected; (3) the text mention detected

included extra text; and (4) a full extra text mention was detected. Case (1) was a false negative

and case (4) was a false positive. For cases (2) and (3) though, partial credit was awarded in the

full evaluation pipeline for detecting at least part of the text mention. For concept normalization,
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the errors produced were most likely rather opaque and difficult to analyze (such as the

non-existent class IDs) compared with e.g., a dictionary-based approach like ConceptMapper

(though there may be other reasons this approach would have trouble for these ontologies).

Concept normalization as translation needs to be explored beyond the experiments done here,

especially since ConceptMapper outperformed OpenNMT for PR and NCBITaxon_EXT. At the

same time, some possible reasons for poorer performance may be related to the mixing of two

different types of class IDs that include both numbers and English text as well as the varying

lengths of the class IDs. The text class IDs tended to be rather long, and OpenNMT performs

worse with longer sequence lengths compared to shorter ones (as evidenced by the results on the

core+extensions set, where many extension classes had English text class IDs and were longer,

and UZH@CRAFT-ST outperformed BioBERT+OpenNMT for all but three ontologies). For the

interaction of the two tasks in the full system, case (1) in span detection will lead to no

normalization, propagating the error from span detection and resulting in a false negative also for

concept normalization. For cases (2) and (3), however, it was possible for the normalization step

to still correctly identify the class ID even though the text mention was slightly incorrect. On the

other hand, for case (4), the class ID determined will always be wrong because the text mention

should not have been detected in the first place, as OpenNMT always outputs a class ID for each

inputted text mention. Thus, it is important to understand the implications of a two part system to

understand the errors in the final system.

It is also important to focus on each aspect of the full system and each aspect can be used

separately for different tasks as well. Overall, span detection algorithms performed very well for

all ontologies with all F1 scores for the best algorithms above 0.81 for the core set and 0.77 for the

core+extensions set (see Tables 2.8 and 2.9). The lowest, PR_EXT, seems to be suffering from

predicting extra text mentions (false positives) as in case (4) of the span detection errors

mentioned above. For concept normalization, the exact match percentage on the class ID level was

above 72% for the core set (except PR) and above 69% for the core+extensions set (except

PR_EXT) (see Tables 2.15 and 2.17). In this case, both PR and PR_EXT were very low at 10%
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and 15%, respectively, at the class ID level. At the character level, the exact match percentages

were much higher at 76% and 72%, respectively, but these were still lower than most of the other

ontologies. Looking at the errors produced for PR specifically, it seems that the English text class

IDs error mentioned above was at play for PR_EXT especially, as well as the fact that PR has

longer numeric class IDs to begin with and many acronyms and other synonyms compared to

other ontologies. As for the interaction of the two tasks, the best F1 scores of the full system were

all above 0.69 for the core set and above 0.74 for the core+extensions set, except again for PR and

PR_EXT, respectively (see Tables 2.5 and 2.6). It seems that the very poor results of concept

normalization for PR and PR_EXT were to blame for these poor full-system results, for which

many of the spans were detected correctly but normalized incorrectly. Thus, there is still room to

improve concept recognition for all core and extension ontologies, especially for PR and PR_EXT.

Future work can directly compare to this work using the CRAFT Shared Task as their framework

with the built-in evaluation platform [170].

The goal of this work was not only performance accuracy but also efficient use of

resources. If the level of resources needed to train, tune, test, or use these models was

outrageously high, then it would not be feasible to extend beyond the ontologies here or use these

models for much larger collections of texts such as all of the publications catalogued in PubMed.

Thus, some models were less useful than others due to their resource consumption for tuning and

training (see Table 2.7), even if they performed better. Recent research quantified the exorbitant

financial and environmental cost to deep learning algorithms for natural language processing

[249]. They suggested that since researchers have unequal access to computational resources, they

should report their training time and hyperparameter sensitivity and perform a cost-benefit

analysis (the benefit in terms of accuracy), and they should prioritize computationally efficient

hardware and algorithms. They also acknowledge that ideally researchers should have equal

access to computational resources. For this work, having access to a GPU greatly sped up tuning

and training times, which was in line with other research findings [248]. Compared to the

BioBERT runs in UZH@CRAFT-ST [128], the CRF run on a CPU and BioBERT on a GPU were
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the most efficient algorithms because the CRF remained on the sentence level and BioBERT

fine-tuned a pre-trained language model (not taking into account the pre-training), respectively. If

one does not have access to a GPU, or has a large dataset, the CRF would be most efficient for

very similar performance, especially for GP_BP, GO_MF, MOP, NCBITaxon, SO, GO_BP_EXT,

MOP_EXT, and NCBITaxon_EXT, where the CRF either outperformed BioBERT or remained

the same for span detection (see Tables 2.8 and 2.9). In terms of state-of-the-art language models,

if one has a small dataset or access to a GPU, then BioBERT was preferred over the other

language model, ELMo. ELMo required the most resources and a GPU, and thus may not be

practical for this task, as the simple model parameters could not even be tested. This was in line

with previous research comparing BioBERT and ELMo [223]. Along with ELMo, the BiLSTM

may not be practical for this task, as it required a large amount of resources to tune (see Table

2.13). However a promising avenue for reducing BiLSTM resources was to reuse (or at least start

from) the simple model parameters for more complex models to yield sometimes only very slight

drops or even increases in performance. For concept normalization, OpenNMT also used a large

amount of resources (CPU threads, memory, and time), and other machine translation algorithms

should be explored in the future with respect to resources and performance. We also report on all

of this to help with reproducibility and future research into this topic [195].

As mentioned above, for span detection, BioBERT performed best, followed closely by the

CRF for both the core and core+extensions sets. All algorithms that included a BiLSTM

performed worse on this task. However at least one BiLSTM-included model performed well

(within 0.2 of the best-performing model) for all ontologies except GO_CC and PR (see Table

2.8). There is always room to tune the BiLSTM parameters more, as BiLSTMs are difficult to

effectively tune in general [238]. These results for BiLSTMs were in line with previous methods,

which found that BiLSTMs combined with other algorithms performed well on span detection

[189, 208–210, 212, 213, 216, 218]. Thus, future work can explore the parameter reusage more,

tune the algorithms more, and separately tune the BiLSTM-ELMo component.
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All span detection algorithms also detected discontinuous concept mentions for at least

one ontology, one of the most difficult types of concept mentions to detect. A recent review on

recognizing complex entity mentions, including discontinuous mentions, found that the problem

was complex and not yet solved [191, 192]. We offered a new simple approach looking at the

words between the discontinuous spans of the mentions, recognizing that they were greater in

number compared to the words in the discontinuous spans providing more training data. In the

evaluation documents, we were able to detect some discontinuous spans, even if only a few, for all

ontologies, except for ChEBI, which contained the fewest discontinuous spans (see Tables 2.10

and 2.11). As reviewed by Dai [192], more system development as well as curation of more

examples of these complex mentions is necessary to improve performance.

Regarding concept normalization as sequence translation performed well on all ontologies

except for PR and PR_EXT as discussed earlier (see Tables 2.15 and 2.17). There were several

advantages to this translation approach. The primary one was that, for the classes of the Open

Biomedical Ontologies used in CRAFT and in this work, the output to be predicted was a

relatively short string of characters. This task was no longer a massive multi-classification

problem with a choice among thousands of different classes. Treating the inputs as sequences of

characters, rather than sequences of words, also addressed the problem of unknown or

out-of-vocabulary text mentions, as the model can learn sub-word patterns, covering potential text

mentions in the evaluation set that were unseen in the training set, whose fragments (character

n-grams) may appear in the training process [250] (see Table 2.16 for the number of unseen text

mentions). However, poor performance in general most likely stemmed from the added ontology

concepts from the OBOs not seen in the CRAFT annotations (see Table 2.2 for column the

number of classes added to the training set), which greatly increased the number of concepts

(especially for NCBITaxon and PR). It was a bit more complex though, as performance for

NCBITaxon was fine, whereas it was not for PR. For NCBITaxon this was the case because

CRAFT mainly focused on the laboratory mouse in biomedical studies; thus, the taxon for mice

(in addition to that for humans) was overrepresented in this collection, leading to the good results
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for the token-ids approach (in which annotation frequency was taken into account) and the very

bad results for the type-ids approach (in which there was only one mapping for each unique class).

This suggests that for large ontologies the type-ids approach is not feasible, unless there is added

training data for the most represented concepts in the corpus to boost the performance. For

NCBITaxon specifically, this may mean that its model cannot generalize to articles not focused on

laboratory mouse studies. On the other hand, for PR there was no one overrepresented protein as

was the case for NCBITaxon, and so the large amount of additional OBO concepts was most likely

confusing the model. It seems that the more annotation classes there were, the harder it was to

train the model successfully. Note that ChEBI and GO_BP were the next largest ontologies, but

their performance with the type-ids approach did not suffer as much as PR and NCBITaxon. Thus

adding the labels of their unseen ontology classes seemed to help with generalizability. A further

exploration of the performance with different quantities and sets of labels of additional ontology

classes not used in CRAFT, such as concepts in other biomedical corpora, may help determine a

better training dataset for concept normalization for some ontologies especially.

Combining span detection and concept normalization for the full run, our performance

was near or slightly above the state of the art. One explanation is that the full evaluation pipeline

gave partial credit to predicted IDs of ontology classes that have some semantic overlap with the

correct annotation classes (e.g., the aforementioned example involving ChEBI:‘monoatomic ion’

and ChEBI:‘monoatomic cation’). This may also be due to the duplicate annotations in the

training data for the token-ids approach, for which we included all annotations from CRAFT.

However, it is interesting to note that the performances of the type-ids experiments were always

the same or lower than those for the corresponding token-id experiments, except for MOP, which

was higher (see Table 2.21). The duplicates in the token-ids approach may bias the algorithm to

recognize more frequent concepts in CRAFT. On the other hand, a number of non-existent class

IDs were predicted for almost all ontologies except CL, with more in the core+extensions set

compared to the core set (see Tables 2.19 and 2.20). A further exploration of both these predicted
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non-existent class IDs and the absence of them for CL may help explain how OpenNMT translates

concept mentions to class IDs.

Our results show that the unique ontology class identifiers contained some semantic

content or structure (see Tables 2.21 and 2.22), which probably gave rise to the predicted

non-existent class IDs in the full run. This was contrary to the OBO Foundry recommendation of

ontology class identifiers not having semantic content [155, 194]. There exists obvious semantic

content in the IDs of the very small number of proper OBO classes (e.g., NCBITaxon:phylum,

representing taxonomic phyla) and the many CRAFT extension classes of the OBOs (e.g.,

ChEBI_EXT:calcium, representing elemental calcium and calcium ions) that contain English

words. Semantic content may also have arisen due to a curation process that produced groups of

closely related classes with sequentially adjacent identifiers, (e.g., PR:000004803 and

PR:000004804, representing the BRCA1 and BRCA2 proteins, respectively). It appears that

OpenNMT created a fuzzy dictionary matching, where generally the mappings were unique with

some wiggle room when necessary. By shuffling or randomly assigning class IDs, we saw where

this fuzzy dictionary broke the structure at both the class ID and character levels. It appears that

OpenNMT was finding patterns between mentions of concepts with consecutively numbered class

IDs, such as those for BRCA1 and BRCA2. In fact, many of the mistaken class IDs were only a

few characters off from the correct ones (see Tables 2.15 and 2.17 for results at the character

level). This therefore provides an opportunity for applying post-processing techniques to the

predicted class IDs to fix the mistaken characters, similar to other rule-based error-analysis

approaches (e.g., [178]). Future work could include applying pre- and post-processing techniques

to the results of OpenNMT concept normalization.

From another perspective, we attempted to boost performance by adding in more structure

to the class IDs during the execution of the task, as in the alphabetical-ids experiment. The

alphabetical-ids approach did not outperform the token-ids approach, and the performance was

most likely dependent on how alphabetical the concepts in each ontology were. For example, the

concepts “HaC" (CL:0000855) and “haematopoietic cell" (CL:0000988) have quite different class
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IDs but were very close in the alphabetization of the CL classes. Furthermore, stemming and

lemmatization may also help boost performance. Thus, a hash or mapping from the current

ontology class IDs to the alphabetical IDs with some stemming and lemmatization, along with

some post-processing techniques at the character level, may help boost the performance at the

class ID level. Both of these avenues warrant future investigation.

The main limitations of this work were due to the data representations and limited amounts

of data and resources in general. For span detection the BIO(-) tags proposed here did not properly

capture neither overlapping spans nor many discontinuous spans, thus meriting future work. For

concept normalization we chose not to change any of the class IDs even though they all had

varying lengths within and between ontologies (particularly for the extension classes, whose IDs

included much more English text and were longer). Exploring different representations, including

different ways to map the text class IDs to number identifiers, may improve performance. In terms

of the algorithms themselves, future work should include an exploration of the amount of data

needed to train and develop these algorithms for this task. In general it is possible to tune all

algorithms more fully, including tuning the learning rate, for which the default or suggested rate

was used for all algorithms. In particular, the BiLSTMs were most likely not tuned fully and

should be tuned additionally in future work, including using early stopping for determining a more

precise number of epochs. However, we provide a good starting point for tuning further.

Furthermore, the assumption that the two best-performing algorithms on the core annotations set

for span detection would perform well on the core+extensions set may be false. Thus, future work

should focus on the core+extensions set more for span detection, starting with the BiLSTMs.

For concept normalization as machine translation, we only explored one machine

translation model, OpenNMT, providing preliminary evidence that reframing this problem as

translation is a salient avenue to explore in future work on concept recognition. Further,

exploration of other algorithms for machine translation may prove fruitful. Also, the unseen text

mentions in the evaluation set hint at the generalizability of the concept normalization method, but

the generalizability of all systems (the span detection methods, concept normalization methods,
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and the full end-to-end system) to other biomedical corpora is unknown. It is unclear how to add

synthetic data for span detection, but we did make sure to add all the class identifiers from the

OBOs not seen in the training data for the concept normalization task. Future work should test the

generalizability of all systems.

This generalizability problem is not foreign to biomedicine [251]. Systems trained and

tested on one set of data can get different results on a new set of data. Here we only used CRAFT

and we do not know how a different corpus may affect these metrics. However, the CRAFT

corpus contained many concept annotations from many different ontologies [166, 168–170]. At

the same time, biomedical scientists are interested in their domain of scientific literature, and so

domain-specific corpora and ontologies should be looked at - failure of solutions that work on

specific domains to work on general data is observed quite frequently in biomedicine [252]. If

most biomedical scientists are interested in a specific domain then creating unique solutions for

each unique ontology for each unique domain is worthwhile, and then there is no

generalizability problem. This is not to suggest that scientists should not care about the entire

literature, but instead suggests that focusing on each domain separately could benefit the whole

literature. Concepts in each domain are specific to that domain (these specific ontologies already

exist [253]) and need to be dealt with in their specific way. This motivated us to treat all

ontologies separately, while also providing methods and starting points for any additional

ontologies beyond the ones here. All of the methodologies presented can be applied to any

ontology with a training and evaluation corpus.

Conclusion

In conclusion, machine translation is a promising avenue for concept recognition that

sidesteps the traditional multi-class classification problem. We achieved state-of-the-art results on

the concept annotation task of the 2019 CRAFT Shared Task with a direct comparison to previous

results. Our span detection algorithms detected some complex mentions and our concept

normalization method helped with generalizability. Given the amount of work that goes into

shared tasks, shared task resources should be reused if possible. In general, resources need to be
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taken into consideration for concept recognition and NLP at large. We provided a low resource

setting option as well as reused hyperparameter tuning results from a simple model for more

complex models to save resources. Future work should focus on the core+extensions annotations

set more for span detection. For concept normalization, further exploration of why machine

translation worked and an exploration of other machine translation algorithms may prove fruitful.

As the generalizability of this system is unknown, future work should test the generalizability of

all proposed systems: span detection, concept normalization, and the full end-to-end system. Any

part of this system can be used in the future, as it was all trained, tuned, and evaluated separately.

Summary

This work tested the applicability of translation to concept recognition to create a purely

machine-learning based end-to-end system that achieved state-of-the-art performance. We split

the task into two subtasks (span detection and concept normalization) and evaluated performance

combined and separately. Using a shared-task framework, we systematically characterized the

factors that contributed to the accuracy and efficiency of several approaches to

sequence-to-sequence machine learning for span detection. The CRF and BioBERT performed

the best with the CRF requiring fewer resources. For concept normalization, we recast the classic

multi-class classification problem as a machine translation problem and explored the reasons

underlying the surprisingly good performance by evaluating a variety of alternative identifier

schemes. OpenNMT performed quite well for concept normalization and it seemed to find

semantic signatures in the class identifiers. Overall, our best-performing sequence-to-sequence

systems performed comparably with the top performing system on the shared task (occasionally

extending it by a modest degree), and some offered substantial efficiencies in the time and

computational resources required for tuning and training. Furthermore, our analysis of the

strengths and weaknesses of such systems suggested promising avenues for future improvements as

well as design choices that could increase computational efficiency at a small cost in performance.
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CHAPTER III

KNOWN UNKNOWNS: CAPTURING AND CLASSIFYING IGNORANCE

Background

One of the main goals of biomedical concept recognition is to help extract information

from the literature about specific biomedical concepts [4, 120–122]. Sentences in the literature

that contain these biomedical concepts pertain to both facts or known knowns and questions or

known unknowns. Distinguishing between the two is fundamental depending on the information

needs and both are necessary to conduct research. Information extraction and BioNLP more

generally has mainly focused on the literature’s role in current knowledge [122, 254] and not on

the role it can play in future knowledge or questions, even though posing good questions is as

fundamental to scientific progress as analyzing experimental results [1–3]. Thus, this work aims

to extract information from the literature based on its role in future knowledge.

Questions are a driving force in the selection of research topics and approaches, as

discussed in the philosophy of science literature [1, 2, 69–73, 255–258]. Capturing such questions

formally could accelerate research by helping students, researchers, funders, and publishers

understand the scientific question landscape or the next goals for scientific knowledge (knowledge

goals). These questions are discussed in the scientific literature as statements about knowledge

that does not exist yet, including goals for desired knowledge, statements about uncertainties in

interpretation of results, discussions of controversies, and many others; collectively we termed

them statements of ignorance, borrowing the term from Firestein [1]. An automated approach to

identifying and characterizing these statements of ignorance with their entailed knowledge goals

has a variety of significant use cases. One is to facilitate interdisciplinary interactions: a

collection of formally characterized statements of ignorance could identify questions from other

disciplines that new results might bear on, particularly when considering genome-scale data such

as transcriptomics (e.g., [34]). A systematic survey of scientific questions could be useful to a

wide variety of scientists, ranging from graduate students looking for thesis projects (e.g., [12]) to

funding agencies tracking emerging research areas (e.g., [33]). Another potential application is
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longitudinal analysis, for example, tracking the evolution of research questions over time (e.g.,

[35]). Further, identifying questions would allow us to query existing databases for information

(e.g., [36]). However, in previous attempts at such applications, neither statements of ignorance

nor the role they play in future knowledge were the focus. (Only recently, after this work was

published, was a search engine for challenges and directions for COVID-19 introduced with a

focus on future research [17].) By introducing statements of ignorance to these applications there

is a potential to develop the scientific ignorance landscape at scale and across disciplines,

resulting in an accelerated research process.

No prior work related to ignorance theoretically and computationally including hedging,

uncertainty, speculation, factuality, epistemics, and meta-knowledge with many overlaps between

them, have focused on the role such statements play in future knowledge, i.e., the entailed

knowledge goal or next actionable step based on the statement. (Lahav et al. [17] does not focus

on knowledge goals either.) For example,“Thus, depending on the cellular environment, the short-

and long-term effects of Tax expression can be quite different" was a hedged statement [41], but

did not capture a knowledge goal. On the other hand, the sentence, “The exact molecular function

of SEPW1 protein is unknown to date" had a knowledge goal (to explore the exact molecular

function of SEPW1), but was not hedged. Focusing on the knowledge goals can help accelerate

research because it provides an actionable next step for researchers to take. Thus, there is a need

to capture statements of ignorance and the entailed knowledge goals both theoretically and

computationally.

Our goal is to identify and parse a research article into its statements of ignorance (similar

to decomposition of complex questions in the Question Answering literature [259]). Here we

describe a novel natural language processing (NLP) task: identification and characterization of

statements of ignorance. We present an estimate of the extent of statements of ignorance in a

sample of the full text biomedical literature, provide a theoretically-driven taxonomy of such

statements, describe a manually annotated corpus of statements of ignorance and their

categorization (along with novel annotation guidelines for the task), and demonstrate that
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automatically identifying and classifying statements of ignorance is feasible. This work is the first

step towards facilitating interdisciplinary interactions based on experimental results, creating a

systematic survey of questions for researchers, tracking the evolution of research questions over

time, and querying existing databases for potential answers to the questions found.

While these ideas and methods are generally applicable across biomedical research, we

focused on one specific area, prenatal nutrition. This body of literature is small enough to be

tractable and diverse enough to show feasibility. It is also significant to global health, since

women are understudied [110, 111], especially when pregnant [112, 113], due to ethical and legal

considerations and complexities. We hope that even this initial pilot demonstration will be

significant, as it has the potential to find new research areas to explore and facilitate new

interdisciplinary interactions that could advance the study of this underserved population.

Related Work

Previous work in both NLP and more broadly provided the foundation of our approach, but

differed in a variety of important ways. There was no canonical name for the phenomenon we

called ignorance, although prior work has used the related terms hedging, uncertainty,

speculation, factuality, epistemics, and meta-knowledge, each of which has been defined to be

somewhat different than our focus here.

Theoretically, our categorization of ignorance differs from previous work in our focus on

how these types of statements play a role in future knowledge, i.e., knowledge goals. The original

linguistics phenomenon that sparked all these areas of research was hedging. Hedged statements

in linguistics were statements that can be true or false to some extent [37]. Recognizing that

scientific research articles included hedges, hedging was then defined more specifically within

these articles as “any linguistic means used to indicate either a) a lack of complete commitment to

the truth value of an accompanying proposition, or b) a desire not to express that commitment

categorically" [38]. Hedging highlighted a focus on truth and facts. To help determine the levels

of truth, research turned to uncertainty. To make the best determination, one must understand

what they do not know. One of the first attempts to understand uncertainty theoretically was for
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decisionmakers, especially for law [73]. Scientific uncertainty was defined as the “different kinds

of potential error associated with descriptive scientific information" [73]. A taxonomy of six

categories of descriptive uncertainty focusing on the errors that can occur within each was created,

including conceptual, measurement, sampling, modeling, causal, and epistemic. In the bioscience

field specifically, prior work sought to explore speculative language by presenting many examples

of the phenomenon and determining that it was feasible for humans to annotate [27]. They

focused on expressions of levels of belief including hypotheses, tentative conclusions, hedges, and

speculations. Others have recast this phenomenon as factuality, alluding to a continuum that

ranges from factual to counter-factual with degrees of uncertainty in between [43]. Lastly, still

others [260] coined the term meta-knowledge to encompass different types of interpretive

information including confidence levels, hypotheses, negation, and speculation. They determine

five categories of meta-knowledge including manner, source, polarity, certainty level, and

knowledge-type. All of these works focused on these phenomenon in relation to the current known

knowledge (i.e., how certain, speculative, hedged, factual, or meta is the knowledge). We instead

aim to focus on how these types of statements can create future knowledge (i.e., knowledge goals).

Note that many of the same sentences from prior work may be identified as ignorance statements,

but the categorization of the sentences would be different with a focus on the next actionable step.

We draw heavily upon this previous work and shift the focus to knowledge goals.

With a focus on the current known knowledge, computationally, biomedical text mining

has mainly focused on the identification and classification of ignorance statements in order to

discard or de-emphasize it in favor of knowledge only [231], or simply to present it separately

from factual information [20, 21, 23–25, 27, 39–67]. Only a few works [17, 260–263] went

beyond the current knowledge to focus on future knowledge. For example, using such statements

to determine if clinical questions in patient notes were answerable or not [261] or attempting to

link an author’s findings to statements of intended knowledge gain [260]. Further, Ramona

Bongelli et al. [262] created uncertainty corpora for both scientific and popular biomedical

articles in order to compare the amount of uncertainty and the categories of uncertainty markers
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used by writers in each corpus. They lay broader claims about the levels of uncertainty in research

(“(1) in all corpora, the percentages of uncertainty are always much lower than that of certainty;

(2) uncertainty progressively diminishes over time in biomedical articles..." [262]), and the most

common linguistic markers (modal verbs, markers of possibility rather than subjectivity, and

third-person subject followed by modal verbs rather than first-person followed by mental verbs).

Lastly, Chen et al. [263] and Lahav et al. [17] were perhaps the closest to our work here. Chen et

al. [263] overarching goal was to capture the integral role that the epistemic status of scientific

propositions play in scientific change, but they did not go beyond identification. Lahav et al. [17]

“goal is to bolster the ability of researchers and clinicians to keep track of difficulties, limitations,

and emerging hypotheses." They focused only on challenges and directions, when there were

many other categories with goals for scientific knowledge, such as controversies. Further, they did

not explicitly focus on goals for scientific knowledge to provide actionable next steps to

researchers. Thus, an explicit and specific characterization of how these types of statements play a

role in future knowledge as knowledge goals was necessary.

Introducing a novel NLP task, required defining the task, determining if it was feasible for

humans to perform accurately, finding ways to automate it, and testing generalizability.

Researchers began by leveraging the linguistic definition of hedged statements [37] to identify

lexical cues, words or phrases that communicated uncertainty, and scopes, the linguistic scope of

the hedge cue. Using the notions of cues and scopes, researchers proved that hedged statements

could be identified and classified in the scientific literature through theoretical frameworks

(including taxonomies and ontologies), the creation of corpora, and the creation of classification

models to automate the task. A taxonomy is a “hierarchy consisting of terms denoting types (or

universals or classes) linked by subtype relations" [151]. Relevant taxonomies [43, 46, 68–73]

spanned all different domains including biomedical and more general domains. Paul Han et al.

[69] provided an overview of many uncertainty taxonomies from both the biomedical and general

domains prior to 2011. In terms of ontologies, four [74–77] described the degree of evidence or

confidence underpinning a statement and thus were relevant to our work here. Using these
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theoretical frameworks, many corpora were built to show that humans can reliably identify the

phenomenon at hand [40, 41, 50, 55, 63, 78–81, 83–85, 264]. With these corpora, researchers

aimed to automate the task through all different model types including rule-based, probabilistic

models, machine learning, deep learning, and hybrids [20, 42–45, 47–49, 51–54, 56, 58–62,

64–67, 86–92]. Lastly, some works did all three, creating theoretical frameworks, determining it

was feasible for humans to perform, and automating it [17, 19–27, 46, 95, 96]. This work also

does all three: building an ignorance taxonomy driven by knowledge goals based upon the

theoretical frameworks mentioned, creating a corpus with annotation guidelines, and utilizing the

same modeling frameworks for a classification task.

Though we focus on English biomedical scientific articles, specifically in the domain of

prenatal nutrition, prior work spanned different contexts and languages. The majority of previous

studies focused on biomedical research articles, but there was also the clinical domain [19–22, 25,

41, 63, 68, 69, 95, 261], other scientific domains [40, 50, 67, 70–73, 82], and the informal

language domain [26, 84]. In terms of languages, most considered English, though others studied

Arabic [45, 55, 57], Chinese [22, 54, 83, 91, 96], Swedish [68], French [95], and Spanish [51, 85].

All the articles focused on languages other than English stated the need for more research

development in these contexts. Furthermore, some works aimed to think across contexts and

domains for their task [39, 46, 51, 56, 81], hinting at generalizability. We demonstrate

generalizability in our work by applying our classifiers to a held out test set of prenatal nutrition

articles that were unseen by the classifiers.

Methods

To achieve our goal of identifying and characterizing questions stated in the biomedical

literature, we first formalized what it means to be a statement of ignorance and the knowledge goal

such a statement entails, and then demonstrated that such statements of ignorance exist and can be

identified, both manually and automatically, in the literature. To do this, we 1) developed a

taxonomy of types of statements of ignorance, 2) created annotation guidelines for recognizing

such statements, 3) validated their use through an annotation task to create a manually labelled
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corpus, and lastly, 4) used the corpus to benchmark classifiers to automatically recognize

statements of ignorance (see Figure 3.1). These resources help ground future research aimed at

exploring the state of our collective scientific ignorance.

Ignorance 
Taxonomy

Annotation 
Guidelines

Annotation 
Task

Automatic 
Classification

Figure 3.1: Methods Flowchart. A flowchart of the methods.

Materials

Scientific articles from our subject area of prenatal nutrition were taken from The PubMed

Central Open Access (PMCOA) subset of PubMed [159], to ensure access to full-text articles and

free sharing of data. We queried PMCOA using 54 regular expressions determined in consultation

with a prenatal nutrition expert (Teri L. Hernandez), which included keywords such as {prenatal,

perinatal, and antenatal} paired with keywords like {nutrition, vitamin, and supplement} (the full

query can be found at https://github.com/UCDenver-ccp/Ignorance-Question-Work).

In total we gathered 1,643 articles, subsets of which were used for each task below. All articles

were provided in XML format and converted to text format parsing through the XML using a

script in Java. All computation was written in Python 3, with its associated packages. In addition,

the annotation task used Knowtator [265, 266] and Protege [267] to annotate the full-text articles;

this allowed the ignorance taxonomy to be easily browsable like an ontology, and helped the

annotators select the correct level of specificity for each lexical cue. Computation used a

contemporary laptop (MacBook Pro Mid 2015) and an NIH-funded shared supercomputing

resource [235] that included:

• 55 standard compute nodes with 64 hyperthreaded cores and 512GB of RAM

• 3 high-memory compute nodes with 48 cores and 1TB of RAM

• GPU nodes with Nvidia Tesla k40, Tesla k20, and Titan GPUs
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• A high-speed Ethernet interconnect between 10 and 40 Gb/s

We used both CPUs and GPUs to train, evaluate, and predict statements of ignorance. All code

and associated materials can be found at the following GitHub pages:

• https://github.com/UCDenver-ccp/Ignorance-Question-Work: our preliminary

work including the full query, a preliminary ignorance taxonomy, annotation guidelines, an

ignorance corpus of 60 documents, and preliminary classification models.

• https://github.com/UCDenver-ccp/Ignorance-Question-Corpus: the final

ignorance corpus of 91 articles with 8 documents updated and 31 additional documents

annotated in order to create a separate held-out test set for evaluation.

• https://github.com/UCDenver-ccp/Ignorance-Question-Work-Full-Corpus:

the Python scripts to create both the corpus and classification models.

Ignorance Task Description

The goal was to show the feasibility of identifying and classifying statements of ignorance.

We produced a gold standard corpus consisting of articles with labeled sentences as statements of

ignorance along with the lexical cue(s) (words or short phrases) that distinctly signify it as such

mapped to a categorization of knowledge goals (ignorance taxonomy). This was done through

detecting spans of text either as a whole sentence or as words or short phrases. We also provided

classification algorithms that aimed to automate the identification of both the statements of

ignorance (sentences) in an article and the specific lexical cues (words or phrases). Taking the

example above,“<The exact molecular function of SEPW1 protein is unknown to date>", the goal

was for an annotator to identify or an algorithm to classify that this article sentence was a

statement of ignorance as shown by the brackets around the sentence. From there, once the

sentence was deemed a statement of ignorance, the goal was to identify or classify that unknown

(shown underlined in the example) was the lexical cue that signified it as such. Note that one

sentence can have multiple lexical cues that signify ignorance. The ignorance taxonomy helped to
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distinguish between different lexical cues: the annotator and classifier also needed to map the cue

unknown to a specific ignorance category that captures the knowledge goal of the sentence.

Following the example, the taxonomy category was an indication of an unknown or novel research

topic or assertion and the word unknown would be mapped to that by the annotator and the

classifier. The knowledge goal was to explore the exact molecular function of SEPW1 protein

further to gain any insights, which was implied by the ignorance category.

Ignorance Taxonomy

Indication of unknown or novel research topic or assertion or unknown/novel was only one

type of ignorance category where the statement indicated something was not known or a lack of

information on a topic. The knowledge goal was to explore the unknown further to gain any

insights. Characterizing ignorance statements based on their entailed knowledge goals provides

researchers with actionable next steps to continue to move research forward. To determine these

different types of statements of ignorance and create the ignorance taxonomy, we first manually

reviewed a subset of 736 article abstracts among the 1,643 prenatal nutrition articles from

PMCOA. We conducted our task, focusing specifically on the lexical cues that signified that

knowledge was missing or incomplete as in unknown in the above example. These lexical cues

were then grouped together and organized into a taxonomy based on the knowledge goal each cue

suggested. For example, the taxonomy category unknown/novel included lexical cues such as

unknown, uncertain, still unclear, could not find, etc. So each cue mapped to a specific taxonomy

category. Lexical cues and categories were also inspired by and added from existing work [1, 2,

41–43, 69, 70, 72] to create an initial ignorance taxonomy driven by knowledge goals. The

majority of lexical cues corresponded to a single ignorance category, and thus implied a specific

category assignment, though some cues, such as challenge, if so, and imply appeared in multiple

categories and the correct category assignment then depended on sentence context. For clarity

and simplicity, the taxonomy was a hierarchy of both broad (a higher level grouping of ignorance

categories) and narrow categories (the ignorance category along with all lexical cues) based on

the different types of knowledge goals. Lastly, the taxonomy was dynamic and iteratively updated
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further during the annotation tasks as the annotators found lexical cues beyond what was gathered

during this manual review, as described below. We present the final taxonomy after all the

annotations were completed.

Annotation Guidelines

To fully describe our theoretical framework of ignorance and provide instructions for

others to identify statements of ignorance (testing feasibility and reproducibility), we developed

annotation guidelines for annotating articles based on the manual review. These guidelines not

only helped annotators find statements of ignorance with lexical cues already in the ignorance

taxonomy, but also helped them identify new cues to add. In particular, we recognized the

importance of lexical cues and example sentences in the manual review to help guide the

annotators in their decision to determine if a sentence was a statement of ignorance, the lexical

cue, and the ignorance taxonomy category. Thus, the lexical cues gathered from the manual

review were used to pre-process unmarked full-text articles, labeling all the cues in the text that

were already pre-mapped to the ignorance taxonomy. The task was almost impossible without any

pre-processing (unmarked full text articles). The annotators received these pre-processed articles

and for each lexical cue marked, decided if it was correct or not: determined whether the sentence

containing a marked cue was indeed a statement of ignorance, if yes, they needed to ensure that

the ignorance category mapped to by the lexical cue was the correct one or change it, and if not

then delete the pre-marked cue. Lastly, the annotators read the whole article and as our lexical cue

list was not exhaustive, they identified additional statements of ignorance and their lexical cues

that were not yet part of the taxonomy and added in the new mappings.

In order to help annotators reliably make a determination if a sentence and lexical cue

signified ignorance, we provided many examples of lexical cues identified in statements of

ignorance from the general PMCOA. We gathered and reviewed 150 sentences for each lexical cue

to provide both positive and negative examples. For example, “<however, there is contradictory

evidence from recent studies regarding the influence of IL-6 on insulin action and glucose

metabolism> [4546]" represented a statement of ignorance of an indication of alternative
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research options or controversy of research (or alternative/controversy), where we need to resolve

disagreements about the influence of IL-6. At the same time, the sentence: “although yin and

yang are contradictory in nature, they depend on each other for existence" was not a statement of

ignorance and was a negative example for the contradictory lexical cue. Negative examples helped

the annotators avoid the assumption that a lexical cue necessarily entailed a statement of

ignorance. The annotation guidelines thus contained the ignorance taxonomy including all

definitions and lexical cues for each taxonomy category with both positive and negative examples

of statements of ignorance per lexical cue. The annotators referenced these examples throughout

the annotation tasks and they will be referenced here to illustrate our methods.

The sentence containing the ignorance lexical cue was also important to capture to

understand the biomedical context. We modified the scoping guidelines from BioScope [41] to

capture the scope of the lexical cues: the biomedical knowledge the lexical cue qualified. Our

annotations were different from BioScope, but the scoping principles were similar: to capture the

sentence fragment that was the subject of the task at hand. We chose to capture the full sentence

that contained a lexical cue as the scope due to difficulties in capturing just fragments. Note that

future work can then determine the biomedical context more specifically by identifying the

specific biomedical concepts included in these statements of ignorance using existing automatic

concept recognition tools (e.g., [121] and Chapter 2). In the example above, the brackets < >

signified the scope of the statement of ignorance, i.e., the full sentence. Note that there were no

brackets around the negative example as it was not a statement of ignorance. The annotation

guidelines described how to add the subject for the true statements of ignorance and how to

remove or delete the annotation for the incorrect pre-marked cues. For the full guidelines see:

https://github.com/UCDenver-ccp/Ignorance-Question-

Work/tree/main/Ignorance_Guidelines.

Annotation Task

We conducted two annotation tasks to determine if identifying statements of ignorance

was feasible and reproducible, and to create enough data to automate the task. All annotators were
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computational biology researchers. In both cases, two independent annotators annotated batches

of one to seven articles at a time checking in each article: the pre-marked cues, either deleting or

adding the scope for those cues, and adding in any missed cues from the pre-processing. For

example, using the positive example above, if the sentence “<however, there is contradictory

evidence from recent studies regarding the influence of IL-6 on insulin action and glucose

metabolism> [4546]" was in an article, the cue contradictory would be marked already based on

the pre-processing and the annotator would note that, check that it should be mapped to

alternative/controversy, and add the scope as seen with the brackets here. On the other hand, if the

negative example above, “although yin and yang are contradictory in nature, they depend on each

other for existence", was in an article, contradictory would be automatically marked through the

pre-processing, however, the annotators would delete it as it does not signify ignorance. In terms

of adding a missing cue, the phrase recent studies from the positive example was not marked and

signified an indication of proposed or incompletely understood research topic or assertion (or

incompletely understood), where more evidence was needed. The annotators would recognize that

and mark recent studies to the narrow category of incompletely understood, thus adding the cue to

the taxonomy for the next round of annotation. Note that the scope of recent studies was the same

as contradictory in that sentence (i.e., the full sentence) and was captured once for both cues.

To ensure the reliability of the annotations and create final gold-standard documents, we

evaluated the quality and agreement of the annotations per batch using inter-annotator agreement

(IAA) measures [163, 268]. The IAA measured how well the annotations agreed. Note that

previous work showed that IAA did not bound the performance of classification algorithms, but

was usually close to the limits [176]. Here, we calculated the F1 score between the two

annotations, taking one annotation set as the “reference" and calculating precision and recall with

the other one. The F1 score then was the harmonic mean between precision and recall (note that

changing the “reference" flipped precision and recall, and thus the F1 score remained the same).

The IAA was calculated on the exact text span of lexical cues or scopes chosen, as well as
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ignorance category assignments. We also calculated fuzzy IAA when the category assignments

matched but not the text span of the cue or the scope, or vice versa.

This fuzzy IAA allowed us to capture partial matches. Spans of the lexical cues can

overlap when annotators recognized differing numbers of words for multi-word cues. For

example, the annotators might have agreed on the ignorance category but highlighted either need

or need to be in the sentence: “Thus doses of D vitamin and calcium supplementation, which may

differ from those recommended in normal pregnancy, need to be carefully tailored in

thyroidectomised patients." We took the maximum text span as the final span between the two

annotators (need to be). This also occurred with the scope annotations, where use of the

Knowtator software sometimes resulted in different text spans marked (an autocompletion error).

Further, category assignments overlapped when one person annotated to the ignorance category

implied by the specific lexical cue while the other annotated to the lexical cue. In the end we chose

the narrowest applicable category or lexical cue in the taxonomy, to ensure we were capturing the

correct information. For example, if one annotator mapped need to be in the above example to

indication of future research work (or future work) and the other mapped it to the lexical cue

need to be which by subsumption implied future work, the final annotation would be the lexical

cue. All of these fuzzy matches were resolved during the adjudication process to ensure a high

quality corpus. We report both the exact IAA as well as the fuzzy IAA. Ideally, both should

remain over 80% to trust the annotations and the reliability of the guidelines [163, 268, 269].

The final product of the annotation tasks was a gold standard corpus to be used for

automation and exploration. To finalize and maintain quality of the annotations, all disagreements

were adjudicated, adjusting the guidelines and taxonomy accordingly with any newly identified

cues along with the sentence or scope they were found in as a positive example. These discussions

led to updates in all or some of the article annotations, the annotation guidelines, the ignorance

taxonomy, and the lexical cue list. This process was repeated each time incorporating new updates.

The first annotation task included Mayla R. Boguslav (M.R.B.) and Elizabeth K. White

(E.K.W.) as annotators and followed the process mentioned. Emily Dunn, a prenatal nutrition
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researcher, annotated one article along with M.R.B. and E.K.W. and then stopped due to the time

commitment. Articles to annotate were first chosen based on length starting with the shortest

articles. As the IAA reached 80%, articles were chosen randomly using seeded randomness.

M.R.B. and E.K.W. annotated in batches of four to seven articles and adjudicated each batch

together, totalling 60 articles.

For the second annotation task, Katherine J. Sullivan (K.J.S.) and Stephanie Araki (S.A.)

were the annotators and M.R.B. was a separate adjudicator. K.J.S. and S.A. were trained on eight

random articles chosen from the 60 gold standard articles already annotated by M.R.B. and

E.K.W. Any changes made to these articles (due to more experience with the task) were marked

accordingly. After reaching the required IAA of 70-80%, new articles were chosen randomly

using seeded randomness. For the first eight new articles (two batches of four), both annotators

annotated the same articles as usual. After reaching IAAs of 80% or higher, we decided to divide

the work: each annotator separately annotated 1-2 different articles and then adjudicated all with

M.R.B. Since the classic IAA could not be calculated, we calculated an “F1 score" between the

original annotation and the adjudicated version to see how reliable the single annotation was

compared to the final adjudicated version. We continued annotation when this score stayed above

80%, signifying that the annotator was at least 80% correct in their annotations as discussed with

the adjudicator. K.J.S. and S.A. in total annotated 39 articles, eight updated and 31 new ones,

totalling a corpus of 91 articles, ready to be used to automate this task.

Automatic Classification

Automating the identification and characterization of statements of ignorance is the first

step to help develop the scientific ignorance landscape at scale, ideally resulting in an accelerated

research process. To determine if this task was feasible to automate, we tested standard classifiers,

using the manually-labelled dataset to evaluate performance (see Figure 3.2). We split the data

into a training set of 65 articles (approximately 2/3) and a held out test set of 26 articles

(approximately 1/3). Note that the test data included 501 unique lexical cues with no sentence

examples in the training data. To avoid batch effects based on the different annotators, we split
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Sentence

• Ignorance or Not
• Binary Classifier

Ignorance 
Category

• Which Ignorance category?
• 1 multi-classifier or multiple binary classifiers

Lexical Cue

• Lexical cues signifies ignorance statement (binary)
• Lexical cues signifies specific categories (multi-classifier)

Figure 3.2: Classification Flowchart. A flowchart of the different classification problems.

Table 3.1: Data split for automatic classification in order of annotation tasks. Note that E.K.W. was
Elizabeth K. White, M.R.B. was Mayla R. Boguslav, E.D. was Emily Dunn, Gold standard was the previous
gold standard up to that point (the first row), K.J.S. was Katherine J. Sullivan, and S.A. was Stephanie Araki.
*M.R.B. was an annotator along with the others. **E.D. only annotated one article along with the other
annotators and then stopped. ***M.R.B. was the adjudicator in these batches.

Annotation batch Total Articles Training Articles Testing Articles
First Annotation Task: E.K.W., M.R.B.*, (E.D.**) 52 37 15

Training: Gold Standard, K.J.S., S.A. 8 6 2
Second Annotation Task: K.J.S., S.A., (M.R.B.***) 8 6 2

Split Annotation Task: K.J.S., M.R.B.*** 11 8 3
Split Annotation Task: S.A., M.R.B.*** 12 8 4

Total Articles 91 65 26
Total Sentences 12,055 8,281 3,774
Total Words 416,866 285,439 131,427

each batch separately (see Table 3.1). Any labelled sentences (scopes) or words (lexical cues) in

the training set served as the positive samples to classify and any non-labelled sentences or words

served as negative samples.

As per the task description, classification can be made at the sentence or word level both as

binary and multi-classification problems (see Figure 3.2). At the sentence level, the binary task

was to determine whether or not a sentence was a statement of ignorance, labeled in the corpus as

scope. Then since each statement of ignorance had at least one lexical cue labeled, the sentence

can also be labeled by the ignorance categories of its lexical cues. For example, the positive
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example above with lexical cues contradictory and recent studies (added as a new cue), would

map to both alternative/controversy and incompletely understood. This now created a

multi-classification problem: to map the sentences to the specific ignorance categories of their

lexical cues. Similarly, we can focus on the lexical cues, with the binary task to classify whether a

word in an article was in a lexical cue or not as labeled in the corpus (e.g., the words

contradictory, recent, and studies would be labeled as lexical cues). For the multi-classification

task, the words would be mapped to specific ignorance categories (e.g., contradictory to

alternative/controversy and {recent, studies} to incompletely understood).

For both the sentence- and word-level multi-classification tasks, we created both one true

multi-classifier and an ensemble - splitting the task into 13 smaller binary subtasks in which the

ignorance category of interest was the positive case and all other sentences/words belonging to a

different category were negative cases. Combining all 13 classifiers into an ensemble gave the full

categorization for each sentence with no contradictions, since each classifier was predicting

different categories. In all cases, each article was tokenized into sentences and then words used in

the respective classification tasks. Further, we split the training data 90:10 for training and

validation, and then evaluated separately on the held-out test set. For both tasks, we report the F1

scores on the held-out test set of 26 articles for (1) the one binary task (ALL CATEGORIES

BINARY), (2) the 13 separate binary tasks that together create an ensemble multi-classifier (each

category individually), and (3) the one multi-classifier (ALL CATEGORIES COMBINED - the

macro-average).

For the sentence binary classification, we compared a simple artificial neural network

(ANN) [270–272], bidirectional encoder representations from transformers (BERT) [220], and

Biomedical BERT (BioBERT) [130] in order to compare a basic deep learning model to

state-of-the-art language models. Full-text documents from PMCOA were first split into

sentences, which were then processed by the CountVectorizer package in Python to tokenize

words, remove punctuation and special characters, and produce a count vector of words as input to

the ANN. The final tuned ANN consisted of a flattened layer followed by two dense layers, with
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early stopping call backs, patience of 5, and dimensions 50 (to be proportionate with the large

input shape) and 1. Overfitting was avoided by adding the training truncating functions (epochs

ranged between 6 to 12). To allow for faster training and better generalization [273], we chose a

batch size of 16 for training. We also applied the stratify function to ensure that the data splitting

for the test was equal. Due to an imbalance of our data, we balanced it to the class with fewer

samples before training to achieve a stable learning process. We verified this decision by training

on the non-balanced data in a separate trial. For BioBERT, we used the vocabulary from

BioBERT to train the base BERT model. For both BERT and BioBERT models, we used a batch

size of 16 and a learning rate of 1 × 10−5 [130]. The epochs were tuned based on avoiding

overfitting using truncating functions. We did not freeze the layers of the pre-trained BERT model

and allowed the weights to keep updating during training for better performance. We compared

performance of all three algorithms.

The sentence multi-classification problem, classifying each ignorance sentence into a

taxonomy category based on its lexical cues, had a similar setup to the sentence-binary task, using

a vector of word counts as inputs. We created one multi-classifier. This task though was more

complex because some sentences mapped to multiple categories and the categories were not

balanced. To combat all of these problems, we decided to also create an ensemble of binary

classifiers for each taxonomy category that classified all sentences as either the category of interest

or not (meaning the other taxonomy categories). All classifiers, one for each taxonomy category,

were run over all the data allowing for one sentence to be classified in multiple categories easily in

separate models (e.g., the positive example before would be easily classified as both

alternative/controversy and incompletely understood). Performance of the same three models

were compared per ignorance category.

Not only was identifying the sentence as an ignorance statement helpful, but also

identifying the specific lexical cues that signified the sentence as such provided a more precise

focus on the ignorance occurrence, especially for sentences mapped to multiple ignorance

categories. The word-level classification tasks were to determine which words in a sentence
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indicated a lexical cue (binary task), and specifically for which taxonomy category

(multi-classification). As our taxonomy was very similar to an ontology, we used our prior work

in concept recognition (Chapter 2) and applied it to a different type of linguistic phenomenon.

(Chapter 2 explored and evaluated some of the canonical algorithms for concept recognition over

many different ontologies.) In particular, we made use of the best performing span detection

algorithms, namely CRF [129] and BioBERT [130], to determine the words in all lexical cues

given an article. CRF models were tuned with L1 and L2 regularization to avoid overfitting. For

BioBERT, the NER baseline parameters performed quite well most likely because it was a similar

task, and so we did not tune any other parameters [130]. The CRF and BioBERT were trained for

each specific iteration of the word-level classification. Thus, we first word-tokenized the articles

using WordPunctTokenize in Python. We then assigned each word a BIO- tag based on whether

the word was at the beginning of a lexical cue (B), inside of it if it was a multi-word cue (I), outside

of it meaning not a word in the lexical cue (O), or if the lexical cue contained a discontinuity (e.g.,

no...exist where the “..." signifies a discontinuity), we labeled the words that exist between the

lexical cues (O-). The input to the CRF and BioBERT to train then were the words with their target

BIO- tag labels. When predicting, the input was the word-tokenized articles and the output was a

BIO- tag for each word. To then determine what the lexical cue was, we re-assembled the BIO-

tags by finding the B tags (single word lexical cues), combining the words with B and I in a row

(multi-word lexical cues), ignoring the O labels (not lexical cues), and by combining B, I, and O-

(discontinuous lexical cues). A more thorough discussion of BIO- tags can be found in Chapter 2.

For the word-level binary task, we took every lexical cue from all ignorance categories,

classified the words into BIO- tags, and then re-assembled them into the lexical cues. Note that

lexical cue overlaps were possible, but have no effect on performance because the goal was to

identify any lexical cue no matter the ignorance category. At the word-level, the binary classifier

can find new lexical cues not already in our lexical cue list by finding new combinations of words

for example. So, we compared the predictions of the classifier to our set of lexical cues in the

taxonomy to determine if the classifier was finding new ones. For the word-level



100

multi-classification task, we explored two different methods. First, we created an ensemble with

binary models (CRF and BioBERT) for each ignorance taxonomy category similar to the sentence

multi-classification task. At the same time, however, BIO- tags have the capability to encode

which category the word was from (i.e., B-taxonomy category or I-taxonomy category), and so we

created one multi-classifier (CRF or BioBERT) for word-level multi-classification as well. This

automation was the first step towards the scalability of the identification and characterization of

statements of ignorance in the broader scientific ignorance landscape.

Results

Statements of ignorance employed a rich vocabulary

Researchers discussed ignorance in a myriad of ways in the scientific literature that fall

into five broad categories and thirteen narrow ones. The manual review of 736 paper abstracts to

develop a taxonomy of ignorance based on implied knowledge goals revealed that abstracts

contained on average seven (minimum 0, maximum 24) statements of ignorance, involving 897

lexical cues. Subsequent refinement of 60 full text articles during the first annotation task added

993 lexical cues, and the additional 31 articles added 623 more cues, for a final ignorance

taxonomy that included 2,513 lexical cues. Statements of ignorance employed a rich vocabulary.

These cues were distributed across 13 narrow categories combined into five broad

categories. These included:

• Indication of answered research question

• Epistemic indication of research topic, assertion, or variables: indication of unknown or

novel research topic or assertion, indication of explicit research inquiry, indication of

proposed or incompletely understood research topic or assertion, indication of indefinite

relationship among research variables, indication of largely understood research topic or

assertion

• Indication of anomalous or curious research finding
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• Indication of barrier to research: indication of alternative research options or controversy of

research, indication of difficult research task, indication of research problem or

complication

• Indication of future research activity: indication of future research work, indication of

future research prediction, indication of important consideration for future research work

Note that the ignorance categories indication of answered research question and indication of

anomalous or curious research finding were both broad and narrow. For the three broad

categories that unify multiple narrow categories, “Epistemic indication of research topic,

assertion, or variables" contained statements that answer the questions around evidence and how

confident we were in it, in increasing order. “Indication of barrier to research" contained

statements that indicated that research cannot move forward until the barrier was overcome,

including multiple options, obstacles, or complications. “Indication of future research activity"

included statements of future needs such as future considerations or work. For annotation

purposes, these broad categories helped simplify the 13 categories.

Along with the ignorance categories we provide the full definitions, knowledge goals, and

example cues for each narrow category (see Table 4.2). Each category separately also contained a

rich vocabulary, as shown by the last column of the table. The increase in lexical cues between

each annotation task argues that we have only begun enumerating the myriad of ways to signify a

statement of ignorance. Further, our ignorance taxonomy was not only a categorization system of

ignorance statements via knowledge goals, but also a depiction of the research life-cycle and how

researchers discuss our collective scientific ignorance (see Figure 3.3).

Table 3.2: Ignorance Taxonomy: definitions, knowledge goals, example cues, and total cue count. The

categories in bold were only narrow categories. Abbreviations are in italics.

Ignorance

Category

Definition Knowledge Goal Example Cues Total

Cues
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indication

of an-

swered

research

question

A statement of a goal or objective

of a study that is attempted or com-

pleted during the study.

to find the answer(s)

in the article; de-

termine if the ques-

tion(s) is (are) fully

answered in the arti-

cle

aim, goal, objec-

tive, our study,

sought, to deter-

mine

64

indication

of unknown

or novel

research

topic or

assertion

A statement that indicates some-

thing is not known (a lack of infor-

mation), or information is presented

for the first time (new or novel) and

a significant amount of research is

needed; not a statement about the

absence of something.

to explore the un-

known further to

gain any insights

could not

find, don’t

know, elusive,

not...established,

uncertain, still

unclear

155

indication

of explicit

research

inquiry

An explicit statement of inquiry

(with a question mark or question

word such as how, where, what,

why).

to find answers to the

question and/or dis-

cover methodologies

that will help answer

the question

?, what, where,

wondered, why

19
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indication

of proposed

or incom-

pletely

understood

research

topic or

assertion

A positive or negative statement

proposing a possible/feasible expla-

nation for a phenomenon on the ba-

sis of limited evidence as a start-

ing point for further investigation

OR a statement that information is

needed to support an assertion or

claim, including both positive and

negative statements. Either a state-

ment that some evidence already ex-

ists, explaining how current findings

support previous work, adding con-

fidence to a claim OR a statement

that information is limited, more re-

search is needed or is ongoing in-

cluding limitations – biases or short

comings related to the study design

and execution.

to gather more evi-

dence to support the

claim OR conduct

more research to de-

termine the validity

of the claim; com-

plete the partial pic-

ture; consider the

short comings and

biases for the next

experiment and how

it can be addressed.

a good un-

derstanding,

believe, evi-

dence...limited,

has been sug-

gested, hypoth-

esis, no studies,

possibly, pre-

liminary stage,

remains under

investigation, still

being discovered,

support, trend

797

indication

of indefinite

relation-

ship among

research

variables

A statement about a connection,

link, or association between at least

2 variables; connectedness between

entities and/or interactions repre-

senting their relatedness or influ-

ence.

to confirm the con-

nection, link, or

association between

variables; determine

the full underlying

relationship between

variables

affect, associated,

correlate, factor,

influence, inter-

act, link, pattern,

tend

198



104

indication

of largely

understood

research

topic or

assertion

A statement staking a claim to the

most likely explanation, relation-

ship, or phenomenon; assumes that

there is a good chance this under-

standing is correct.

to determine if the

most likely option is

correct or if another

option is more feasi-

ble

almost all, as-

sumed, conclud-

ing, evident, it is

clear, most likely,

thus

202

indication

of anoma-

lous or

curious

research

finding

A statement of a surprising result,

conclusion, observation or situa-

tion; the researchers were not ex-

pecting the result, conclusion, ob-

servation or situation but are in-

trigued by it.

to explore the sur-

prising result, con-

clusion, or situation

more and determine

if the result, con-

clusion, observation,

or situation is repeat-

able

appeared to be,

interestingly,

noteworthy,

surprisingly

113
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indication

of alter-

native

research

options or

controversy

of research

Either an explicit statement of mul-

tiple (at least 2) choices, actions, ap-

proaches, or methods that need to be

experimentally determined, includ-

ing statements with an implied sec-

ond option, such as “whether”. This

includes a statement of disagree-

ment amongst researchers OR a lack

of consensus OR at least two pos-

sible answers presented as results

from different researchers - usually

in reference to previous results and

stated when results disagree with

each other OR contradictions.

to determine the cor-

rect option or a bet-

ter option and if

there are disagree-

ments, to determine

the truth to break any

disagreements

cannot rule out,

claims, has

been challenged,

whether, whilst

221

indication

of difficult

research

task

A statement of something not eas-

ily done, accomplished, compre-

hended, or solved; or a complicated

thing with a multitude of underly-

ing pieces or parts; heterogeneity;

excludes medical complications.

to create methods

to study the com-

plicated system and

to better understand

any piece of the

complicated system;

potentially requires

new experiments or

better techniques

not feasible, re-

mains...challenge,

variability, rarely

able to

98
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indication

of research

problem or

complica-

tion

A statement of issues, problems,

mistakes, or medical complications

that are cause for anxiety and/or

worry.

to determine the

gravity of the con-

cern and determine

if it needs to be dealt

with before the next

experiment or study

issue, error, in-

sufficient, lack of

reproducibility,

publication bias,

underestimated

98

indication

of future

research

work

Astatement of extensions, including

next steps, directions, opportunities,

approaches, or considerations of the

described work that may be imple-

mented at some future time point.

This also includes a statement of

suggestion or a proposal as to the

next best course of action, especially

one put forward by an authoritative

body; advice telling someone the

best action to take.

to determine the

next course of action

based on this future

work proposal

additional re-

search, are

needed, con-

tinue to explore,

further study,

more...studies,

recommend, war-

rants, worthy of

closer attention

258

indication

of future

research

prediction

A statement of extrapolation of

given data into the future and/or

from past observations, without ref-

erence to next steps.

to run the simulation

or experiment to de-

termine if the predic-

tion is correct; publi-

cize the outcomes of

the study to the cor-

rect people

allow, expect, if

so, serve as a ba-

sis, will

27
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indication

of im-

portant

consid-

eration

for future

research

work

A statement calling for attention

including an action needed to be

taken immediately or information

that needs to be disseminated im-

mediately OR critical: being in or

verging on a state of crisis or emer-

gency OR urgently needed OR ab-

solutely necessary.

to take the urgent ac-

tion ASAP or dis-

tribute the knowl-

edge ASAP

call for action,

cautious, crucial,

emphasis, global

problem, high on

the agenda, nec-

essary, relevant to

note, vital

263

Answered Research 
Question

EPISTEMIC INDICATION OF 
RESEARCH TOPIC, 

ASSERTION OR VARIABLES

• Unknown or novel 
research topic/assertion

• Explicit research inquiry
• Proposed/incompletely 

understood research topic 
or assertion

• Indefinite relationship 
among research variables

• Largely understood 
research topic/assertion

Anomalous/curious research 
finding

INDICATION OF BARRIER TO 
RESEARCH

• Alternative research 
options/controversy of 
research

• Difficult research task
• Research 

problem/complication

FUTURE RESEARCH ACTIVITY

• Future research work
• Future research prediction
• Important consideration 

for future research work

Known Unknowns/ Ignorance

Knowns/Answers/Facts/Not Ignorance

Knowledge 
Goals

Find the answer in 
the article to confirm 
fully answered

Find more evidence 
based on confidence (in 
increasing order)

Explore the result and 
determine if repeatable

Explore new avenues to 
overcome the barrier

Consider the future 
information

Research

Figure 3.3: Ignorance taxonomy embedded in the research context: Starting from the top, research starts
from known unknowns or ignorance. Our ignorance taxonomy is in green (an ignorance statement is an
indication of each ignorance category) with knowledge goals underneath. Research is then conducted based
on the knowledge goals to get answers; these then filter back to the known unknowns to identify the next
research questions.
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Table 3.3: Interannotator Agreement (IAA): IAA was calculated as F1 score for all annotation tasks. The
IAA for the training was between the two annotators, not including the previous gold standard. *F1 score
between annotator and final gold-standard version after adjudication with M.R.B.

Annotation batch category
IAA

scope
IAA

fuzzy
category
IAA

fuzzy
scope
IAA

First Annotation Task: E.K.W., M.R.B., (E.D.) (60 articles) 78% 87% 79% 90%
Training: K.J.S., S.A. (8 articles) 77% 66% 78% 87%

Second Annotation Task: K.J.S., S.A. (8 articles) 81% 82% 81% 93%
Split Annotation Task: K.J.S., M.R.B.* (12 articles) 88% 92% 89% 95%
Split Annotation Task: S.A., M.R.B.* (12 articles) 89% 92% 90% 96%

All combined 82% 87% 83% 92%
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Figure 3.4: Article date distribution for the ignorance corpus (1979-2018).

Robust annotation guidelines yielded a high quality corpus

Our annotations guidelines seem robust, reproducible, and possibly generalizable because

they yielded a high quality corpus over two different annotation tasks with five different annotators

(see Table 3.3) and articles spanning the years 1979 to 2018 (see Figure 3.4). We can trust the

annotations and reliability of the guidelines as the IAA was near or above 80% for the classic

annotation tasks [163, 268, 269] and for the split annotations, the annotators were correctly

identifying statements of ignorance around 90% of the time. Further, it was easier to train K.J.S.

and S.A. for the second annotation task given the gold standard data of the first annotation task as

a reference. We believe this annotation work could be extended to more articles and new

annotators based on these results.
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Within the guidelines themselves, the positive and negative examples for each lexical cue

and the flexibility of the guidelines contributed to the feasibility, reproducibility, and

generalizability of the annotation task. Surprisingly, almost every cue contained a negative

example. Even for seemingly obvious cues such as unknown, there was a negative example. A

statement such as “to make inference, the maximum likelihood method is applied to estimate the

unknown parameters in the empirical log-odds ratio models given in (3)-(6)" was a negative

example in that it was a description of a methodology that helps determine missing parameters.

Further, the guidelines allowed for updates with the discovery of new lexical cues by the

annotators. This flexibility greatly contributed to the robustness of the data.

Lastly, even with such guidelines not every article could be annotated for this task. K.J.S.

and M.R.B. decided that one article (PMC4869271) was too difficult to annotate for this task

because:

• The audience seemed to be public health workers whereas this task was more focused on

researchers via scientific articles. This may be a true implementation paper.

• The article was full of quotes, making it very difficult to determine what was ignorance.

Many of the quotes were also informal, meaning that it was unclear what was a quote or not.

This further made the article difficult to follow.

• The article was most likely more of a technical report, public health education, government,

and/or an interview rather than a scientific article based on the publication types from the

NIH [274]. There did not appear to be much basic research in it.

• It was rather difficult to determine what was ignorance in the study itself versus the

implementation of the policies being presented. The majority of the article seemed factual

because it was mainly quotes from the public health workers.

• Neither K.J.S. nor M.R.B. were confident in their annotations of the article.
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Thus, this article was excluded from the final corpus. (Our task does not apply to all articles,

which is addressed more thoroughly in the Discussion.) Even with this exclusion, the high quality

of the data gave us confidence in its use for any downstream applications, including exploration

and automation.

The scientific literature was rich in statements of ignorance

The scientific literature, exemplified by prenatal nutrition, was rife with statements of

ignorance representing a variety of different ignorance categories (see Table 3.4). This helped

determine how researchers discuss knowledge goals in the literature both in terms of lexical cues

and ignorance categories. More than half (56%) of the total sentences (12,055) in all articles were

statements of ignorance, with nearly 20,000 lexical cue annotations and nearly 7,000 scope

annotations. Every article had at least one ignorance lexical cue annotation and thus a scope also

since the minimum number of annotations for both ALL CATEGORIES and SCOPE was one. At

the same time, the minimum number of annotations for each individual ignorance category was

zero, meaning that there was at least one article that contained no annotations to each specific

category. The most represented categories were incompletely understood and indefinite

relationship with over 6,000 and nearly 4,000 annotations across all articles, respectively. Explicit

inquiry, difficult task, unknown/novel, and future prediction were the least annotated with under

400 annotations total for each category. Thus, research articles contain many statements of

ignorance from a variety of ignorance categories. As all of these statements represent knowledge

goals, researchers can take advantage of these statements as ideas for future work in all categories

of ignorance.

We also determined the unique lexical annotation information and interestingly, the same

small percentage of cues were used quite frequently. Many of the lexical cues were repeats of the

same cue even with so many lexical cue annotations (see Table 3.5). In total there were 1,202

unique lexical cue annotations and as expected, all articles had at least one unique ignorance

lexical cue annotation since the minimum number of unique annotations for ALL CATEGORIES

was one. At the same time there was at least one article that contained no annotations to each
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Table 3.4: Annotation Statistics Per Ignorance Category: Total number of lexical cue annotations in all
articles and statistics per ignorance category. SCOPE was the number of sentences that contain at least one
ignorance lexical cue. Note that all categories except for ALL CATEGORIES and SCOPE (had 1) had zero
minimum number of annotations. Note max = maximum.

Category # total an-
notations

average # annota-
tions per article

median # annota-
tions per article

max # an-
notations

answered question 619 6.8 7 23
unknown/novel 328 3.6 2 20
explicit inquiry 177 1.95 1 27

incompletely understood 6471 71.11 67 329
indefinite relationship 3908 42.95 36 165
largely understood 1695 18.63 15 108
anomalous/curious 1012 11.12 9 39

alternative/controversy 1519 16.69 12 94
difficult task 320 3.52 2 25

problem/complication 532 5.85 3 29
future work 948 10.42 6 103

future prediction 366 4.02 2 52
important consideration 1786 19.63 9 199
ALL CATEGORIES 19681 216.27 200 1021

SCOPE 6700 73.63 69 262

specific category as the minimum for each individual category was zero. The ignorance

categories followed a similar pattern as above, where the most represented categories continued to

be incompletely understood and indefinite relationship (above or equal to 130) and the least

represented were future prediction and explicit inquiry (under 20). We also calculated the

percentage of unique annotations for each category, meaning the number of total unique

annotations per category divided by the number of total annotations per category. For all

categories these percentages were under 22%, and most were under 10%. Of note, 52% (1301 out

of 2513) of the lexical cues did not appear at all in the corpus, meaning there were no sentences

with those cues. Thus, a select subset of lexical cues and categories were frequently reused across

all annotations.

Further, the distribution of lexical annotations varied by article section, showing that most

appeared in the discussion and conclusion sections as expected and surprisingly many also

appeared in the methods section (see Table 3.6). There were no ignorance annotations within the
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Table 3.5: Unique Annotation Statistics Per Ignorance Category: Total number of unique lexical cue
annotations in all articles and statistics per ignorance category. We did not include SCOPE because the
number of sentences was the same; we only capture the scope one time no matter how many lexical cue
annotations occur within it. Note that all categories except for ALL CATEGORIES (had 1) had zero
minimum number of unique annotations. Note max = maximum.

Category # total
unique
annotations

% unique
annotations

avg # unique an-
notations per arti-
cle

median # unique
annotations per
article

max #
unique
annotations

answered question 49 8% 4.32 5 14
unknown/novel 69 21% 2.53 2 9
explicit inquiry 16 9% 1.21 1 8

incompletely understood 368 6% 32.66 35 83
indefinite relationship 130 3% 15 15 45
largely understood 106 6% 7.59 7 25
anomalous/curious 63 6% 4.6 5 14

alternative/controversy 100 7% 7.57 7 24
difficult task 40 13% 2.3 2 11

problem/complication 41 8% 2.91 2 12
future work 105 11% 5.34 4 21

future prediction 14 4% 1.84 1 6
important consideration 101 6% 6.73 5 37
ALL CATEGORIES 1202 6% 94.59 104 273

titles of papers. As might be intuitive, the conclusion section contained the most annotations

(almost double the next largest section), followed by the discussion and then the method section.

The results and abstract sections contained the fewest, with the abstract containing very few in

general and on average potentially due to the normally small size of this section. On average, each

section had at least 2 annotations and at most 200 annotations. The medians were slightly lower,

indicating some outlier articles with many annotations. In fact, the maximum number of

annotations in one section was 1,000 in the conclusion section. Further, the conclusion,

discussion, and methods sections in all articles contained at least one if not a few more ignorance

annotations at the bare minimum. For example, “Owing to the lack of other available data, we

used the annual number of live births in Iaşi county reported on 01 July 2009 (n=9,499) to define

the size of the reference group [23]" was in a methods section with owing to mapping to

problem/complication, lack of...data mapping to unknown/novel, and reported mapping to

incompletely understood. The sentence presented a method while also explaining why that
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particular one was chosen due to a lack of data. A researcher could choose to focus on all the

ignorance statements from the methods section for example to get ideas for gaps in

methodologies. Statements of ignorance were rampant throughout the scientific literature in all

sections of an article.

Table 3.6: Annotation Counts per Section: Total number of annotations by section in all articles with section
delineation and statistics per article. Note that every article contained a title and none of the titles had any
ignorance annotations. Note avg = average, min = minimum, and max = maximum.

Section # total
articles

# total an-
notations

avg # annota-
tions per article

median # annota-
tions per article

min # anno-
tations

max # an-
notations

abstract 71 123 1.73 1 0 29
introduction 86 2649 30.8 16 0 571
methods 61 2880 47.21 38 1 367
results 54 927 17.17 6.5 0 287

discussion 57 4906 86.07 55 3 330
conclusion 41 8196 199.9 150 2 990

Statements of ignorance and lexical cues can be automatically identified

We can automatically identify statements of ignorance and lexical cues achieving F1

scores around or above 0.8 with many closer to 0.9 (see Table 3.7 for sentence classification and

Table 3.11 for word classification). Automatic identification of both statements of ignorance and

the specific lexical cues provides researchers with specific knowledge goal statements to explore

for potential future research ideas. This automation provides a foundation for future applications

to explore the state of scientific ignorance at scale to help accelerate research.

Evaluating on a significant amount of unseen data provided a robust estimate of our

classifier performance and hinted at generalizability. The ignorance corpus of 12,055 sentences

was split into 8,281 sentences in training (2/3) and 3,774 for evaluating (1/3) which included over

285,000 words with 2053 lexical cues and over 131,000 words with 1382 lexical cues, respectively

(see Table 3.1). Further, the evaluation data included 501 unique unseen lexical cues in the

training, meaning there were no sentence examples for these cues in the training data. We provide

the results for all classifiers recognizing that one classifier did not work for all ignorance

categories. (See Figures 3.5 and 3.6 for a comparison of all the models on the test data for
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sentence and word classification respectively. For the results for each algorithm including training

and testing scores, see Tables 3.8- 3.10 for sentence classification, and Tables 3.12 and 3.13 for

word classification.)

The ensemble of 13 different binary classifiers performed the best for both classification

tasks and all models were necessary. On the sentence-level, the binary classifier performed quite

well at an F1 score of 0.95 on the testing data, while the one multi-classifier failed at 0.12. For the

ensemble, all ignorance categories performed near 0.8-0.9 with BERT and BioBERT as the main

algorithms and ANN only for incompletely understood. The most difficult category appeared to be

alternative/controversy at an F1 score of 0.79. The ANN performed quite well on training, but

scores dropped in testing (see Table 3.8). BERT similarly performed quite well on training while

maintaining most of the performance on testing aside from a few ignorance categories (see

Table 3.9). Lastly, BioBERT was similar to BERT although the testing scores remained higher

than BERT overall (see Table 3.10). Overall, we can automatically identify sentences as

statements of ignorance quite well, providing knowledge goal statements to explore in future work.

Table 3.7: Sentence Classification: the best model for sentence classification for each ignorance category
and all categories combined.

Ignorance Category Model testing F1 score testing support
ALL CATEGORIES BINARY BioBERT 0.95 2005

answered question BERT 0.97 168
explicit inquiry BioBERT 0.9 92
unknown/novel BioBERT 0.88 63

incompletely understood ANN 0.83 225
indefinite relationship BERT 0.87 1072
largely understood BERT 0.9 312
anomalous/curious BERT 0.96 149

alternative/controversy BioBERT 0.79 441
difficult task BERT 0.95 93

problem/complication BioBERT 0.9 202
future work BioBERT 0.85 195

future prediction BERT 0.88 55
important consideration BERT/BioBERT >0.99 491

ALL CATEGORIES COMBINED BioBERT 0.12 2005
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Figure 3.5: Sentence classification summary: A bar plot summary of test F1 scores for sentence classifica-
tion. *Reporting the macro-average F1 score of all the categories for one multi-classifier.

Table 3.8: ANN sentence classification: Note that one sentence can map to more than one category and so
they will not add up to the total binary. *Reporting the macro-average F1 score of all the categories for one
multi-classifier.

Ignorance Category training
F1 score

training
support

testing F1 score testing
support

ALL CATEGORIES BINARY 0.99 3354 0.85 2005
answered question 0.66 479 0.34 168
explicit inquiry 0.95 524 0.15 92
unknown/novel 0.87 347 0.73 63

incompletely understood 0.9 1582 0.83 225
indefinite relationship 0.86 1965 0.78 1072
largely understood 0.86 523 0.5 312
anomalous/curious 0.92 479 0.02 149

alternative/controversy 0.97 942 0.47 441
difficult task 0.88 342 0.0 93

problem/complication 0.68 324 0.66 202
future work 0.85 869 0.59 195

future prediction 0.93 178 0.48 55
important consideration 0.75 735 0.61 491

ALL CATEGORIES COMBINED* 0.17 3354 0.08 2005
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Table 3.9: BERT sentence classification: Note that one sentence can map to more than one category and so
they will not add up to the total binary. *Reporting the macro-average F1 score of all the categories for one
multi-classifier.

Ignorance Category training
F1 score

training
support

testing F1 score testing
support

ALL CATEGORIES BINARY 0.83 3354 0.43 2005
answered question 0.99 479 0.97 168
explicit inquiry 0.87 524 0.86 92
unknown/novel 0.89 347 0.8 63

incompletely understood 0.81 1582 0.61 225
indefinite relationship 0.91 1965 0.87 1072
largely understood 0.96 523 0.9 312
anomalous/curious 0.93 479 0.96 149

alternative/controversy 0.83 942 0.43 441
difficult task 0.92 342 0.95 93

problem/complication 0.92 324 0.7 202
future work 0.83 869 0.67 195

future prediction 0.9 178 0.88 55
important consideration >0.99 735 >0.99 491

ALL CATEGORIES COMBINED* 0.23 3354 0.10 2005

Table 3.10: BioBERT sentence classification: Note that one sentence can map to more than one category
and so they will not add up to the total binary. *Reporting the macro-average F1 score of all the categories
for one multi-classifier.

Ignorance Category training
F1 score

training
support

testing F1 score testing
support

ALL CATEGORIES BINARY 0.99 3354 0.95 2005
answered question 0.93 479 0.61 168
explicit inquiry 0.99 524 0.9 92
unknown/novel 0.88 347 0.88 63

incompletely understood 0.97 1582 0.66 225
indefinite relationship 0.88 1965 0.82 1072
largely understood 0.86 523 0.73 312
anomalous/curious 0.85 479 0.84 149

alternative/controversy 0.92 942 0.79 441
difficult task 0.91 342 0.93 93

problem/complication 0.82 324 0.9 202
future work 0.83 869 0.85 195

future prediction 0.88 178 0.75 55
important consideration >0.99 735 >0.99 491

ALL CATEGORIES COMBINED* 0.22 3354 0.12 2005
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The lexical cues provided more details as to where the specific knowledge goal was

signified. On the word level, it seems to be even easier to automatically classify lexical cues, even

ones that were not seen in the training data (see Table 3.11). Both the binary classifier and one

true multi-classifier performed quite well using BioBERT mainly, but the ensemble still

outperformed both with F1 scores near or above 0.9. Overall, BioBERT performed better than the

CRF, but the CRF was generally quite close in performance aside from future prediction. Both the

CRF and BioBERT maintained their performance from training to testing generally (see

Tables 3.12 and 3.13, respectively). The CRF can be used in low resource settings if GPUs are not

available for BioBERT prediction, otherwise BioBERT performed best (similar our results in

Chapter 2). Further, the best models achieved an F1 score of 0.84 on the 501 unique unseen

lexical cues only in the evaluation data with no examples in the training data. These models were

quite effective on unseen cues. The few errors seemed to be due to minor variations on the

ignorance cues already in the taxonomy, such as plurals or words in different orders. Thus, both

our sentence and word classification models performed quite well and can be used in future

applications to explore these statements.

Table 3.11: Word Classification: the best model for word classification for each ignorance category and all
categories combined. *Reporting the average F1 score of all the categories for one multi-classifier.

Ignorance Category Model testing F1 score testing support
ALL CATEGORIES BINARY BioBERT 0.89 7601

answered question BioBERT 0.89 320
unknown/novel CRF 0.98 155
explicit inquiry BioBERT 0.97 43

incompletely understood BioBERT 0.93 2809
indefinite relationship BioBERT 0.97 1205
largely understood BioBERT 0.94 618
anomalous/curious BioBERT 0.96 399

alternative/controversy BioBERT 0.91 598
difficult CRF 0.93 128

problem/complication BioBERT 0.9 238
future work BioBERT 0.89 391

future prediction BioBERT 0.94 100
important consideration BioBERT 0.93 608

ALL CATEGORIES COMBINED* BioBERT 0.82 6239
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Figure 3.6: Word Classification summary: A bar plot summary of test F1 scores for word classification.
*Reporting the macro-average F1 score of all the categories for one multi-classifier.

Table 3.12: CRF word classification. *Reporting the macro-average F1 score of all the categories for one
multi-classifier.

Ignorance Category training
F1 score

training
support

testing F1 score testing
support

ALL CATEGORIES BINARY 0.76 16748 0.75 7601
answered question 0.8 692 0.82 320
unknown/novel 0.97 401 0.98 155
explicit inquiry 0.94 136 0.94 43

incompletely understood 0.76 5764 0.77 2809
indefinite relationship 0.83 2847 0.84 1205
largely understood 0.79 1313 0.81 618
anomalous/curious 0.73 809 0.76 399

alternative/controversy 0.73 1262 0.74 598
difficult task 0.9 283 0.93 128

problem/complication 0.8 432 0.79 238
future work 0.82 991 0.8 391

future prediction 0.56 341 0.46 100
important consideration 0.75 1484 0.75 608

ALL CATEGORIES COMBINED* 0.77 13828 0.77 6239

Discussion

Capturing and classifying statements of ignorance in terms of their entailed knowledge

goal was an important new NLP task that formalized and extended prior work in hedging,

uncertainty, speculation, factuality, epistemics, and meta-knowledge into how such statements can

serve future knowledge gain. Even though each phenomenon was defined differently, our
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Table 3.13: BioBERT word classification. *Reporting the macro-average F1 score of all the categories for
one multi-classifier.

Ignorance Category training
F1 score

training
support

testing F1 score testing
support

ALL CATEGORIES BINARY 0.9 16748 0.89 7601
answered question 0.92 692 0.89 320
unknown/novel 0.91 401 0.87 155
explicit inquiry 0.95 136 0.97 43

incompletely understood 0.94 5764 0.93 2809
indefinite relationship 0.98 2847 0.97 1205
largely understood 0.94 1313 0.94 618
anomalous/curious 0.91 809 0.96 399

alternative/controversy 0.9 1262 0.91 598
difficult task 0.9 283 0.86 128

problem/complication 0.88 432 0.9 238
future work 0.91 991 0.89 391

future prediction 0.97 341 0.94 100
important consideration 0.96 1484 0.93 608

ALL CATEGORIES COMBINED* 0.82 13828 0.82 6239

ignorance taxonomy relates, subsumes, and nuances much of it. The prior hedging work [37, 38,

41] mainly focused on facts and as stated earlier, a hedged statement was not necessarily a

statement of ignorance. Even still, many statements overlapped and contained the same lexical

cues including suggests, likely, may, possible, probably, and either...or [41]. For uncertainty, our

work related to epistemic uncertainty introduced by Walker [73], where the goal was to think

critically about the source of uncertainty and how that impacted decisions. Our work aimed to

think critically about the source of unknowns and how that drives research. Uncertainty,

speculation, and factuality research [27, 43] also turned to a focus on confidence levels to

understand the certainty of the statements. We can map this onto the stages of research under our

broad category of “epistemic indication of research topic, assertion, or variables" where research

begins with an unknown/novel and completes with a largely understood idea into knowledge (see

Figure 3.3). This continuum included the categories largely understood and incompletely

understood, which mapped to the factuality levels of probable and possible in SemRep [43].

Lastly, the meta-knowledge research [260] aimed to combine many of these ideas as manner,
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source, polarity, certainty level, and knowledge type. Certainty level L1 (possible) mapped

roughly to incompletely understood and level L2 (probable) to largely understood. Further, our

taxonomy was a more nuanced categorization of their knowledge types of research hypothesis and

new knowledge. Also it was more nuanced than recent work focusing on scientific challenges and

directions [17]. Future work could include augmenting both the meta-knowledge and recent work

to add in our ignorance taxonomy.

Our ignorance taxonomy not only aimed to extend this prior work, but also to be grounded

in the field of philosophy of science as a theory of science progression and evolution (see

Figure 3.3). Our ignorance taxonomy subsumed a few types of ignorance informally laid out by

Firestein [1], including curiosity, possibility, and controversy, which extended to

anomalous/curious, incompletely understood, and alternative/controversy in our taxonomy

respectively. Kuhn [2] discussed how small discrepancies in the predictions of a theory can

accumulate until they cause a crisis necessitating a completely new theory. In our taxonomy, this

corresponded to the category of anomalous/curious. Pearl et al. [70] aimed to forge connections

from correlation to causation, the indefinite relationship category in our taxonomy, since the

literature was filled with associations. Han et al. [69] focused on healthcare with categories

including probability, ambiguity, and complexity extending to largely understood,

anomalous/curious, and difficult task in our taxonomy, respectively. Smithson’s [72] taxonomy

included incompleteness and probability, which mapped to incompletely understood and largely

understood in our taxonomy, respectively. The philosophical implications of our work can

continue to be explored in future work.

All of our work provided a foundation for future tools and methods to explore these

statements of ignorance to develop the scientific ignorance landscape at scale and across

disciplines, hopefully helping to accelerate research. Using our ignorance taxonomy and lexical

cues, we provided robust annotation guidelines that yielded a high quality corpus of 91 prenatal

nutrition articles. Human readers reliably identified and categorized statements of ignorance in

our annotation task with all IAAs around 80% (see Table 3.3). Much of the prior work also
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provided lexical cues to help with their tasks (e.g., [41, 51, 61, 263]). We extended these lists to

over 2,500 cues, which to the best of our knowledge is the largest lexical cue list. Between our two

annotation tasks alone, over 600 lexical cues were added to the taxonomy each time. This also

showed that statements of ignorance employed a rich vocabulary. Future work can focus on these

cues to better understand how researchers discuss knowledge goals in the literature.

At the same time, lexical cues may not be the only way to capture statements of ignorance

and we may have biased the annotators by highlighting the lexical cues before annotation.

Sometimes the annotators agreed that a sentence was a statement of ignorance, but either

disagreed on the lexical cue or had a hard time deciding on the cue. In these cases, we needed to

identify a cue based on our task definition, but there could be other features that capture it better.

Lahav et al. [17] aimed to not only capture sentences with lexical cues but also augment beyond

it. However, they did not discuss what other features helped identify such statements. Future work

can explore other linguistic features that may help capture more statements of ignorance. We also

did not measure the effect of pre-highlighting lexical cues for the annotators. They found the task

infeasible when the lexical cues were not highlighted. Even with the highlights, the annotators

continued to find new lexical cues. Future work can explore this effect and determine other means

to capture statements of ignorance. We provide our very detailed ignorance taxonomy, extensive

annotation guidelines, and our gold standard corpus as in prior work (e.g., [17, 39, 41]), for future

work to expand upon.

Based on our corpus, the scientific literature was rich in statements of ignorance both by

article and by section (see Tables 3.4-3.6), which are ripe for exploration in future work. This led

to the broader question: does ignorance exist in every article? Our corpus suggests that there was

an almost even split between ignorance statements mapping to all thirteen categories and not.

Every article had at least one ignorance annotation no matter how short the article and just over

half of the total sentences in all articles (55%) were statements of ignorance. This was in direct

contrast to Bongelli et al. in that they claimed that “the percentages of uncertainty are always

much lower than that of certainty" [262]. Our corpus begs to differ with respect to ignorance most
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likely because our taxonomy was much broader than uncertainty including categories such as

difficult task, important consideration, and answered question, which would not be deemed

uncertain. More work is necessary to truly make these claims. Further, we also disagree with their

claim that “uncertainty progressively diminishes over time in biomedical articles" [262].

Ignorance did not seem to diminish over time in our corpus: all articles spanning from 1979 to

2018 contained ample ignorance. We do however agree with their [262] finding that most

ignorance statements were in the discussion and conclusion sections. Surprisingly, the methods

section had more statements of ignorance than expected and it seems due to the justifications of

techniques with comparisons and explanations in relation to previous work. The introduction

section had the next largest, which was the second largest category for Bongelli et al. [262].

Future work is needed to explore statements of ignorance by article and across sections. Even so,

with our data, it seems that the prenatal nutrition literature at least was filled with many statements

of ignorance ripe for exploration.

All of these statements of ignorance mapped to all different types of ignorance spanning

all the categories, providing different types of knowledge goals for researchers to explore. Most of

them were under the categories of incompletely understood and indefinite relationship with many

articles providing more evidence but not enough yet for claims, and many associations and

relationships between entities in the articles, respectively. Further, the most underrepresented

category was explicit inquiry, showing that most of the statements of ignorance were not explicit,

but instead implicit in the 12 other categories, making this task very difficult and nuanced. Our

corpus covered a wide range of ignorance categories ripe for exploration.

With all this gold standard data, we showed that we can automate this task to identify

statements of ignorance and lexical cues for use in future applications (see Tables 3.7- 3.13 and

Figures 3.5 and 3.6). The ensemble of 13 binary classifiers for both the sentence and word

classification tasks performed quite well with F1 scores on a held out test set around or above 0.8,

with many close to 0.9. The ensemble avoided the difficulties of a multi-classification problem.

Also, our word classifiers achieved an F1 score of 0.84 on lexical cues unseen in the training data
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(501 cues), hinting at generalizability beyond the cues gathered here. At the same time, we used

only the baseline hyperparameters for our classifiers and thus other parameter tunings and other

algorithms, such as PubMedBERT [243], may yield improved results. Even still, we demonstrated

that it was feasible to automate the identification of statements of ignorance.

The major limitations of this work were the amount of data and the focus on only one field.

The goal of this work was to show feasibility of these ideas and methods, and thus it is unclear

whether this work generalizes beyond both the data and the field of prenatal nutrition. More data

generally boosts performance and helps determine generalizability. Even still, we achieved high

F1 scores on our corpus of 91 articles, which seemed to be enough to train, evaluate, and test the

classification models. Future work could include more annotations in the prenatal nutrition field

to help improve automation. Further, to test generalizability beyond this one field, future work

could apply our ignorance classifiers to another field, such as the COVID-19 literature, LitCovid

[275], and manually evaluate the annotations. The results from that analysis can be compared to

this work to determine generalizability. It remains to be seen if these results generalize beyond

prenatal nutrition.

Even with these limitations, this work showed that it was possible to identify ignorance

statements in a field that is difficult to study due to ethical and legal considerations [110–113].

This work provided the first step towards finding new research areas to explore and facilitating

new interdisciplinary interactions that could advance the study of this underserved population.

Discussions of these statements of ignorance can both refine and improve research questions,

identify established facts, and facilitate the comparison of approaches for further research. These

discussions of scientific questions are of interest to researchers, educators, publishers, and funders

because they provide insights and directions for new research and may provide context for existing

results. Formalizing and disseminating such statements of ignorance in the scientific literature is

an important new NLP task with the potential to greatly impact how we view the literature and

scientific progress in general.



124

Conclusion

The new NLP task of finding scientific questions or statements of ignorance in the

scientific literature will not only yield novel text mining tools, but will also help accelerate

research through tracing out the evolution of scientific thought in a discipline, pointing out gaps or

flaws in existing theories, and providing new avenues for future insights. Here we not only showed

that this task was feasible, but created an ignorance taxonomy, a gold standard corpus, and

classification models. The ultimate goal is to help enhance literature awareness by creating an

ignorance-base (compared to a knowledge-base) of statements of ignorance found in the literature

for all to explore, including students, researchers, publishers, and funders.

Summary

This work introduced a novel biomedical natural language processing task that aimed to

identify, characterize, and automatically classify statements of ignorance from the scientific

literature (statements where scientific knowledge is missing or incomplete). Our interest was on

how these statements can play a role in accelerating research (goals for scientific knowledge). We

presented a novel ignorance taxonomy driven by these goals for scientific knowledge along with

annotation guidelines explaining how to identify such statements. Using this taxonomy and

reliable annotation guidelines (inter-annotator agreement above 80%), we created a gold standard

ignorance corpus of 91 full-text documents from the prenatal nutrition literature with over 20,000

annotations and used it to train classifiers that achieved over 0.80 F1 scores on a held out test set.

By focusing on statements of ignorance there is a potential to develop the scientific ignorance

landscape at scale and across disciplines, resulting in an accelerated research process.

Contributions And Acknowledgements

This work was the combination of one publication [173] and one preprint [175].

• Boguslav, M. R., Salem, N. M., White, E. K., Leach, S. M., Hunter, L. E. Identifying and

classifying goals for scientific knowledge. Bioinformatics advances. 2021;1:1 vbab012.

Available From: https://doi.org/10.1093/bioadv/vbab012



125

• Boguslav MR, Salem NM, White EK, Sullivan KJ, Araki SP, Bada M, et al. Creating an

Ignorance-Base: Exploring Known Unknowns in the Scientific Literature.

2022;:2022.12.08.519634. Available From:

https://doi.org/10.1101/2022.12.08.519634

I would like to thank the other authors on those papers including Nourah M. Salem,

Elizabeth K. White, Katherine J. Sullivan, Stephanie P. Araki, Michael Bada, Teri L. Hernandez,

Sonia M. Leach, and Lawrence E. Hunter.

For the publication, MRB, SML and LEH conceived of the idea. MRB and EKW

annotated all documents for the corpus. MRB and NMS created the classification models. All

authors helped write and reviewed the manuscript. I would like to thank Harrison

Pielke-Lombardo for his updates to the Knowtator tool; William A. Baumgartner Jr. for his help

with the literature and taxonomy work; Teri L. Hernandez for her consultations on prenatal

nutrition; Michael M. Bada for his guidance on annotation tasks and the taxonomy; and Katherine

J. Sullivan and Tiffany J. Callahan for many discussions about this work.

For the preprint, MRB, SML, and LEH conceived of the ideas. KJS, SPA, EKW, MRB,

and MB were a part of the annotation task. MRB and NMS created the classification models.

TLH was our prenatal nutrition expert. TLH, SML, and LEH supervised the work. All authors

helped write and reviewed the manuscript. I would like to acknowledge the BioFrontiers

Computing Core for computing resources and support, especially Jonathon Demasi. I would like

to thank Harrison Pielke-Lombardo for his updates to the Knowtator tool; William A.

Baumgartner Jr. for his help with the literature and taxonomy work; and Tiffany J. Callahan for

many discussions about this work.



126

CHAPTER IV

CREATING AN IGNORANCE-BASE: EXPLORING KNOWN UNKNOWNS IN THE
SCIENTIFIC LITERATURE

Background And Related Work

The ultimate goal of this work is to provide a system for students, researchers, publishers,

and funders to explore the scientific ignorance landscape at scale and across disciplines, resulting

in an accelerated research process. With both the biomedical concepts (Chapter 2) and ignorance

statements (Chapter 3) recognized, it is now possible to create an ignorance-base, a

knowledge-base focused on the questions or ignorance statements. Research begins by

accumulating knowledge on an unexplored subject (an unknown unknown). It continues through

exploring the questions (known unknowns) until a body of established facts emerges (known

knowns) [1–3]. Many knowledge-bases exist to capture the known knowns from domain experts,

the scientific literature, and other data sources such as experimental results [4]. These

knowledge-bases are important based on their variety of applications [4], including finding and

interpreting information based on a single input topic, such as a concept, or a set of input topics

that may be related, such as those from experimental results. For example, a graduate student or

researcher interested in learning about the field of prenatal nutrition might consult a database of

dietary supplements [5]. Or a researcher might perform a functional enrichment analysis to

characterize a list of genes associated with vitamin D and preterm birth by finding relevant known

biomedical concepts [6].

Both of these examples explore the knowledge-bases of known facts, but equally important

are the questions surrounding a topic or a set of experimental results. How do researchers find the

most pertinent questions? Researchers learn these skills in graduate school where the goal is to

identify and provide at least some solutions for a question that is unanswered (a thesis project).

The graduate student needs to learn both the questions in the field and how they are asked in order

to ask their own. The graduate student is a good example of how researchers find questions and

many books [7–11] and articles [12–16] discuss this process, including how to choose a topic or
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question. However, to the best of our knowledge there are no automated systems that provide

insights, summaries, and visualizations to help researchers find the most pertinent questions based

on knowledge goals and the biomedical ontologies to support finding areas of research

(biomedical concepts) with lots of questions (ignorance statements) that are ripe for future

research. An automated system could be useful to a wide variety of scientists ranging from

graduate students looking for thesis projects (e.g., [12]) to funding agencies tracking emerging

research areas (e.g., [33]). It could help facilitate interdisciplinary interactions amongst

researchers by finding questions from another field that bear on a topic or a set of experimental

results (e.g., [34]). It could also help track the evolution of research questions over time as a

longitudinal analysis (e.g., [35]). Further, automatically identifying questions would allow us to

query existing databases for information (e.g., [36]). Thus, there is a need for such an automated

system to capture questions or known unknowns.

Just as knowledge-bases rely on the representation of known knowns [4], such an

automated system would rely on representations of known unknowns. Prior efforts exist to capture

them through understanding the phenomenon [20, 21, 23–25, 27, 37–67], creating taxonomies

where a hierarchy of terms was linked by specified relationships [43, 46, 68–73] and ontologies

specifying relationships among controlled vocabularies [74–77], annotating literature to create

corpora [40, 41, 50, 55, 61, 63, 78–81, 84, 85, 264], and automating the identification of known

unknowns through classification tasks [20, 42–45, 47–49, 51–54, 56, 58–62, 64–67, 86–94].

Some efforts have also sought to capture known unknowns completely by creating theoretical

frameworks, determining if the task was feasible for humans to perform, and automating it [17,

19–27, 46, 95, 96]. (See Chapter 3 for more details.) None of these works have created a

knowledge-base of known unknowns that can provide summaries and visualizations based on an

input topic or a set of experimental results.

Only one work [17] was close in their creation of a search engine, similar to a PubMed

search, for new directions and challenges in the COVID-19 Literature. They aim to help

researchers discover scientific challenges and directions (their two known unknown categories) by
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providing relevant articles and sentences for each input biomedical MeSH (Medical Subject

Headings - a controlled vocabulary that is part of the Unified Medical Language System from

NLM used for indexing, cataloguing, and searching for biomedical information and documents

[18]) term. However, their two categories of known unknowns were quite broad, when most other

works included more nuanced categorizations (e.g., Chapter 3 with 13 categories focused on

scientific knowledge goals and [19–27]). Their input concepts were not grounded in ontologies,

limiting the ability to connect their work to other ontology-based efforts (i.e., many

knowledge-bases [4]). Also, they cannot support queries by experimental results as standard

methods for contextualizing experimental results (functional enrichment analysis) use

knowledge-bases and ontologies [28–32]. Further, they did not go beyond the identification of

sentences to provide summaries or visualizations of the immense amount of data outputted.

Tables alone do not suffice to truly explore all the outputted data (thousands of sentences can be

found per input concept). They “hope to build more tools to explore and visualize challenges and

directions across science" in future work [17]. Thus, no prior work has created a knowledge-base

to capture the nuance of the known unknowns drawing from prior work, connected them to

ontologies for integration with other knowledge-bases, and provided summaries and visualizations

of the outputs to help researchers find the most pertinent questions.

Lahav et al. [17] cannot support queries by experimental results. For contextualizing

experimental results, methods for standard functional enrichment analyses use knowledge-bases

and ontologies [28–32], and natural language processing (NLP) tools over the biomedical

literature [34, 97–106]. Some of this prior work not only aimed to characterize genes but also to

help define new research areas (e.g., [34] as one of a few goals), generate new hypotheses (e.g.,

[107]), and find information about genes of unknown function and fill gaps in knowledge (e.g., a

preprint [105] employs manual curation). Thinking beyond a gene list, if we consider pathway

models as experimental results, tools exist to associate pathway models to the literature (e.g.,

[108]) and some of these took uncertainty into account (e.g., [44, 109]). However, these works

focused on confidence and relevance, respectively, rather than explicitly representing statements
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of known unknowns. Thus, to the best of our knowledge, there is no prior work that can facilitate

the widespread search for questions to find new avenues for exploration from a set of experimental

results.

Thus, our goal was to create and use a knowledge-base containing representations of

known unknowns, formally defined as an ignorance-base (based on [1] and Chapter 3), to

explore by topic and explore by experimental results, as done in the knowledge-bases.

Identifying questions that need answers, would allow us to then look to other fields and

knowledge-bases for answers. We aim to help students, researchers, funders, and publishers better

understand the state of our collective scientific ignorance (known unknowns) in order to help

accelerate translational research through the continued illumination of and focus on the known

unknowns and their respective goals for scientific knowledge.

While these ideas and methods are generally applicable across biomedical research, we

focused on the prenatal nutrition field. Due to ethical and legal considerations and complexities in

studying pregnant mothers and fetuses, prenatal nutrition is understudied and serves to benefit

from the identification of questions that are well studied in other fields [110–113]. Fetal

development is a critical period and exposure to nutrition has a lifelong impact [114]. For

example, the micronutrient vitamin D is very important for maternal and fetal health, affecting the

immune and musculoskeletal systems, neurodevelopment, and hormones [115–119] (see

Figure 4.1). Abnormal vitamin D levels are associated with gestational diabetes mellitus, preterm

delivery, frequent miscarriages, adipogenesis, pre-eclampsia, obstructed labor, Cesarean sections,

reduced weight at birth, respiratory issues, postpartum depression, and autism [115]. If we can

identify the known unknowns in prenatal nutrition, even just with regard to the role of vitamin D,

we can look to other fields to help us answer the questions raised, thereby avoiding the additional

risks faced when studying pregnant women and their children. Also the prenatal nutrition field is a

good case study for these ideas because it contains a diverse literature with all types of studies

from all over the world, meaning there is a higher potential for generalizability to other fields.

Thus, this work has the potential to generalize beyond prenatal nutrition, and more specifically to
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facilitate new interdisciplinary interactions that could advance the study of an underserved

population and potentially help accelerate translational research for mothers everywhere.

We present the ignorance-base as a formal representation of statements of ignorance

using the example of the prenatal nutrition literature. We define statements of ignorance as

statements of incomplete or missing knowledge categorized based on the entailed knowledge

goals (i.e., the next actionable step based on the given unknown), as defined in Chapter 3. We

chose this formalization of known unknowns because of the knowledge goal focus in order to

provide actionable next steps to the students, researchers, funders, or publishers. For example,

“these inconsistent observations point to the complicated role of VITAMIN D in the IMMUNE

modulation and disease process" (PMC4889866) was a statement of ignorance. The ignorance

statement with its entailed knowledge goal was identified based on the underlined words that

communicate knowledge is missing, lexical cues, which mapped to an ignorance taxonomy, a

formal categorization of knowledge goals. The cue inconsistent was an indication of alternative

research options or controversy of research, the ignorance category, and complicated was an

indication of difficult research task. Thus, the entailed knowledge goal was to determine the

correct role of vitamin D in the immune modulation and disease process by creating novel

methods or conducting new experiments to study the complicated role. This knowledge goal is an

action that researchers can take in future research. As Chapter 3 showed, most ignorance

statements were implicit, as the example above. In order to also understand the biomedical

subjects of these statements and be able to connect them to other knowledge-bases, we identified

the biomedical concepts from the open biomedical ontologies (OBOs) (e.g., the all caps words in

the example sentence) using the concept recognition methods from Chapter 2. The ignorance-base

combines the identification and classification of ignorance statements and biomedical concepts to

hopefully provide researchers with knowledge goals to pursue in future research.

With the ignorance-base, we show that it is possible to automatically find statements of

ignorance related to a topic motivated by a researcher’s search for the pertinent questions in

vitamin D. The goal is to find areas of research (biomedical concepts) with lots of questions
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(ignorance statements) that are ripe for future research. Analogous to exploring by topic using

knowledge-bases, we used the ignorance-base to find other related keywords or concepts and

specific knowledge goals for the researcher. We determined if other concepts were enriched in

vitamin D ignorance statements compared to all statements (ignorance enrichment). We found

the concepts IMMUNE SYSTEM, BRAIN DEVELOPMENT and RESPIRATORY SYSTEM to

be enriched in vitamin D ignorance statements compared to the standard approach of concept

enrichment in all vitamin D documents (see Figure 4.1). All of these biomedical concepts with

their corresponding ignorance statements provided lots of interesting questions and ideas. In a

similar vein, to help the researcher understand the general landscape of questions surrounding a

topic and narrow in on types of question to ask (ignorance category), we present a summary of the

ignorance categories and mapped out how they changed over time. We identified the ignorance

categories that were over-represented in a subset of ignorance statements as compared to all

ignorance statements (ignorance-category enrichment). By narrowing the researcher’s search to

specific ignorance categories, we argue that this provided the researcher with a filtered set of

knowledge goals to explore as potential questions for future work. For example, the researcher

could choose a topic that was a complete unknown (indication of unknown or novel research topic

or assertion) or a topic where there were alternate existing hypotheses to explore (indication of

alternative research options or controversy of research). Further, we argue how this can help track

emerging research areas or perform a longitudinal analysis of the evolution of research questions

over time for funding agencies and publishers [33, 35, 132–139].

We also show that it is possible to contextualize experimental results in terms of

statements of ignorance to understand what questions may bear on them, potentially from another

field. Similar to exploration by topic, the goal was to find areas of research (biomedical concepts)

that ideally imply another field, with lots of questions (ignorance statements) that are ripe for

future research. We used a gene list connecting vitamin D and spontaneous preterm birth (sPTB)

from the literature [6] as our example. If vitamin D plays a role in preventing sPTB, it would

affect mothers everywhere. In comparing our ignorance-base approach to the standard methods
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Figure 4.1: Relationship between society, maternal nutrition (vitamin D), and the effects on mother and
offspring: a Sankey diagram created based on Figure 3 from [115]. The orange color represents the
findings from the exploration methods that the concepts related to brain development and immune system
were enriched in ignorance statements and possible novel avenues to explore. SES/SDC = socioeconomic
status/sociodemographic characteristics; BP = blood pressure; GDM = gestational diabetes mellitus.

for the gene list, we found ignorance enrichment of the concepts IMMUNE SYSTEM and BRAIN

DEVELOPMENT (see Figure 4.1). Yadama et al. [6] also found the immune system through

their functional enrichment analysis and suggested it modulates the effects of maternal vitamin D

intake and sPTB. They suggested increasing maternal vitamin D intake and that future work

should to be done to fully determine the relationship between vitamin D, the immune system, and

sPTB. Our results provide immune system ignorance statements that can be explored in future

work. For the concept brain development, they did not mention anything related to the brain in

their paper [6]. Thus, we found a novel concept that related to questions based on their gene list.
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We provide all the ignorance statements and suggest questions for future exploration. Also, the

concept brain development implies the field of neuroscience, providing a field for the researchers

to look for answers. The ignorance-base provided a novel putative research area with specific

ignorance statements or knowledge goals to pursue in future work based on a gene list.

The purpose of this work was to create the first ignorance-base with a more nuanced

categorization of known unknowns and grounded in ontologies, going beyond a search engine

based on MeSH terms with only two categories of known unknowns [17]. We highlight its power

by providing summaries and visualizations (not just tables of sentences and articles) based on an

input topic or a set of experimental results. Previous work [17] cannot support experimental

results as an input. Thus, to the best of our knowledge, we created the first system that helps

researchers explore the state of our collective scientific ignorance not only surrounding a topic but

also experimental results. (A list of the formal terms we have introduced here and their definitions

are shown in Table 4.1.)
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Table 4.1: Term definitions.

Term Definition
Ignorance community/collective/scientific known unknowns

Knowledge-base a database of known information
Ignorance-base a knowledge-base, created from the literature, with addi-

tional annotations for the sentences that are ignorance state-
ments

Statements of ignorance statements of incomplete or missing knowledge categorized
based on the entailed knowledge goal

Knowledge goal the next actionable step based on the given unknown
Biomedical concept classification/recognition automatically identifying and mapping biomedical entities

to ontologies
Ontologies controlled vocabularies with specified relationships

Open biomedical ontologies (OBOs) an effort to create standardized ontologies for use across
biological and medical domains

Lexical cue words or phrases that signify a statement of ignorance
Taxonomy of ignorance a categorization of ignorance statements based on the en-

tailed knowledge goal
Exploration by topic automatically find statements of ignorance related to a topic

from the ignorance-base
Exploration by experimental results contextualize experimental results in terms of statements

of ignorance from the ignorance-base to understand what
questions may bear on them

Ignorance enrichment a method to identify biomedical concepts that are over-
represented in a set of ignorance statements as compared
to all sentences, and thus may be a new promising avenue to
explore in relation to the input topic

Ignorance-category enrichment a method to identify ignorance categories that are over-
represented in a subset of ignorance statements as compared
to all ignorance statements in order to illuminate the types of
knowledge goals to pursue and to map out how they change
over time

Methods

We combined the best-performing ignorance classifiers (Chapter 3) with state-of-the-art

biomedical concept classifiers (Chapter 2) to create an ignorance-base that allowed us to explore it

by a topic and by experimental results. The ignorance-base can be queried by ontology concepts,

ignorance categories, specific lexical cues, or any combination of the three.

The rest of this section will be organized into the following subsections:
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1. Creating the Ignorance-Base: Combining ignorance and biomedical concept classifiers

2. Ignorance-Base: Exploration by topic

3. Ignorance-Base: Exploration by experimental results

Materials

The inputs for all systems were scientific prenatal nutrition articles. We used full-text

articles from the PubMed Central Open Access (PMCOA) subset of PubMed [159], allowing us

more data and the ability to share it publicly. 1,643 prenatal nutrition articles (1939-2018) were

gathered from querying PMCOA for 54 regular expressions determined in consultation with a

prenatal nutrition expert, Teri L. Hernandez (T.L.H.) (same query and articles from Chapter 3).

All articles were provided in XML format and converted to text format parsing through the XML

using a script in Java. All subsequent computation was implemented in Python 3, with its

associated packages. The classification frameworks and models were from Chapter 2 and 3.

To connect the ignorance statements to the biomedical concepts, the ignorance-base was

built upon the PheKnowLator knowledge graph (PheKnowLator_v3.0.2_full

_subclass_relationsOnly_OWLNETS_SUBCLASS_purified_NetworkxMultiDiGraph.gpickle),

which semantically integrated eleven OBOs [276, 277]. A gene list (our motivating example of

experimental results) was gathered from a PMCOA article (PMC6988958) [6]. We also used

DAVID [278], a tool for functional annotation and enrichment analyses of gene lists, as a standard

approach for gene list analyses to compare to our ignorance approach of ignorance enrichment.

Computation used a contemporary laptop (MacBook Pro 2019) and an NIH-funded shared

supercomputing resource [235] that included:

• 55 standard compute nodes with 64 hyperthreaded cores and 512GB of RAM

• 3 high-memory compute nodes with 48 cores and 1TB of RAM

• GPU nodes with Nvidia Tesla k40, Tesla k20, and Titan GPUs

• A high-speed Ethernet interconnect between 10 and 40 Gb/s
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We used both CPUs and GPUs to predict statements of ignorance and OBOs. Code for the

ignorance-base and exploration methods can be found at:

https://github.com/UCDenver-ccp/Ignorance-Base.

Creating the Ignorance-Base: Combining ignorance and biomedical concept classifiers

Table 4.2: Ignorance Taxonomy: definitions, knowledge goals, example cues, and total cue count. The

categories in bold were only narrow categories. Abbreviations are in italics. The ignorance-base was built

upon this ignorance taxonomy. (Duplicate of Table 3.2 for reference in this Chapter)

Ignorance

Category

Definition Knowledge Goal Example Cues Total

Cues

indication

of an-

swered

research

question

A statement of a goal or objective

of a study that is attempted or com-

pleted during the study.

to find the answer(s)

in the article; de-

termine if the ques-

tion(s) is (are) fully

answered in the arti-

cle

aim, goal, objec-

tive, our study,

sought, to deter-

mine

64

indication

of unknown

or novel

research

topic or

assertion

A statement that indicates some-

thing is not known (a lack of infor-

mation), or information is presented

for the first time (new or novel) and

a significant amount of research is

needed; not a statement about the

absence of something.

to explore the un-

known further to

gain any insights

could not

find, don’t

know, elusive,

not...established,

uncertain, still

unclear

155
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indication

of explicit

research

inquiry

An explicit statement of inquiry

(with a question mark or question

word such as how, where, what,

why).

to find answers to the

question and/or dis-

cover methodologies

that will help answer

the question

?, what, where,

wondered, why

19

indication

of proposed

or incom-

pletely

understood

research

topic or

assertion

A positive or negative statement

proposing a possible/feasible expla-

nation for a phenomenon on the ba-

sis of limited evidence as a start-

ing point for further investigation

OR a statement that information is

needed to support an assertion or

claim, including both positive and

negative statements. Either a state-

ment that some evidence already ex-

ists, explaining how current findings

support previous work, adding con-

fidence to a claim OR a statement

that information is limited, more re-

search is needed or is ongoing in-

cluding limitations – biases or short

comings related to the study design

and execution.

to gather more evi-

dence to support the

claim OR conduct

more research to de-

termine the validity

of the claim; com-

plete the partial pic-

ture; consider the

short comings and

biases for the next

experiment and how

it can be addressed.

a good un-

derstanding,

believe, evi-

dence...limited,

has been sug-

gested, hypoth-

esis, no studies,

possibly, pre-

liminary stage,

remains under

investigation, still

being discovered,

support, trend

797
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indication

of indefinite

relation-

ship among

research

variables

A statement about a connection,

link, or association between at least

2 variables; connectedness between

entities and/or interactions repre-

senting their relatedness or influ-

ence.

to confirm the con-

nection, link, or

association between

variables; determine

the full underlying

relationship between

variables

affect, associated,

correlate, factor,

influence, inter-

act, link, pattern,

tend

198

indication

of largely

understood

research

topic or

assertion

A statement staking a claim to the

most likely explanation, relation-

ship, or phenomenon; assumes that

there is a good chance this under-

standing is correct.

to determine if the

most likely option is

correct or if another

option is more feasi-

ble

almost all, as-

sumed, conclud-

ing, evident, it is

clear, most likely,

thus

202

indication

of anoma-

lous or

curious

research

finding

A statement of a surprising result,

conclusion, observation or situa-

tion; the researchers were not ex-

pecting the result, conclusion, ob-

servation or situation but are in-

trigued by it.

to explore the sur-

prising result, con-

clusion, or situation

more and determine

if the result, con-

clusion, observation,

or situation is repeat-

able

appeared to be,

interestingly,

noteworthy,

surprisingly

113
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indication

of alter-

native

research

options or

controversy

of research

Either an explicit statement of mul-

tiple (at least 2) choices, actions, ap-

proaches, or methods that need to be

experimentally determined, includ-

ing statements with an implied sec-

ond option, such as “whether”. This

includes a statement of disagree-

ment amongst researchers OR a lack

of consensus OR at least two pos-

sible answers presented as results

from different researchers - usually

in reference to previous results and

stated when results disagree with

each other OR contradictions.

to determine the cor-

rect option or a bet-

ter option and if

there are disagree-

ments, to determine

the truth to break any

disagreements

cannot rule out,

claims, has

been challenged,

whether, whilst

221

indication

of difficult

research

task

A statement of something not eas-

ily done, accomplished, compre-

hended, or solved; or a complicated

thing with a multitude of underly-

ing pieces or parts; heterogeneity;

excludes medical complications.

to create methods

to study the com-

plicated system and

to better understand

any piece of the

complicated system;

potentially requires

new experiments or

better techniques

not feasible, re-

mains...challenge,

variability, rarely

able to

98
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indication

of research

problem or

complica-

tion

A statement of issues, problems,

mistakes, or medical complications

that are cause for anxiety and/or

worry.

to determine the

gravity of the con-

cern and determine

if it needs to be dealt

with before the next

experiment or study

issue, error, in-

sufficient, lack of

reproducibility,

publication bias,

underestimated

98

indication

of future

research

work

Astatement of extensions, including

next steps, directions, opportunities,

approaches, or considerations of the

described work that may be imple-

mented at some future time point.

This also includes a statement of

suggestion or a proposal as to the

next best course of action, especially

one put forward by an authoritative

body; advice telling someone the

best action to take.

to determine the

next course of action

based on this future

work proposal

additional re-

search, are

needed, con-

tinue to explore,

further study,

more...studies,

recommend, war-

rants, worthy of

closer attention

258

indication

of future

research

prediction

A statement of extrapolation of

given data into the future and/or

from past observations, without ref-

erence to next steps.

to run the simulation

or experiment to de-

termine if the predic-

tion is correct; publi-

cize the outcomes of

the study to the cor-

rect people

allow, expect, if

so, serve as a ba-

sis, will

27
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indication

of im-

portant

consid-

eration

for future

research

work

A statement calling for attention

including an action needed to be

taken immediately or information

that needs to be disseminated im-

mediately OR critical: being in or

verging on a state of crisis or emer-

gency OR urgently needed OR ab-

solutely necessary.

to take the urgent ac-

tion ASAP or dis-

tribute the knowl-

edge ASAP

call for action,

cautious, crucial,

emphasis, global

problem, high on

the agenda, nec-

essary, relevant to

note, vital

263

The goal of the ignorance-base was to capture all ignorance statements and their

biomedical subjects or concepts for the prenatal nutrition literature. Thus, to create the

ignorance-base we combined the ignorance and biomedical concept classifiers (Chapter 3 and 2

respectively) over all 1,643 prenatal nutrition articles. The ignorance-base included all sentences

from all articles to capture all biomedical concepts for comparison of our ignorance approach

(only ignorance statements) to the standard approach (all articles). For ignorance classification,

we used the 91 gold standard corpus articles, and ran the best ignorance classifiers (Chapter 3),

the ensemble of 13 different binary classifiers, over the other 1,552 articles (see Table 4.2 for the

ignorance taxonomy). Similarly, we ran our state-of-the-art biomedical concept classifiers

(Chapter 2) over all 1,643 articles to automatically identify biomedical concepts represented in ten

OBOs. These ten OBOs were the same ones used to manually annotate the CRAFT Corpus [166,

170], a corpus of mouse articles (see Chapter 2 for more details):

1. Chemical Entities of Biological Interest (ChEBI)

2. Cell Ontology (CL)

3. Gene Ontology (GO):

a) Gene Ontology Biological Process (GO_BP)
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b) Gene Ontology Cellular Component (GO_CC)

c) Gene Ontology Molecular Function (GO_MF)

4. Molecular Process Ontology (MOP)

5. NCBI Taxonomy (NCBITaxon)

6. Protein Ontology (PR)

7. Sequence Ontology (SO)

8. Uber-anatomy Ontology (UBERON)

For each of these ontologies, two sets of concept annotations were created for CRAFT (and appear

in the public distribution): only proper classes of these OBOs and another adding in extension

classes to better integrate the OBOs (created by the semantic annotation lead but defined in terms

of proper OBO classes). We employed automatic concept recognition of our prenatal corpus with

both the core OBOs and with the corresponding extended OBOs (suffixed with “_EXT”). Note

that classification performance on the OBOs_EXT was lower in general compared to the OBOs,

especially for PR and PR_EXT, so caution should be taken in interpreting those results. We

focused on the proper OBO classes for this work, but have the data and results for both.

(PheKnowLator does not currently have the OBOs_EXT, but it is easily extendable.) We used the

best-performing models for each OBO (highest F1 score - harmonic mean between precision and

recall), with most F1 scores ranging from 0.7-0.98 with the exception of PR at 0.53 (see Table 5 in

Chapter 2). Note that even though all of the classifiers performed close to the state of the art for

both tasks, they were still automated, so we draw conclusions cautiously. Because of this, we

manually reviewed a random sampling of the identified biomedical concepts to check performance

(a few hundred of each). Combining ignorance and biomedical concept classifiers automatically

captured all ignorance statements and biomedical concepts for the 1,643 prenatal nutrition articles.

For clarification, the underlying data for the ignorance-base included sentences like the

example above and another example: “it has an important role in BONE HOMEOSTASIS,
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BRAIN DEVELOPMENT and MODULATION OF the IMMUNE SYSTEM and yet the impact

of ANTENATAL VITAMIN D deficiency on infant outcomes is poorly understood"

(PMC4072587). In terms of ignorance, the lexical cues important mapped to important

consideration, role and impact mapped to indefinite relationship, yet mapped to

anomalous/curious, and poorly understood to unknown/novel. For the biomedical concepts,

BONE HOMEOSTASIS mapped to GO:0060348 (bone development), BRAIN DEVELOPMENT

mapped to GO:0007420, BRAIN also mapped to UBERON: 0000955, MODULATION

OF...IMMUNE SYSTEM mapped to GO:0002682, IMMUNE SYSTEM also mapped to

UBERON:0002405, ANTENATAL mapped to GO:0007567, and VITAMIN D mapped to

ChEBI:27300. This was all identified by the classifiers. Note that we also identified biomedical

concepts in non-ignorance statements. The entailed knowledge goal was to explore the

relationship between prenatal vitamin D deficiency and infant outcomes through the important

role of vitamin D.

The power of the ignorance-base was in its exploration. Thus, in order to explore these

data, we created a network representation of the ignorance-base to connect all sentences from

these articles using both the ignorance lexical cues and biomedical concepts (see Figure 4.2). We

combined all the literature data to connect sentences that have the same ignorance lexical cues,

such as poorly understood, and then used PheKnowLator to combine all the sentences with the

same biomedical concepts, such as VITAMIN D. The semantic integration of PheKnowLator

allowed us to not only connect our sentences to the biomedical concepts, but also to each other;

these connections were used in exploration by experimental results. This network can be used to

search for all sentences that included the biomedical concept VITAMIN D, the lexical cue

poorly understood, sentences with the ignorance category unknown/novel, or any combination of

these features. Each sentence also related back to an article with its own metadata to be used for

summaries and visualizations. For example, the publication date was used to map how ignorance

categories change over time for a topic. Note that all sentences in all articles were included
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whether or not they contained ignorance statements, allowing for the ignorance enrichment

comparison to the background information.

Ignorance-Base

canonical 
ignorance 
category

canonical 
ignorance 
category

non-canonical 
ignorance 
category

non-canonical 
ignorance 
category

Article Article Article

Sentence SentenceSentence

Lexical cueLexical cueLexical cue

Annotated lexical cue Annotated lexical cue Annotated lexical cue

Ignorance category Ignorance category

ALL ARTICLES

Broad ignorance category Broad ignorance category

IGNORANCE 
TAXONOMY

Ignorance category

Sequence Ontology

Protein 
Ontology

Cell 
Ontology

Gene 
Ontology

Uber-Anatomy 
Ontology

Chemical Entities of 
Biological Interest Ontology

NCBI Organismal Classification 
Ontology

Molecular Process Ontology

Literature: PubMed
Biomedical Concept Recognition

Ignorance Theory

Ignorance 
Classifiers

Genomic

Figure 4.2: Network representation of the ignorance-base: The top right corner is the literature connecting
the articles via tokenized sentences (in blue) to the ignorance taxonomy (in yellow) through the ignorance
classifiers (the annotated lexical cues). Note that in order to capture lexical cues that map to the non-canonical
ignorance category, we mapped the annotated lexical cue both to the canonical ignorance category and to the
non-canonical one. The sentences also connect to the biomedical concepts on the left with PheKnowLator
[276, 277] using the biomedical concept classifiers with the ontologies of interest in bold and larger font. Note
that PheKnowLator [276, 277] does not include the Molecular Process Ontology or the NCBI Organismal
Classification Ontology, which is why they are at the top not integrated with the rest.

Ignorance-Base: Exploration by topic

The goal of exploration by topic was to find biomedical concepts or keywords (areas of

research) with lots of ignorance statements (questions) that are ripe for future research. To

determine if the ignorance approach could do this, we compared the standard approach of finding

biomedical concepts or keywords to our ignorance approach. Our motivating example is to help

researchers find the most pertinent questions and topics in vitamin D to study in future research.

An input topic consisted of a list of ontology concepts in PheKnowLator [276, 277]. In

consultation with a prenatal nutrition specialist (T.L.H.), we mapped the topic of vitamin D to four
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OBO concepts narrowed from 38 exact matches (280 partial matches): VITAMIN D

(ChEBI:27300), D3 VITAMINS (ChEBI:73558), CALCIOL/VITAMIN D3 (ChEBI:28940), and

VITAMIN D2 (ChEBI:28934). Note that going forward, when we refer to vitamin D, we mean all

four search terms. For the standard approach, we gathered all sentences from the ignorance-base

that included terms from this vitamin D OBO concept list. For the ignorance approach, we filtered

these vitamin D sentences for only those that included an ignorance lexical cue. We analyzed the

data to find areas of research to explore.

Our goal was to determine if the ignorance approach provided an alternative targeted

exploration of a topic that was distinct from an unfiltered or standard approach to help researches

find the most pertinent questions. Thus, we conducted two analyses for both approaches and

compared them: (1) an analysis of the most frequent concepts in the subset of sentences not

including vitamin D itself (most frequent) and (2) an analysis of concepts enriched in the subset of

sentences as opposed to the background sentences in our ignorance-base, again not including

vitamin D itself (concept or ignorance enrichment). We present both biomedical concept clouds

and word clouds along with frequency tables to explore the most frequent terms. For enrichment,

we used the hypergeometric test for over-representation with both Bonferroni (family-wise error

rate) and Benjamini-Hochberg (false discovery rate) multiple testing corrections [28, 279]. In

comparing the approaches (see Figure 4.3), if a concept was more frequent or enriched in the

standard approach but not in ignorance, then it probably was established information. If a concept

appeared in both approaches, then it may be currently studied. If a concept only appeared in the

ignorance approach then it may be an emerging topic. Note that concepts that were not frequent

nor enriched in either approach were not interesting to us. To find pertinent questions, the goal

was to find concepts or keywords that were currently studied or emerging topics.

To also help the researcher understand the general ignorance landscape and narrow in on

types of question to ask, we showed the types of questions asked (ignorance-category enrichment)

and how they change over time for the ignorance approach. For the types of questions asked, we

compared the percentage of each ignorance category between vitamin D ignorance statements and
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all ignorance statements (a bar chart). Further, we determined which ignorance categories were

enriched in vitamin D ignorance statements compared to all ignorance statements. To show how

ignorance statements changed over time, we bubble plotted the ignorance categories per article

over time, with the bubble size representing the percentage of sentences in an article scaled by the

total number of sentences of that category. Using these methods, the researchers continued to

deep dive into ignorance statements that included the topic, enriched concepts, and enriched

ignorance categories to find knowledge goals to pursue for future research. In order to determine

if we found truly novel avenues to explore using our ignorance approach, we consulted both our

prenatal nutrition specialist, T.L.H., and PubMed to determine the state of the research.

Emerging 
Topics

Currently 
Studied

Not 
Significant

Established 
Information

Ignorance Enrichment

Standard 
Enrichment

Significant

Not Significant

SignificantNot Significant

Figure 4.3: Ignorance vs. Standard Approach Results Chart: The interpretation of the results comparing
the ignorance approach to the standard approach.

Ignorance-Base: Exploration by experimental results

Connecting experimental results such as a gene list to ignorance statements can identify

questions that may bear on the results, providing new avenues for exploration, potentially from
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other fields. The goal was to find biomedical concepts (areas of research) that ideally imply

another field, with lots of ignorance statements (questions) that are ripe for future research, similar

to exploration by topic. Thus, exploration by experimental results used the same methods as

exploration by topic with some added pre-processing steps and analyses based on the relationship

between the inputs. The input topic was still an OBO concept list, but the extra pre-processing

step was connecting the experimental results to OBO concepts in PheKnowLator [276, 277]. In

general, as long as the experimental results can be mapped to OBO concepts in and through

PheKnowLator, we can connect them to the ignorance-base. Querying the ignorance-base with

this input topic (gene list from [6]) provided lots of ignorance statements for exploration. We

analyzed the data to provide the researchers with the ignorance context for the experimental

results.

Using our motivating example, we mapped the vitamin D and sPTB gene list (Entrez

genes) [6] to the genomic part of the sequence ontology (SO) and the corresponding proteins in

the protein ontology (PR). This initialized the list of ontology terms to use for our search. To add

more terms, we utilized the relations ontology (RO) that connected the different ontologies

together in PheKnowLator. For example, the relation “interacts with" (RO:0002434) connected

proteins or genes to chemicals (ChEBI). This yielded a large list of ontology terms; we then found

all the sentences that contained these terms (gene list sentences - our sentences of interest). Note

that not all OBO concepts connected to a sentence because our articles did not have examples of

every concept. From here we performed all of the same analyses as we did for exploration by

topic, including finding articles, sentences, ignorance categories, and concepts to investigate.

Further, we added three more analyses: (1) gene list coverage (prioritizing the OBO concepts that

connect to the most genes), (2) comparisons to other enrichment analyses such as DAVID, and (3)

comparisons to any other findings about the gene list such as findings from a paper. (See

figure 4.4 for the exploration by experimental results pipeline.) Our goal was to find emerging

topics or concepts in relation to the gene list as new avenues for exploration.
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Experimental Results
Gene List
43 genes

Biomedical Concepts
Connect genes to 
sequence and protein 
ontologies through 
PhenKnowLator
Connect to all other 
ontologies (chemicals, 
anatomy, cells, gene 
information) through 
relations ontology

782 OBOS

Sentences
Sentences/Articles with 
biomedical concepts 
related to gene list
1,590 Articles = 51,868 
sentences with 17,586 
OBOs

Ignorance Sentences
Ignorance 
sentences/Articles with 
biomedical concepts 
related to gene list
1,537 Articles = 33,885 
sentences with 11,711 
OBOs

Exploration
Ignorance categories 
(bubble plot)

Other frequent 
biomedical concepts 
(concept/word clouds)

Other enriched 
biomedical concepts
Gene list Coverage

Other enrichment 
analyses

Compare to paper

Figure 4.4: Exploration by experimental results (gene list) pipeline: The results are in yellow highlights for
the example presented here. For exploration at the end of the pipeline, the three not highlighted are the same
as exploration by topic and the three highlighted are the new additions based on a gene list.

Gene list coverage helped prioritize which OBO concepts highly related to the gene list.

As we mapped the gene list to the OBO concepts, some OBO concepts had many genes map to

them, implying that these OBO concepts were potentially more relevant to the gene list than

concepts with fewer genes mapping to them. Thus, we sorted the OBO concept list by these high

coverage OBO concepts and looked to see if those were enriched in all of the gene list sentences

and/or in the gene list ignorance sentences. Of interest were currently studied and emerging topics

concepts in comparing the ignorance approach to the standard approach (see Figure 4.3). This

provided a smaller and more refined list to start exploring.

Canonical enrichment methods also helped prioritize OBO concepts. We compared our

ignorance enrichment method to them, allowing us to both enhance the canonical methods and

find new lines of investigation. From tools such as DAVID [278], we got a list of enriched OBOs

(GO concepts) by using the gene list and functional annotations from their entailed

knowledge-bases. We then found and examined any ignorance statements that contained the
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concepts linked by DAVID. Our ignorance approach also provided a list of OBO concepts

enriched in ignorance statements. Thus, we compared and examined these two lists to add the

ignorance layer to the classic enrichment analysis in order to find new concepts that may be

currently unknown to the functional annotation knowledge-bases, i.e., potentially emerging topics

related to the gene list. These concepts could be new avenues for exploration for both the

functional annotation tool and for the researchers of the original gene list.

Lastly, given that our gene list came from a paper, we compared our ignorance-approach

findings to the paper findings. We identified questions that may bear on it, providing new avenues

for exploration from other fields. Thus we determined if the paper had similar findings or if we

uncovered something new. Yadama et. al. [6] focused on the immune system as their main

findings, and we looked for a new path for the researchers to explore based on concepts and

knowledge goal statements that were not mentioned or cited in the article. We further consulted

our prenatal nutrition expert (T.L.H.) and the literature to corroborate any findings. Our results

explore these three added analyses.

Results

The Ignorance-Base: The power of combining ignorance and biomedical concept classifiers

The ignorance-base captured the connection between our collective scientific ignorance

(ignorance taxonomy) and knowledge (PheKnowLator) through sentences from the literature. It

contained a wealth of data (see Figure 4.5) ripe for exploration via the network (see Figure 4.2).

The short manual review of some random sentences from the ignorance-base suggested that both

the ignorance and biomedical concept classifiers generally correctly identified concepts (data not

shown). The power of combining these two types of classifiers was in the exploration methods.

However, to provide a base understanding of the ignorance-base, we present some summary

statistics.

Our results suggest that ignorance statements proliferated throughout the ignorance-base.

The 1,643 articles, spanning years 1939 to 2018 (see Figure 4.6), contained 327,724 sentences

with over 11 million words. Just over half of those sentences had an ignorance lexical cue



150

Ignorance-
Base

(knowledge
-goal-base)

Biomedical Concept Recognition
(all automatic)

Literature: PMCOA 
(1,643 prenatal nutrition articles)

Ignorance Theory

Ignorance Classifiers (91 gold 
standard, 1,552 automatic)

+ =

Nodes 857,766 780,753 1,638,519

Edges 1,815,645 5,072,064 6,887,709

Ontology mapping: 
720,313 OBO concepts 

95.3% mapped

Biomedical Concepts

PheKnowLator: Dr. Tiffany CallahanFigure 4.5: Summary information for the ignorance-base. The ignorance-basewas a combination of biomed-
ical concept classifiers and ignorance classifiers over a corpus of prenatal nutrition articles. The network
representation connected the literature to the ignorance theory and biomedical concepts via PhenKnowLator
[276, 277]. Note that 95.3% of the ontology annotations mapped to PheKnowLator.

(182,892), with articles averaging a total of 111 cues (with a median of 93). Every section of the

articles had ignorance cues aside from the titles, with the most in the discussion and conclusion

sections and the fewest in the abstract and results. These results agreed with our findings in

Chapter 3 based on our smaller ignorance corpus. Our collective scientific ignorance was

represented throughout the literature and was ripe for exploration.
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Figure 4.6: Article date distribution for the ignorance-base (1939-2018).

Further, our ignorance taxonomy was not only a categorization system of ignorance

statements via knowledge goals, but also a depiction of the research life-cycle and how researchers

discuss our collective scientific ignorance (see Figure 4.7 with proper definitions and example
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lexical cues in Table 4.2). This can help researchers, including students, understand the research

process and how it is discussed in the literature. Underneath the 13 categories of ignorance (with

3 broader ones in all caps in Figure 4.7) were 2,513 unique lexical cues both from related work

and collected by our annotation tasks (see Chapter 3). 1,822 of them had examples in our

ignorance-base. Further, the ignorance classifiers found 5,637 new unique lexical cues that

signified ignorance, which were added to the ignorance-base and noted as such. Many of them

were variations of the ones already captured and others were new, such as “not as yet",

“interplay", and “have begun to illuminate". Our ignorance classifiers recognized more complex

language than just a dictionary match, potentially hinting at generalizability. Overall, there were

517,445 ignorance annotations involving 7,459 unique lexical cues; this reinforced the diversity of

ways that ignorance was expressed in the literature (agreeing with our results in Chapter 3). The

ignorance taxonomy can help researchers understand the research life-cycle and how it is

discussed in the literature.

Our ignorance-base also contained a wealth of different types of biomedical concepts,

meaning our ignorance-base captured all different types of biomedical subjects ready to be

explored in future work. Our biomedical concept classifiers (Chapter 2) identified 720,313

concepts involving 19,883 unique concepts from all of the ontologies and almost all of them

(95.3%) mapped to PheKnowLator [276, 277] (see Figure 4.5). Note that we can only represent

the biomedical concepts in PheKnowLator that were also captured by our biomedical concept

classifiers. This overlap included six of our eight ontologies (missing MOP and NCBITaxon) or

six of the eleven PheKnowLator ones (missing the human phenotype ontology, MONDO disease

ontology, vaccine ontology, pathway ontology, and cell line ontology). In terms of errors, there

were 850 predicted unique OBO concepts with non-existent OBO identifiers as our biomedical

concept classifiers predicted identifiers character by character which allows for more errors (see

Chapter 2 for more details). The other 1,432 unique OBO concepts that did not map seem to

either be from the two ontologies not included in PheKnowLator (MOP and NCBITaxon) or were

terms no longer used/depreciated from the ontologies. Even still, the ignorance-base captured a
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Answered Research 
Question

EPISTEMIC INDICATION OF 
RESEARCH TOPIC, 

ASSERTION OR VARIABLES

• Unknown or novel 
research topic/assertion

• Explicit research inquiry
• Proposed/incompletely 

understood research topic 
or assertion

• Indefinite relationship 
among research variables

• Largely understood 
research topic/assertion

Anomalous/curious research 
finding

INDICATION OF BARRIER TO 
RESEARCH

• Alternative research 
options/controversy of 
research

• Difficult research task
• Research 

problem/complication

FUTURE RESEARCH ACTIVITY

• Future research work
• Future research prediction
• Important consideration 

for future research work

Known Unknowns/ Ignorance

Knowns/Answers/Facts/Not Ignorance

Knowledge 
Goals

Find the answer in 
the article to confirm 
fully answered

Find more evidence 
based on confidence (in 
increasing order)

Explore the result and 
determine if repeatable

Explore new avenues to 
overcome the barrier

Consider the future 
information

Research

Figure 4.7: Ignorance taxonomy embedded in the research context: Starting from the top, research starts
from known unknowns or ignorance. Our ignorance taxonomy is in green (an ignorance statement is an
indication of each ignorance category) with knowledge goals underneath. Research is then conducted based
on the knowledge goals to get answers; these then filter back to the known unknowns to identify the next
research questions.

variety of biomedical concepts ready to be explored. Overall, the ignorance-base contained a

great deal of data consisting of all different types of OBO concepts, ignorance categories, and

lexical cues ready to be explored by topic or by experimental results.

Focusing on ignorance statements provided an alternative targeted exploration of a topic

that was distinct from an unfiltered or standard approach

Focusing on ignorance statements provided the researcher with new avenues of exploration

with specific ignorance statements to pursue (see Figure 4.8). We present results for both the

ignorance approach (vitamin D ignorance statements), the standard approach (all vitamin D

sentences), and a comparison of the two.

There was a great deal of research on vitamin D and more specifically a plethora of

ignorance statements. Searching through the ignorance-base for the four vitamin D terms yielded

521 articles with 10,841 sentences mentioning vitamin D (9% of the 118,419 sentences in the 521
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Ignorance-Base

(1,643 articles)

Vitamin D Articles 

(521 – 32%)

Vitamin D Sentences 

(10,841 - 9%)

Ignorance Sentences 

(8,688 – 80%) - 472 articles

Immune System Sentences 

(255 – 3%) - 84 articles

Brain Development Sentences 

(53 – 0.6%) - 32 articles

Not Ignorance Sentences 

(2,153 – 20%) – 360 articles

Not Vitamin D Sentences 

(107,578 - 91%)

Not Vitamin D Articles 

(1,122 – 68%)

Figure 4.8: Exploring the ignorance-base by vitamin D: Searching the ignorance-base for vitamin D yielded
many articles and sentences that can be explored using ignorance statements to find new research areas with
lots of questions, including the IMMUNE SYSTEM and BRAIN DEVELOPMENT.

articles and 3% of all the sentences in the ignorance-base) (see Figure 4.8). Note that only the

terms VITAMIN D and VITAMIN D2 pulled out sentences from the ignorance-base. These

sentences included 17,584 unique biomedical concepts excluding the VITAMIN D concepts (88%

of the total unique biomedical concepts). Of those VITAMIN D sentences, 8,688 sentences (80%)

were ignorance statements spanning 472 articles. We explored the data to differentiate between

knowns and unknowns to provide the researcher with biomedical concepts and corresponding

ignorance statements for possible questions and topics for future work.

Focusing on term frequency provided some concepts of interest. The top five most

frequent biomedical concepts for the ignorance approach included: FEMALE PREGNANCY,

PARTURITION (giving birth), VERSICONOL ACETATE, BLOOD SERUM, and FEEDING

BEHAVIOR (see Figure 4.9a). The first two aligned with the corpus theme of prenatal nutrition.

VERSICONOL ACETATE is an intermediate in the biosynthesis of aflatoxin, which is a toxin

produced by mold that may be toxic towards the vitamin D receptor in relation to rickets [280].
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Vitamin D levels are mainly measured from the BLOOD SERUM, and FEEDING BEHAVIOR

seems to highlight the importance of ingesting vitamin D. For the words, the most frequent terms

were supplementation, maternal, status, levels, and women, and they also fit with the theme:

supplements are suggested for many people, maternal and women fit with the corpus theme, and

status and levels are measurement terms for vitamin D. None of these terms were surprising,

which was a good sign that we captured meaningful information.

Term frequency can help prioritize areas to explore in relation to the input topic. Taking

one of these terms or concepts provided avenues for the researchers to explore. For example,

FEEDING BEHAVIOR (GO:0007631), defined as the behavior associated with the intake of food,

was an interesting concept in relation to vitamin D. Vitamin D is naturally absorbed through

sunlight and digestion. In searching for “vitamin D" and “feeding behavior" in the literature, we

found that vitamin intake during pregnancy in general seems to affect both the metabolic system

and food intake regulatory pathways in the offspring [281]. Therefore, frequent concepts that

appear with a topic can provide keyword search terms for the researcher.

Further, frequent concepts can lead to some pertinent questions for the researchers. If the

researchers chose FEEDING BEHAVIOR and VITAMIN D, they could look to the ignorance

statements for research ideas. Most of these ignorance statements discussed the ingestion of

vitamin D mainly via supplements, but also with some foods. The recommendations for ingestion

all varied by study, agreeing with the findings from a systematic review [282]. One ignorance

statement stood out specifically, “the high prevalence of Vitamin D deficiency in PREGNANT

women is a worldwide health problem regardless of latitude, FOOD INTAKE or socio-economic

status [93]" (PMC5941617) [283], citing a systematic review and meta-analysis that looked at

vitamin D status globally [284]. All of these studies recommended vitamin D supplementation,

but we could not find any studies that determine why supplementation is so low. How do

supplements, specifically for vitamin D, fit into feeding behavior? A potential research topic could

be to study what specific factors, beyond general socio-cultural factors, lead to women taking

vitamin D supplements as part of their diet, especially for pregnancy. Studying this topic could
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lead to novel methods that help mothers stay vitamin D sufficient throughout pregnancy, resulting

in far less adverse outcomes for the offspring (see Figure 4.1). Thus, biomedical concept

frequency can lead to a high impact research topic that could affect mothers everywhere.

Term frequency can also highlight terms that were more known vs. unknown. Comparing

the ignorance-approach to the standard approach, the most frequent concepts in the standard

approach were the same as the ignorance approach (see Figure 4.9b). This suggests that term

frequency may not capture the difference in biomedical subjects between the two approaches.

However, the top five words slightly differed between them: the word “deficiency" was the top

most frequent term in the standard approach and the term “women" disappeared (see Figure 4.9).

This may signify that vitamin D deficiency was established information, resulting in a lack of

ignorance. At the same time, all these terms may be more unknown than known. Recall that 80%

of the vitamin D sentences were ignorance statements, so it was possible that much of the context

around VITAMIN D was still unknown in general. The ignorance frequency term list not only

provided an avenue for exploration, FEEDING BEHAVIOR, with a potential research topic, but in

addition may help distinguish between knowns and known unknowns, such as the word

“deficiency".

To further distinguish between knowns and known unknowns, ignorance enrichment found

at least three interesting new avenues to explore in relation to vitamin D that were captured by the

standard approach, but buried amongst 275 concepts, and one avenue not captured by the standard

approach at all. The ignorance approach found 11 ignorance enriched concepts, whereas the

standard approach found 275, with an overlap of eight concepts (see Figure 4.10). Only focusing

on the overlapping concepts, in the standard approach most of them were buried far down the list

of enriched concepts ordered by enrichment p-value (indicated by the parentheses next to the

overlapped concepts in Figure 4.10). Further, in comparing the two different approaches, the

ignorance approach found concepts that were more systems or broad categories, including

IMMUNE SYSTEM and BRAIN DEVELOPMENT, compared to the standard approach which

were more specific entities, such as BLOOD SERUM and VITAMIN K. Ignorance enrichment
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OBO Concept Cloud for Vitamin D 
Ignorance Statements

Word Cloud for Vitamin D Ignorance 
Statements

OBO ID OBO ID Label Frequency
go_0007565 female pregnancy 100.00%

go_0007567 parturition 36.06%

chebi_71657 versiconol acetate 29.21%

uberon_0001977 blood serum 22.45%

go_0007631 feeding behavior 14.73%

Word Frequency
supplementation 14.34%

maternal 13.75%

status 13.31%

levels 12.36%

women 10.98%

(a) Vitamin D ignorance statements
OBO Concept Cloud for Vitamin D Word Cloud for Vitamin D

OBO ID OBO ID Label Frequency
go_0007565 female pregnancy 100.00%

go_0007567 parturition 37.17%

chebi_71657 versiconol acetate 29.50%

uberon_0001977 blood serum 23.73%

go_0007631 feeding behavior 16.38%

Word Frequency
deficiency 13.79%

supplementation 13.48%

maternal 13.39%

status 12.25%

levels 11.78%

(b) Vitamin D sentences

Figure 4.9: Term frequency results: Frequent Biomedical Concepts and Words in (a) vitamin D ignorance
statements and (b) vitamin D sentences. Word clouds using biomedical concepts and words are on the left
and right respectively. Also underneath are frequency tables of the top 5 most frequent concepts or words.
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provided the researchers with a smaller list of targeted statements of knowledge goals to

potentially pursue or spark ideas from.

IGNORANCE 
VS. VITAMIN 

D SENTENCES 
ENRICHMENT

VITAMIN D 
VS ALL 

SENTENCES 
ENRICHMENT

8

3 267

4.   Gene
10. Insulin family protein*
11. Allele*

1. Blood serum
2. Versiconol acetate
3. Vitamin K

Enriched for both (overlap):
1. Immune system (21)
2. Female pregnancy (5)
3. Life cycle (57)
5. Skeleton of manus (autoimmune) (58)
6. Adult organism* (104)
7. Respiratory system* (32)
8. Brain development* (93)
9. Biological regulation* (195)

Figure 4.10: Comparison of standard and ignorance enrichment: A Venn diagram of biomedical concept
enrichment between ignorance vitaminD (green) and just vitaminD (pink) sentences. Next to each bubble are
concepts in their respective enrichment orders. The concepts in the middle are the overlap and the numbers
correspond to the enrichment position for the ignorance vitamin D enrichment, with the standard enrichment
position in parentheses. SKELETON OF MANUS is an error and is actually annotating autoimmune as in
the parentheses. *Statistically significant with FDR but not family-wise error.

Focusing on the ignorance-enriched concepts also provided research topic ideas. T.L.H.

and I determined that IMMUNE SYSTEM, RESPIRATORY SYSTEM, and BRAIN

DEVELOPMENT (captured by the standard approach) were all interesting in relation to vitamin

D. They were all currently studied concepts with more room for future work. We also found the

insulin family protein (not captured by the standard approach) intriguing because many studies

have attempted to determine the link between vitamin D and gestational diabetes mellitus [285].

Any of these concepts can be explored more thoroughly to find a research topic.

We explored the specific ignorance statements for the concepts of interest to narrow in on a

research topic, just as with FEEDING BEHAVIOR. We chose to look at the IMMUNE SYSTEM

ignorance statements, which provided the researcher with 255 ignorance statements with their

entailed knowledge goals, spanning 84 articles (see Table 4.3 for the top eight articles with the
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most ignorance statements). Note that only one article had no ignorance statements that included

VITAMIN D or IMMUNE SYSTEM. Thus, only using the ignorance statements themselves, we

have already found a set of articles and sentences for the researchers to review for a potential

research topic.

Table 4.3: Articles with the most ignorance statements: The top eight articles for vitamin D and immune
system in order of the most ignorance statements.

PMCID Article Title Date # of ignorance
statements

# of non-ignorance
statements

PMC4448820 Inflammation and Nutritional Sci-
ence for Programs/Policies and In-
terpretation of Research Evidence
(INSPIRE)

5/15 22 0

PMC4251419 Vitamin D and immunity 12/14 17 0
PMC3717170 Vitamin D: beyond bone 5/13 13 1
PMC3277098 VitaminDand allergic disease: sun-

light at the end of the tunnel?
12/11 13 0

PMC4889866 Maternal Vitamin D Level Is Asso-
ciated with Viral Toll-Like Receptor
Triggered IL-10 Response but Not
the Risk of Infectious Diseases in
Infancy

5/16 11 0

PMC3347028 Vitamin D and its role during preg-
nancy in attaining optimal health of
mother and fetus

3/12 10 0

PMC5489519 Vitamin D Modulation of TRAIL
Expression in Human Milk and
Mammary Epithelial Cells

6/17 8 0

PMC4302429 Vitamin D deficiency decreases
survival of bacterial meningoen-
cephalitis in mice

1/15 8 1

Choosing the IMMUNE SYSTEM was still quite a large topic with lots of ignorance

statements and so we continued to narrow our search using ignorance-category enrichment.

Understanding and tracing ignorance categories over time can both help the researchers narrow in

on a research topic and show how the questions in a field were asked more broadly. VITAMIN D

ignorance statements in general employed a wide-range of different ignorance categories (see

Figure 4.11), spanning all the thirteen categories of ignorance with ten enriched in VITAMIN D
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ignorance statements as compared to all ignorance statements (see the green highlights in

Figure 4.11). For example, unknown/novel was enriched in this domain, pointing to large

unknowns about the context of VITAMIN D in pregnancy and fetal development. To also

understand how these questions changed over time, looking at the bubble plot for IMMUNE

SYSTEM and VITAMIN D ignorance statements (see Figure 4.12) showed that unknown/novel

was spread out amongst the different articles. This suggests that researchers have continued to

discuss their full unknowns over time and it may be a good knowledge goal area for a research

topic. Thus, the researchers can continue to narrow in on a research topic not only with a

biomedical concept, such as IMMUNE SYSTEM, but also with an ignorance category, such as

unknown/novel.

We chose to dive deeper into the unknown/novel category for VITAMIN D and IMMUNE

SYSTEM, with the goal of finding the researchers the most pertinent questions as an example of

exploration by topic. There were many unknown/novel ignorance sentences ripe for exploration.

Below were some ignorance sentences (lowercase) from this set with the biomedical concepts

capitalized and the ignorance lexical cues underlined:

1. “in the last five years, there has been an explosion of published data concerning the

IMMUNE effects of VITAMIN D, yet little is known in this regard about the specific

IMMUNE effects of VITAMIN D during PREGNANCY.” (PMC3347028)

2. “these results describe novel mechanisms and new concepts with regard to VITAMIN D and

the IMMUNE SYSTEM and suggest therapeutic targets for the CONTROL of

AUTOIMMUNE diseases.” (PMC3717170)

3. “however, findings regarding the combined effects of PRENATAL and POSTNATAL

VITAMIN D status on fs [food sensitization], two of the most critical periods for IMMUNE

SYSTEM DEVELOPMENT (19,20), are unclear.” (PMC3773018)
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4. “it has an important role in BONE HOMEOSTASIS, BRAIN DEVELOPMENT and

MODULATION OF the IMMUNE SYSTEM and yet the impact of ANTENATAL

VITAMIN D deficiency on infant outcomes is poorly understood.” (PMC4072587)

5. “background: VITAMIN D is known to affect IMMUNE function; however it is uncertain if

VITAMIN D can alter the IMMUNE RESPONSE towards the persistent herpesviruses,

EBV and CMV.” (PMC4113768)

(Note that not all biomedical concepts were recognized by the biomedical concept classifiers.)

The overall research topic or knowledge goal based on these statements was the need to explore

the relationship between VITAMIN D and the IMMUNE SYSTEM especially in pregnancy. The

same methods can be used for the other top enriched concepts including BRAIN

DEVELOPMENT (data not shown). For BRAIN DEVELOPMENT, the overarching knowledge

goal was the need to determine if VITAMIN D and BRAIN DEVELOPMENT were truly linked.

Thus, from querying the ignorance-base for the topic VITAMIN D, the researchers now have

research topic ideas based on ignorance statements and knowledge goals connecting VITAMIN D

to the IMMUNE SYSTEM and BRAIN DEVELOPMENT (see Figure 4.8). The next step would

be for the researcher to conduct research based on these ideas and publish papers with both some

answers and some ignorance statements, continuing the cycle of research. Our exploration by

topic methods provided multiple starting points for this research.

Connecting experimental results (a gene list) to ignorance statements can identify questions

that may bear on it, providing new avenues for exploration, potentially from other fields

Similar to exploration by topic, exploration by experimental results provided the ignorance

context for a gene list as possible future work for the researchers. Connecting a vitamin D and

sPTB gene list from a paper [6] to ignorance statements found a new avenue for exploration,

BRAIN DEVELOPMENT, that was not mentioned in the paper, and its implied field,

neuroscience, could possibly help find answers. Following the exploration by experimental results

pipeline (see Figure 4.4), the 43 genes mapped to 782 OBO concepts. These OBOs connected to

51,868 sentences (1,590 articles), gene list sentences, that included 17,586 unique OBO concepts
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Figure 4.11: Ignorance-category enrichment: Ignorance vitamin D sentences compared to all ignorance
sentences. The 10 categories highlighted in green were enriched for vitamin D ignorance statements
compared to all ignorance statements.

(88% of the total unique OBO concepts), of which, 33,885 sentences (1,537 articles) were

ignorance statements with 11,711 unique OBO concepts (59% of the total unique OBO concepts).

This suggests that the majority of the gene list sentences were ignorance statements (65%). These

data can be explored by topic using the OBO list similar to above, but we chose to instead focus on

the three new analyses. The three new analyses were helpful to digest both the many OBO

concepts and the many statements of ignorance connected to the gene list to provide areas of

research to explore in future work.
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Figure 4.12: How ignorance changes over time: A bubble plot of vitamin D and immune system sentences
(including non-ignorance sentences). The x-axis is the articles sorted by time. The y-axis is the ignorance
categories. Each bubble represents the portion of sentences in each article in that ignorance category (scaled
by the amount of total ignorance sentences in the category). For example, future prediction only appeared in
two different articles and was basically split in half between both.

With the gene list connected to so many concepts (782), combining gene list coverage and

ignorance enrichment helped prioritize concepts to explore (see Table 4.4). The highest covered

OBO concept was PROTEIN CODING GENE (SO:0001217). In the top 25 most covered OBO

concepts, all concepts were established information, currently studied, or not significant (see

Figure 4.3). (None were emerging topics.) Note that some had no information from the

literature-side, meaning no conclusions could be drawn based on the current information. In fact,

all 18 concepts enriched in ignorance, were also enriched in all gene list sentences, including:

PROTEIN CODING GENE, INNATE IMMUNE RESPONSE, GENE, IMMUNE RESPONSE,

and BRAIN in the top 25. Note that there were some IMMUNE SYSTEM and BRAIN related

concepts. These concepts were ripe for exploration in relation to the gene list to find knowledge

goals that may bear on them.

Combining other canonical enrichment methods with ignorance enrichment also helped

prioritize the many OBO concepts produced by our gene list (see Figure 4.13 focusing only on the
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Table 4.4: Gene list coverage enrichment information: The top 25 OBO concepts sorted by the highest gene
list coverage with enrichment information for all gene list sentences and for ignorance. NO INFORMATION
means that the ontology term existed in PheKnowLator and was connected to our gene list, but there were
no sentences that contained it on the literature side. *Statistically significant with FDR but not family-wise
error.

OBO ID OBO label Gene Cov-
erage

Enriched in all gene list
sentences

Enriched in Ignorance

SO:0001217 protein coding gene 37 YES* YES
GO:0005515 response to virus 23 NO INFORMATION NO INFORMATION
CL:0000094 granulocyte 19 YES NO
GO:0005886 plasma membrane 18 YES NO

UBERON:0000178 blood 17 YES NO
UBERON:0002371 bone marrow 15 YES NO

CL:0000576 monocyte 14 YES NO
GO:0005576 extracellular region 14 YES NO
GO:0005615 extracellular space 13 YES NO
CL:0000775 neutrophil 13 YES NO
CHEBI:2504 aflatoxin B1 12 YES NO
CHEBI:39867 kidney 11 NO INFORMATION NO INFORMATION
GO:0045087 innate immune response 11 YES YES*
GO:0070062 extracellular exosome 11 YES NO
GO:0016021 bone marrow 10 NO INFORMATION NO INFORMATION
SO:0000704 gene 9 YES YES
GO:0005829 cytosol 9 YES NO
CL:1001608 foreskin fibroblast 7 NO NO

UBERON:0001332 prepuce of penis 7 YES* NO
GO:0005737 cytoplasm 7 YES NO
GO:0006955 immune response 7 YES YES
CL:0000765 erythroblast 7 NO NO

UBERON:0000955 brain 6 YES YES
GO:0035580 lead(0) 6 NO INFORMATION NO INFORMATION
CL:0000771 eosinophil 6 YES NO

gene ontology). DAVID [278] found 42 of the 43 genes and mapped them to 159 GO concepts. 51

of those were enriched and 30 were contained in sentences found in the ignorance-base. Of those

30, 19 were contained in gene list statements and 11 had no information. Of those 19, 17 had at

least one ignorance statement, and the concepts were mainly related to the immune system. (Two

concepts, RESPONSE TO STRESS (GO:0006950) and MULTI-ORGANISM PROCESS

(GO:0051704) had no ignorance statements.) The ignorance statements for the 17 concepts can be
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explored to provide more information to the canonical enrichment methods and their respective

knowledge-bases.

51 GO Concepts 
Enriched from DAVID

Not IdentifiedIdentified

Gene List 
Statements

30 21

19

No Information

11

Ignorance 
Statements

Not Ignorance 
Statements only

17 2

Figure 4.13: Enhancing canonical enrichment analysis using the ignorance-base: DAVID enrichment
analysis for the gene ontology (GO) in relation to the ignorance-base. The DAVID initial analysis is on the
left with 42 of the 43 genes found in DAVID mapping to 159 GO concepts. The right is a breakdown of
where the 51 enriched GO concepts from DAVID fall within the ignorance-base.

To continue to add our ignorance lens to canonical methods, we compared our ignorance

approach to the canonical approach. When comparing ignorance enrichment to DAVID, we found

more ignorance in general compared to established information. 3,173 GO concepts were

enriched in ignorance with 159 in DAVID (see Figure 4.14). Intriguingly, the overlap between the

two analyses was small: 60. If we look at enrichment it was even smaller: only two concepts

overlapped. Potentially this makes sense as we were enriching for the opposite things: ignorance

vs. established knowledge. On the knowledge-side, most enriched concepts from DAVID

pertained to the immune system, which was the main finding of Yadama et al. [6]. The two

overlapping concepts, IMMUNE RESPONSE and INNATE IMMUNE RESPONSE, also pertain
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to immunity and Yadama et al. [6] mention future work related to the immune system. These

concepts were currently studied.

IGNORANCE 
GO 

ENRICHMENT 
ANALYSIS

DAVID GO 
ENRICHEMNT 

ANALYSIS
2 

(60)

49 (99)36 (3,113)

DAVID Top 3:
1. Specific granule 

(GO_0042581)
2. Secretory granule 

(GO_0030141)
3. Secretory vesicle 

(GO_0099503)

Ignorance Top 3:
1. Female pregnancy 

(GO_0007565)
2. Biological regulation 

(GO_0065007)
3. Metabolic process 

(GO_0008152)

Only 2 enriched in both (overlap):
1. Immune response (GO_0006955)
2. Innate immune response 

(GO_0045087)*

Figure 4.14: Comparison of DAVID and ignorance enrichment: A Venn diagram of gene ontology en-
richment between the ignorance-base (green) and DAVID (pink). In parentheses are the total number of
concepts found in each category without enrichment. Next to each bubble are the top three concepts for each
enrichment method. The concepts in the middle are the overlap. *Statistically significant with FDR but not
family-wise error.

Looking at the ignorance enriched concepts only, we achieved our goal of finding a new

avenue to investigate that was not mentioned by the paper [6], namely the brain. Further, it also

provided a different field to examine for answers, namely neuroscience. The top three

ignorance-enriched GO concepts included FEMALE PREGNANCY, BIOLOGICAL

REGULATION, and METABOLIC PROCESS (see Figure 4.14). Broadening this exploration

beyond GO, there were 130 total ignorance enriched concepts for this gene list, including the 38

from GO. There were still some immune related concepts including (in order of enrichment):

IMMUNE SYSTEM, IMMUNE RESPONSE, SKELETON OF MANUS (autoimmune),

INTERLEUKIN-1 FAMILY MEMBER 7*, and INNATE IMMUNE RESPONSE*. (The * means

that they were statistically significant with FDR but not family-wise error.) As mentioned above,

we know there was still future work to be done on understanding the IMMUNE SYSTEM in

relation to sPTB and VITAMIN D [6] and the ignorance approach provided specific ignorance
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statements to explore for this future work. Even more striking though was the number of

ignorance enriched concepts related to the BRAIN (12): BRAIN, BRAIN DEVELOPMENT,

COGNITION, NERVOUS SYSTEM DEVELOPMENT, NEURON, LEARNING, SYNAPSE,

NERVOUS SYSTEM, CENTRAL NERVOUS SYSTEM, NEUROTRANSMITTER*, NEURAL

TUBE*, and NEUROGENESIS. There were no brain-related concepts both in the paper and in the

DAVID analysis, signifying that this information was not yet established knowledge.

The brain may be a new emerging topic that the authors could examine more in relation to

vitamin D and spontaneous preterm birth, and possibly look to the field of neuroscience for

answers. We present some sentences (lowercase) from five papers to explore below (the

biomedical concepts are capitalized and the ignorance lexical cues are underlined):

1. “this AREA OF the BRAIN, specifically the FRONTAL CORTEX, is important for

LANGUAGE, MEMORY and higher order COGNITIVE functioning, including purposeful,

goal-directed behaviours which are often referred to as executive functions.4 the importance

of adequate dha [docosahexaenoic acid] during this key period of BRAIN

DEVELOPMENT is indicated in studies of preterm infants who are denied the full

GESTATION period to accumulate DHA” (PMC4874207)

2. “discussion: we review relevant literature suggesting in utero inflammation can lead to

PRETERM labor, while insufficient development of the GUT-BLOOD–BRAIN barriers

could permit exposure to potential neurotoxins.” (PMC3496584)

3. “a major Intake of DHA in the BRAIN happens in the last TRIMESTER of PREGNANCY;

therefore, preterm infants are disadvantaged and have decreased BRAIN concentration of

this vital lcpufa [long-chain polyunsaturated fatty acids].” (PMC3607807)

4. “at present, preterm infants have a limit of viability (50% survival rate) of around 23–24

weeks ga [gestational age] so post-NATAL nutrition will always be introduced during the

second major phase of BRAIN growth, resulting in differences mainly in WHITE

MATTER.” (PMC3734354)
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5. “the most likely explanation seems to be related to the timing of the nutrition event, since

the infants were BORN at term rather than preterm when different developmental processes

are occurring in the BRAIN.” (PMC3734354)

6. “the period between their PRETERM BIRTH and term BIRTH at 40 weeks, a time when

the major BRAIN spurt is occurring), was spent ex utero in these infants; this exposure to

environmental influences, at an early stage of BRAIN DEVELOPMENT, might be expected

to increase their vulnerability to dietary effects.” (PMC3734354)

7. “the authors conclude by saying that reducing the energy deficit by improving early nutrition

in preterms may improve the growth and maturation of the BRAIN.” (PMC3734354)

8. “iron status, more commonly assessed in PREGNANCY, is not only important in

HEMATOPOESIS and NEUROLOGICAL and COGNITIVE DEVELOPMENT9 but plays

a crucial role in CARNITINE SYNTHESIS,10 although CARNITINE precursors may be

more important.11

zinc is an important COFACTOR for more than 300 identified zinc metalloenzymes.12 zinc

insufficiency in late PREGNANCY disrupts NEURONAL REPLICATION and

SYNAPTOGENSIS,13 and maternal deficiency is associated with decreased dna, rna, and

protein content of the f1 BRAIN.14 zinc deficiency affects one in five world

inhabitants.14ZINC supplementation reduces the risk of PRETERM BIRTH, though not sga

[small for gestational age].14

VITAMIN D deficiency is under investigation for its role in protection against dm [diabetes

mellitus], cv [cardiovascular], some ca [cancers], osteoporosis, and optimization of

IMMUNE function.15 VITAMIN D might be an important mediator in GUT

HOMEOSTASIS and in signaling between microbiota and host.16 the INTESTINAL

microbiome in both newborns and LACTATING mothers influences infant and childhood

FOOD allergy and eczema.” (PMC4268639)
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(Note that not all biomedical concepts were recognized by the biomedical concept classifiers.

Also, the numbers in the sentences represent citations, which were superscript in the original

article but were flattened for processing.)

In the paper, Yadama et al. [6] focused on the mother’s immune system, but it is possible

that this brain connection is instead focused on the effects of the spontaneous preterm birth on the

offspring. Thus, a potential knowledge goal for the authors based on our analysis was to explore

the connections between maternal VITAMIN D levels and spontaneous preterm birth through the

maternal IMMUNE SYSTEM and the effects on the BRAIN DEVELOPMENT of the offspring.

Exploring these connections would impact mothers everywhere. The ignorance-base provided a

novel avenue (and field), BRAIN DEVELOPMENT (neuroscience), along with specific

knowledge goal statements that the authors can explore for future work based on their initial gene

list. Our exploration by experimental results method contextualized experimental results in the

ignorance landscape, providing multiple avenues for future research, the immune system and the

brain.

Discussion

Focusing on ignorance statements through our ignorance-base and exploration methods

led to new research avenues that could help accelerate translational research. Further, the

ignorance-base was not only a literature search engine similar to Lahav et al. [17], but also

provided insights, summaries, and visualizations based on a topic and experimental results. The

ignorance-base helped find areas of research with lots of questions ripe for exploration with the

knowledge-goal focus and grounding in the OBOs. The ignorance-base predicted areas of

research that were currently studied and an emerging topic with a corresponding field that may

prove fruitful to help find answers. The exploration by topic method showed that vitamin D may

play an important role in the immune system, respiratory system, and brain development (see

Figures 4.8- 4.12 and Table 4.3). To corroborate these findings post 2018 when our corpus ended,

recent review articles [115–119] included these areas as future work. These review articles

required many hours of reading and synthesizing the literature article by article, whereas the
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ignorance method automatically offered not only articles, but also specific sentences that discuss

knowledge goals for future work. For example, “it has an important role in BONE

HOMEOSTASIS, BRAIN DEVELOPMENT and MODULATION OF the IMMUNE SYSTEM

and yet the impact of ANTENATAL VITAMIN D deficiency on infant outcomes is

poorly understood" (PMC4072587) [286] showed that further research on the impact of vitamin D

on infant outcomes was needed. The context of the sentence was also important: it was from a

2014 study in Rural Vietnam and appeared in the abstract objective section. Because we can sort

our ignorance statements by time and section, we showed that since 2014, more research has been

conducted on this topic [117] as found in our ignorance-base. Further, we can track how research

questions emerge using our ignorance taxonomy (see Figure 4.12). Ideally, we would create an

ignorance-base over the entire body of scientific literature to truly help researchers, students,

funders, and publishers capture the landscape of our collective scientific ignorance and understand

how research questions evolve over time. This smaller-scale effort demonstrated that this was

possible.

We further demonstrated that the ignorance-base and exploration by experimental results

method can find an emerging topic (see Figures 4.4, 4.13, 4.14, and Table 4.4). Ignorance

enrichment of the 43 genes in common between vitamin D and spontaneous preterm birth (sPTB)

[6] found many concepts that relate to the brain and some that relate to the immune system (as

found by [6]). This suggested that brain development could be an emerging topic in relation to

vitamin D and sPTB. For example, consider the ignorance statement: “discussion: we review

relevant literature suggesting in utero inflammation can lead to PRETERM labor, while

insufficient development of the GUT-BLOOD–BRAIN barriers could permit exposure to potential

neurotoxins.” (PMC3496584) [287]. This sentence ties all the relevant concepts together:

“vitamin D may be causing in utero inflammation which is leading to preterm labor, and due to the

preterm labor there is insufficient development of the gut-blood-brain barrier leading to potential

neurotoxins for the fetus". This article was not cited by Yadama et. al. [6], but may be a new

knowledge area that needs to be explored further. Lastly, researchers could look to the field of
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neuroscience to help find relevant information to some of these knowledge goals. Here are some

potential questions that could be explored:

1. What is the association between development of the gut-blood-brain barrier and

whole-body inflammation and neuroinflammation in the context of fetal development?

2. How do the 43 genes relate to offspring brain development? Are any of them specifically

related to offspring brain function?

3. What are the effects of vitamin D on lifecourse brain development generally?

4. How does spontaneous preterm birth impact offspring brain development compared to those

born at term? Are there any remedies for said effect? Does nutrition play a role?

5. How does the gestational timing of nutrition and supplement exposure affect offspring brain

development? What role do iron and zinc play in brain development?

Looking at the literature further showed that vitamin D and brain development may in fact

be an emerging topic since 2018, the last year of our data. The connection between vitamin D and

brain development has only recently been studied extensively. Looking for recent papers on

“vitamin D", “brain development", and “spontaneous preterm birth" in the literature (Google

Scholar search on 9/13/2022), many review articles appeared (e.g., [115–119]) that discussed the

impact of vitamin D on maternal and fetal health (see Figure 3 in [115] and our adapted

Figure 4.1). All of these studies agreed that there was a link between vitamin D, the immune

system, and sPTB, and acknowledge at least one link between vitamin D and brain development.

A 2022 review article stated that “recently, extensive scientific literature has been published

determining the role of vitamin D in brain development" [115]. Note that these articles contained

mentions of controversies and other types of ignorance statements, which also point to other areas

of investigation. There appears to be room for exploration around the connections between

vitamin D, sPTB, and brain development. Understanding the ignorance-context around a set of
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genes in combination with the knowledge-context can help push the boundaries of our current

understanding.

In general, we showed that ignorance-bases and knowledge-bases can enhance and

complement each other. The ignorance-base itself was built upon a knowledge-base,

PheKnowLator [276, 277]. We also utilized DAVID [278] as a comparison knowledge-base (see

Figures 4.13 and 4.14) as well as other canonical methods (gene list coverage) to help prioritize

the most relevant biomedical concepts (see Table 4.4). These analyses were made possible by

grounding our ignorance-base in the OBOs, which allowed us to connect our ignorance-base to

other knowledgebases. At the same time, we did not use any of these methods to their fullest

potential. First, only six ontologies overlapped between the biomedical classifiers (Chapter 2) and

PheKnowLator[276, 277], which limited the expansion of relevant concepts. Second, the method

to create the OBO concept lists from both the vitamin D topic and the gene list was not very

sophisticated (using only one step via the relations ontology). Finally, we did not use the

knowledge-bases to determine if any ignorance statements have been answered. All of these

limitations could be addressed in future work. Many other knowledge-bases and methods exist

that can also be explored in relation to the ignorance-base.

The goal of this work was to demonstrate the feasibility and power of the ignorance

methods, and we recognize that more improvements can be made. Our ignorance-base was

created from both automatic ignorance and OBO classifiers run over 1,643 articles in the prenatal

nutrition literature. Any automation of this kind added errors and all classification tasks can be

improved upon to minimize it. For the ignorance classifiers, other parameter tunings and other

algorithms, such as PubMedBERT [243], may yield improved results. For our biomedical concept

classifiers, CRAFT [166, 170] was a corpus of mouse articles, not prenatal nutrition, and it only

included ten ontologies. Applying biomedical classifiers with more similar training data and more

ontologies (e.g., MONDO disease ontology and the phenotype ontology) would be beneficial

(e.g., PubTator [288]), although all of them have their pros and cons. We ran these classifiers over

only 1,643 prenatal nutrition articles. The scale of the ignorance-base was small; ideally we would
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create an ignorance-base that included all articles (or at least PMCOA to start). We focused only

on the prenatal nutrition literature, and future work can determine if the ignorance taxonomy and

methods generalize outside of it. In terms of exploration methods, concept enrichment provided

more fruitful concepts (see Figures 4.10 and 4.11) than concept frequency (see Figure 4.9), and

there are other methods to explore including co-occurrence terms. The creation of a tool (similar

to [17]) incorporating more data analyses and visualizations techniques into a user-interface that

allows researchers to interact with the system could make the ignorance-base easier to adapt to

new environments. Even with all these limitations, the current ignorance-base showed its power to

find new research avenues to explore, providing insights, summaries, and visualizations beyond

prior work [17]. We have just barely scratched the surface of what it can do. Collaborating with

experts on vitamin D, delving into the topics introduced here, creating new methods, exploring

other topics, and contextualizing other experimental results are obvious extensions of this work.

We demonstrated that a focus on ignorance statements through our ignorance-base and

exploration methods can lead students, researchers, funders, and publishers to research avenues

that are currently being studied or are emerging topics. Research begins from a foundation of

established knowledge, and many knowledge-bases and ontologies exist to provide that. However,

research continues through a process of posing questions and creating hypotheses to analyze and

explore what is not yet understood. To facilitate that, we presented the first ignorance-base based

on knowledge goals and OBOs, along with two new exploration methods that provided insights,

summaries, and visualizations of statements of unknowns, controversies, and difficulties ripe for

exploration in future work. Just as the literature contains both knowledge and ignorance, so too

can both knowledge-bases and ignorance-bases help researchers navigate the literature to find the

next important questions or knowledge gaps.

Overall, the ultimate goal of this work was to help students and researchers explore the

literature through the questions and known unknowns. The scientific endeavor rests on our

continuous ability to ask questions and push research farther as we learn more knowledge. The

two methods presented here, exploration by topic and exploration by experimental results,
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provided two ways to help students, researchers, funders, and publishers explore the state of our

scientific ignorance.

Conclusion

The ultimate goal was to create an ignorance-base and exploration methods to help

students, researchers, funders, and publishers find the next important questions or knowledge

gaps. This can possibly help accelerate translational research over purely manual methods. The

exploration by topic method not only found new avenues for exploration for researchers interested

in vitamin D using our novel method of ignorance enrichment (the immune system, respiratory

system, and brain development), but also elucidated how questions were asked and how that

changed over time using our novel method of ignorance-category enrichment. Our exploration by

experimental results method found an emerging topic (brain development) with specific

knowledge goal statements to pursue that bear on a sPTB and vitamin D gene list. Further, the

findings suggested a field (neuroscience) to look to for answers. These questions (and subsequent

answers) have high potential to positively impact the health of pregnant women and their offspring

globally. The importance of questions and knowledge goals in research is well established, and

our ignorance-base and exploration methods brings these to the forefront to help researchers

explore a topic and experimental results in the context of our collective scientific ignorance. The

scientific endeavor rests on our continuous ability to ask questions and push research farther as we

learn more knowledge. To paraphrase Confucius,“Real knowledge is to know the extent of one’s

ignorance" (Analects 2:17).

Summary

Many knowledge-bases exist to capture what is known and they are used to find

information and contextualize experimental results. Known unknowns are recognized as

important and studied under different names and focuses, including a focus on knowledge goals.

However, no prior work has created a knowledge-base to capture the nuance of known unknowns

as knowledge goals, connected them to ontologies for integration with other knowledge-bases, and

provided summaries and visualizations of the outputs to help researchers find the most pertinent
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questions. Our goal was to create such knowledge-base to capture known unknowns from the

literature to contextualize topics and experimental results in our collective scientific ignorance.

We built an ignorance-base to explore it by topic to help researchers find the most pertinent

questions related to a topic (e.g., help graduate students find thesis topics), and by experimental

results to contextualize them in the known unknowns. Based on our exploration by topic methods,

we found multiple areas of research currently studied (the immune system, brain development,

and the respiratory system) with lots of questions (ignorance statements) that are ripe for

exploration for researchers interested in vitamin D. Based on our exploration by experimental

results method applied to a vitamin D and spontaneous preterm birth gene list [6], we found both a

currently studied research area (the immune system - the researchers’ finding) and an emerging

topic (the brain - not mentioned by the researchers) that are ripe for exploration in future research.

We not only provided literature search results to find articles and sentences of interest, but also

insights, summaries, and visualizations of the relevant data. The ultimate goal was that students,

researchers, funders, and publishers can use our ignorance-base and methods to help find the next

important questions or knowledge gaps.
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CHAPTER V

DISCUSSION

Overview

Research begins with a question. It progresses through accumulating knowledge such that

a previously unexplored subject (an unknown unknown) becomes an active research area

exploring the questions (known unknowns), until a body of established facts emerge (known

knowns). Many knowledge-bases exist to capture the known knowns and are used to explore

topics or experimental results [4]. Equally as important are the questions surrounding a topic or a

set of experimental results to help students, researchers, funders, and publishers better understand

the state of our known unknowns [1–3]. But how do researchers find the most pertinent

questions? These skills are developed in graduate school, where students learn both the questions

in their field and how they are asked so that they can ask a question and provide some solutions for

it as their thesis project [7–16]. Many of these questions or known unknowns are discussed in the

scientific literature as statements about knowledge that does not exist yet, including goals for

desired knowledge, statements about uncertainties in interpretation of results, discussions of

controversies, and many others; collectively we term them statements of ignorance. A

knowledge-base or an ignorance-base that provided insights, summaries, and visualizations of

such statements could be useful to a wide variety of scientists ranging from graduate students

looking for thesis projects as mentioned (e.g., [12]) to funding agencies tracking emerging

research areas (e.g., [33]). It could help facilitate interdisciplinary interactions amongst

researchers by finding questions from another field that bear on a topic or a set of experimental

results (e.g., [34]). It could also help track the evolution of research questions over time as a

longitudinal analysis (e.g., [35]). Further, finding pertinent questions automatically would allow

us to query existing databases for information (e.g., [36]). However, to the best of our knowledge,

no prior work has created a knowledge-base or ignorance-base to capture the nuance of known

unknowns as knowledge goals, connected them to ontologies for integration with other

knowledge-bases, and provided summaries and visualizations of the outputs to help researchers
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find the most pertinent questions, until now. We presented the necessary methods and tools to

create the ignorance-base and explore it by a topic or a set of experimental results to provide

insights into future research avenues and questions.

While all these ideas and methods are applicable across biomedical research, we chose to

create the ignorance-base over the prenatal nutrition literature. Prenatal nutrition is understudied

and serves to benefit from the identification of questions that are well studied in other fields due to

the ethical and legal considerations and complexities in studying pregnant mothers and fetuses.

Also the prenatal nutrition field is a good case study for these ideas because it contains a diverse

literature with all types of studies from all over the world, meaning there is a higher potential for

generalizability to other fields. Our goal was to help students, researchers, funders, and publishers

better understand the state of our collective scientific ignorance (known unknowns) (Chapter 4) in

order to help accelerate translational research through the characterization of known unknowns

based on their respective goals for scientific knowledge (Chapter 3) and understanding their

biomedical subjects (Chapter 2).

All of this work has resulted in state-of-the-art biomedical concept recognition models

based on machine translation (Chapter 2), a taxonomy of ignorance with 13 knowledge goal

categories, annotation guidelines, an ignorance corpus of 91 articles, high performing ignorance

classifiers on the sentence- and word-levels (Chapter 3), and an ignorance-base with two types of

exploration methods by topic and experimental results (Chapter 4). We showed that machine

translation was a salient avenue to explore to improve concept recognition. The CRF and

BioBERT paired with OpenNMT performed the best for concept recognition. The ignorance

corpus and ignorance-base suggested that ignorance statements were rampant throughout the

prenatal nutrition literature and employed a wide vocabulary. Further, we provided high

performing ignorance classifiers that showed that automatically identifying ignorance statements

was feasible. Finally, we showed the power of combining ignorance and biomedical concept

classifiers to create the ignorance-base and explore it by a topic and a set of experimental results,

providing insights into future research areas. We provided a researcher with specific knowledge
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goal statements to help narrow in on a research topic (immune system, brain development, and

respiratory system were enriched in vitamin D ignorance statements). Focusing on ignorance

statements can help researchers find pertinent questions to pursue in future work. We also

provided the ignorance context for a gene list [6], finding the concept immune system, as found by

the original authors, as well as a novel putative relationship with the concept brain development.

Both these concepts with their corresponding ignorance statements were ripe for exploration in

future work.

The ultimate goal was that students, researchers, funders, and publishers can use this work

to help find the next important questions or knowledge gaps. The importance of questions and

knowledge goals in research is well established, and this work brings these to the forefront. The

scientific endeavor rests on our continuous ability to ask questions and push research farther as we

learn more knowledge.

Strengths

Overall, the main strengths of this work were the diversity, quality, and amount of data that

allowed us to draw reasonable and actionable conclusions to explore in future work. All of our

data for the ignorance work (Chapter 3 and 4) was from the very diverse prenatal nutrition

literature. This literature included a wide range of study types from animal studies to retrospective

studies (based on reviewing the articles), and had publications from all over the world (based on

reviewing the articles). Thus, even though our focus was on one field, we believe that our results

will generalize beyond prenatal nutrition because of these factors.

This work can further generalize because it was grounded in ontologies. The OBOs [155]

are a biomedical research community effort to standardize the biomedical vocabulary for different

types of biomedical entities. They are used in NLP systems and in the creation of

knowledge-bases. Since we identified and normalized the biomedical concepts to the OBOs in the

ignorance-base, we can connect our work to other NLP systems and knowledge-bases to

potentially look for knowledge that helps answer or qualifies ignorance statements. Further, we

also consulted an ontologist (Mike Bada) to help create the ignorance taxonomy to ensure our
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formalization of ignorance was grounded in the same principles as other ontologies. Thus, our

ontological grounding was a strength.

With this ontological grounding for the ignorance taxonomy, we created generalizable

annotation guidelines that yielded a robust and high quality ignorance corpus and high performing

classifiers (Chapter 3). We conducted two annotation tasks with five different annotators that

maintained inter-annotator agreements above 80%. Further, we were able to annotate enough data

for both a training set and a separate testing set for final evaluation on unseen data. These factors

led to more trust in the high performing classifiers trained on this corpus. Similarly, the CRAFT

corpus [166, 168–170] for the biomedical concept recognition task had the same setup and

strengths (Chapter 2). Thus, both the quality and the amount of data in both corpora seemed to be

sufficient to create high quality and high performing ignorance and biomedical concept classifiers.

With these high performing classifiers, applying them to the full set of prenatal nutrition

PMCOA articles (1,643) for the ignorance-base seemed to be enough data to provide insights and

discover novel findings for a topic of and a gene list related to vitamin D. The prenatal nutrition

field is understudied and serves to benefit from the identification of questions that are well studied

in other fields [110–113]. Our prenatal nutrition expert (Teri L. Hernandez) was also a strength of

this work to provide actionable insights to the field. In consultation with her, our results provided

possible new avenues and questions to explore for researchers looking for a research topic in

vitamin D and researchers wanting to contextualize their vitamin D and spontaneous preterm birth

gene list in the broader ignorance landscape. For the topic, our results matched the current

literature showing that the immune system, brain development, and the respiratory system were all

currently being studied in relation to vitamin D. Further, our approach provided specific

knowledge goals for the researchers to pursue for each concept. For the gene list connecting

vitamin D and spontaneous preterm birth, the results identified both the same finding as the

researchers with a focus on the questions still surrounding it (the immune system), and a new

avenue to study which was not mentioned in the paper, but was verified by the literature as an

emerging topic (brain development). Based on the brain development ignorance statements, we
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created an hypothesis of the connection between all concepts. We also provided five example

questions that could be explored further based on these findings. For answers to these questions,

researchers could look to the field of neuroscience, as it is the implied field of brain development.

Thus, our ignorance-base has provided meaningful insights and novel findings based only on 1,643

articles. Even though our data was small, our methods, tools, and results seem to be generalizable.

Limitations

Even with all the strengths mentioned above, the biggest limitation surrounding this work

was generalizability. Our focus on one field and the relatively small amount of data, bring the

question of generalizability into focus. It is unclear if this work will generalize beyond the field of

prenatal nutrition. Further, the ignorance-base was built on automatic classifiers for both the

ignorance statements and the biomedical concepts, adding automation error. For the biomedical

concept classifiers, there were especially errors because they were trained on a corpus focused on

the mouse and not our field of interest. Both generalizability to another field and of our classifiers

remain limitations.

In questioning generalizability, there are cases in which the methods and ideas presented

here may not work. For example, if there is no ignorance to capture or it is discussed very

differently then what we found here. Theoretical mathematics and physics mainly publish proofs

and once it is proven there is no ignorance. Every field will differ in whether and how they discuss

ignorance. In terms of how ignorance is discussed, our definition of ignorance and our task only

focused on lexical cues as markers of statements of ignorance, but there could be other linguistic

features. During our annotation task, we found at least one sentence that both annotators agreed

was a statement of ignorance but could not agree on a lexical cue that signified it as such. Thus,

the sentence was not included based on our task definition (see Chapter 3). Much prior work (e.g.,

[41]) used lexical cues or keywords to help identify their specific phenomenon, including Lahav et

al.[17]. They also tried to augment beyond just lexical cues by providing sentences to their

annotators with none of their keywords [17]. During automation of the task, they tested

keyword-based models and found good recall but not precision, while other non-keyword-based
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models performed better [17]. They did not discuss in detail what the algorithms paid attention to

for classification and the role that keywords may play in them [17]. More work needs to be done

to understand what defines an ignorance statement or similar statements beyond just lexical cues,

and this may differ depending on the field of interest.

Also, our ignorance taxonomy was much more granular than previous work. Not all

categories may exist in other fields and we may be missing categories. For example, the ignorance

categories important consideration or indefinite relationship may be minimal in theoretical

mathematics where neither urgent calls to action nor associations tend to exist. At the same time,

we may be missing an ignorance category or require more granularity. For example, for

engineering a knowledge goal could be to build something with the ignorance category of

implementation or something similar. In terms of situations requiring more granularity, in earlier

versions of our ignorance taxonomy we had two separate categories for indications of alternative

options and indications of controversy of research to separate disagreements from lists of options.

During our annotation task, we could not always distinguish between the two more granular

categories and we recognized that the knowledge goal was the same: to determine the correct

option amongst the current options or find a better one. We thus saw reasons to combine the

categories, but that may not have been the best choice. More work is necessary to determine the

optimal ignorance taxonomy.

More work is also necessary to ensure we capture all the biomedical concepts of interest

so that we can provide the ignorance context for any topic or experimental results. To fully

understand the ignorance statements, we also captured their biomedical subjects as concepts so

that we could explore the ignorance statements based on their subjects. If a biomedical subject or

concept did not exist in our ignorance-base then we could not provide the ignorance context.

Thus, for the ignorance-base, the exploration methods failed for biomedical concepts not captured

by our biomedical concept classifiers. The CRAFT corpus only contained ten ontologies and so

we only had classifiers for those. Very obvious missing ontologies were for diseases and

phenotypes such as the MONDO disease ontology and the phenotype ontology, respectively.
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Searching for terms such as preeclampsia (MONDO:0005081) was not possible. Due to this,

many terms were not captured and thus could not be queried for in the explorations. This also

included terms of interest based on our exploration examples such as spontaneous preterm birth

(NCIT:C112864, EFO:0006917, or GSSO:009645), which was one focus of our gene list [6].

Future work needs to include more ontologies, more data, and better biomedical concept

classifiers to help with this problem.

Even if a concept was in one of the ten ontologies from CRAFT, we were sometimes

unable to draw conclusions about it because our biomedical concept classifiers may have missed it

or it may not have been in our corpus of 1,643 articles. The concept could have been

misidentified, altogether not identified, or the concept truly was not in the corpus. Either way, we

could not draw any conclusions in relation to ignorance or not about that concept. Recall the

concepts with no information about them in relation to gene list coverage (see Chapter 4 Table

4.4). The concepts existed in PheKnowLator [276, 277], but were not connected to any sentences

from the literature corpus. Not only were we missing concepts based on missing ontologies, but

also based on not having examples of them in the literature. Thus, both the possible explorations

and results were limited based on the recognized concepts from the biomedical concept classifiers.

These limitations cast doubt on our exploration results in terms of both the ignorance

statements and biomedical concepts that might be missing or possibly incorrect. For exploration

by topic, our vitamin D query had no results for two of the four search terms. We do not know

what ignorance statements exist about D3 VITAMINS (ChEBI:73558) and CALCIOL/VITAMIN

D3 (ChEBI:28940). In terms of the results, it is almost impossible to know what biomedical

concepts could be missing from our list of other frequent and enriched concepts in ignorance

statements. These limitations also apply to our exploration by experimental results for our gene

list[6]. It remains an open question of how best to map genes to ontology terms beyond the Gene

Ontology. We provide a simple method using the relations ontology and PheKnowLator [276,

277], but there are more sophisticated methods to try including utilizing the ontology hierarchies

to create expanded biomedical concept lists. In terms of the exploration results, we already
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mentioned the issues with no information for certain concepts. Future work is necessary to

confirm all of our exploration results.

Lastly, ideally we would create an ignorance-base over all the literature which relies on the

scalability and usability of this work. Much of the computation was performed on a

supercomputer with GPUs, which required lots of time and memory. This may not be feasible to

run over all of PubMed, let alone all the literature. Further, there is currently no user-interface into

the ignorance-base for students, researchers, funders, and publishers to explore. This work was

distributed across several GitHub repositories as python and bash scripts. Both of these need to be

addressed in future work.

Even with all these limitations, the goal of all this work was to spark ideas for future

research and not necessarily provide the best pertinent question. We relied on the peer review

process to ensure good science. We laid no claims to whether an ignorance statement was solved

(closed) or unsolved (open). We rely on researchers to evaluate the results and continue to do

more research. Even so, we hope that this pilot study demonstrated the importance and power of

an ignorance-base to help researchers find the most pertinent questions based on identifying,

categorizing, classifying, and exploring ignorance statements and their entailed knowledge goals.

Future Directions

The goal of my dissertation was to demonstrate the feasibility of identifying, categorizing,

classifying, and exploring known unknowns in the scientific literature as driven by their entailed

goal for scientific knowledge. Thus, there is a wealth of future work to conduct to go beyond just

feasibility.

Biomedical Concept Recognition

For biomedical concept recognition, my main question is why does machine translation

work for concept normalization? There should not be semantics in the OBO IDs and yet we found

some. We conducted some experiments to both break the supposed semantics and to add in more,

which both hurt and helped different OBOs. Future work could try to find a different mapping
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from a concept to an ID that boosts performance for concept normalization using machine

translation.

Our concept normalization work not only found some semantics in the OBO IDs, but also

created new IDs that were non-existent in the ontologies. This was due to the

character-by-character nature of the machine translation to allow for generalizability. These were

automatic errors in our work, but future work could determine how to address these non-existent

IDs. Further, they may help provide insights into the semantics the algorithm seems to detect.

For all our concept recognition work in both span detection and concept normalization,

more ontologies can be added such as the MONDO disease ontology and the phenotype ontology.

Also, more algorithmic development could be done in future work. All the algorithms can

continue to be tuned with more hyperparameter searches and more algorithms can be tested such

as PubMedBERT [243] for span detection and other machine translation algorithms [193] for

concept normalization.

Ignorance Task

The main future work is to test the generalizability of the ignorance taxonomy and

classifiers. Future work could first apply this work to another field, such as the database of

Covid-19 literature, LitCovid [275]. To truly ensure generalizability to another corpus of

literature, the automatic annotations need to be checked by experts to determine their reliability. If

the annotations do not suffice, then we may not be capturing all types of ignorance or lexical cues.

More annotation work can be conducted on a different field and more algorithms can be tested.

Further, lexical cues may not be the only way to identify ignorance statements and so an

exploration of other indicators of ignorance statements may prove fruitful.

Ignorance-Base

Ideally, we would create and maintain an Ignorance-base over the entire literature. This

hinges on generalizability as discussed above and a user-interface for students, researchers,

funders, and publishers to interact with ignorance statements. For the tool, more summarizing

techniques and visualizations are necessary to help researchers digest the vast amounts of



185

information in the ignorance-base. I provided some visualizations for the researchers looking for a

research topic and researchers with a gene list, but there is room for improvement. For example,

the bubble plots we created to show how ignorance changed over time were somewhat difficult to

read and interpret, especially with large amounts of ignorance statements. (We showed the bubble

plot of vitamin D and immune system ignorance statements because just vitamin D ignorance

statements was hard to read.) Further, we want to create new visualizations that would help

funders and publishers especially determine the next big questions to fund or publish. New

visualizations specific to them would be useful. Exploring new summarizing techniques and

visualizations for the ignorance-base to incorporate into a tool and creating an ignorance-base

over all of PubMed, would make our work more accessible and the insights more generalizable.

This could come to fruition by combining our work with the COVID-19 search engine for

challenges and directions [17].

With regards to insights, future work could test the insights we discovered in this work for

the researchers looking for pertinent questions and researchers with a gene list. For the researchers

looking for pertinent questions, are the ignorance statements with the immune system, brain

development, and respiratory system interesting avenues to pursue for a research topic? For the

researchers with a gene list, how is brain development related to the genes and does neuroscience

have some answers? I hope that this work can help real researchers, especially students narrow in

on research topics and real researchers contextualize their experimental results in the scientific

ignorance landscape providing meaningful and testable insights for both.

Overall

All of this work could be the first step to creating a question ecosystem for all to explore

to both understand the current state of our knowledge boundary and to push it. This ecosystem

would entail an ignorance-base over all the scientific literature with tools for different audiences.

To distinguish between open (unanswered) and closed (answered) questions, ideally we would

also connect our current knowledge to the question ecosystem. We connected a knowledge-base,

PheKnowLator [276, 277], to our ignorance-base but we did not utilize its knowledge to its fullest
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potential (see [4] for the many applications of knowledge-bases). All of these tools could help

people better understand science and the history of knowledge.

The current mistrust in science partially stems from people misunderstanding the

complicated and entwined nature of ignorance and knowledge [289, 290]. To understand science

is to understand the role of the question, which was the focus of this dissertation. I believe a

refocus back to the question and history of knowledge could help bridge this gap. We need to

educate our students at the minimum to understand science communications and at the maximum

to become researchers themselves if they so desire [291]. We need to reexamine how scientists

build trust with diverse audiences (e.g., [292]). Scientists need to interact with diverse audiences

more and help create digestible and accurate scientific communications. The stakeholders in all

three areas need to work together to make changes to gain back the trust in science from diverse

audiences [289] and I think my ignorance work can help.

There could be ignorance-base tools for education. An ignorance-base could provide

teachers with a tool to teach the history of knowledge and foster curiosity. Students could

visualize the history of questions similar to knowledge through timelines and networks. Citation

networks would also be valuable to see who is generating the questions and knowledge. It could

also help students with research projects, teaching them how researchers find pertinent questions.

The ignorance-base is meant to spark ideas, curiosities, and more questions. If we can educate

people on the research process, it could potentially better help them digest science in the future or

pursue research careers if they so desire. Before implementing these ideas, I want to determine the

role questions and ignorance play in education. For example, quantifying both the amount and

types of ignorance statements in course materials. The results of this analysis would provide

valuable insight into the types of ignorance-base tools needed for education to foster curiosity and

teach the history of questions.

This dissertation work focused on ignorance-base tools for researchers to help them find

pertinent questions to ask in order to conduct experiments to answer them. My dissertation work

demonstrated that an ignorance-base can help find novel avenues to explore that have lots of
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questions for a specific field. Even though we are proposing one large ignorance-base over all the

literature, field specific ignorance-bases may still prove useful within each specific field. The

Ignorance-base section above provides specific future work to create a larger research

ignorance-base, including more summarizing techniques and visualizations.

There was a wealth of data in just our small ignorance-base, the challenge is how to

present it, summarize it, and visualize it. The main summary of an article is its abstract. Would a

“question summary" prove useful? Could ignorance statements be used to help summarize

articles? For a one sentence summary, taking the first occurrence of statements with an indication

of answered research question ignorance category seems promising (see Figure 5.1). Creating

summaries using different ignorance categories and from different sections could prove useful and

interesting. Thus, there is much work to be done focused on the question ecosystem.

Article Title First indication of an answered research question Sentence
Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty 
acids and vitamin D and the prevalence of psychotic-like symptoms 
in a cohort of 33 000 women from the general population 
(PMC2889879)

Our aim was to evaluate the association between the intake of different fish species, PUFA and vitamin D 
and the prevalence of psychotic-like symptoms in a population-based study among Swedish women

Season of Birth and Risk for Adult Onset Glioma (PMC2898025) This paper reviews the plausibility of evidence focusing on the seasonal interrelation of farming, allergies, 
viruses, vitamin D, diet, birth weight, and handedness

Effect on the incidence of pneumonia of vitamin D 
supplementation by quarterly bolus dose to infants in Kabul: a 
randomised controlled superiority trial (PMC3348565)

Our aim was to assess whether oral supplementation of vitamin D3(cholecalciferol) will reduce the 
incidence and severity of pneumonia in a high-risk infant population

High Prevalence of Vitamin D Deficiency in Pregnant Women: A 
National Cross-Sectional Survey (PMC3427250)

The aim of this study was to estimate the prevalence of vitamin D deficiency among Belgian pregnant 
women and to assess the determinants of vitamin D status in the first and third trimester of pregnancy

Is Pet Ownership Associated with Higher Vitamin D? (PMC3513049) To investigate potential relationships between household pet exposure and cord blood vitamin D 
concentrations, we analyzed information from a large, geographically-based, general risk birth cohort

Circulating Cathelicidin Concentrations in a Cohort of Healthy 
Children: Influence of Age, Body Composition, Gender and Vitamin 
D Status (PMC4859539)

This study sought to determine if circulating cathelicidin concentrations in healthy children are related to 
the age of the child, body composition and vitamin D status at birth and at the time of the study visit

A randomized controlled trial of vitamin D supplementation on 
perinatal depression: in Iranian pregnant mothers (PMC4992225)

This study evaluated the effect of vitamin D3supplementation on perinatal depression scores

Investigation of the vitamin D nutritional status in women with 
gestational diabetes mellitus in Beijing (PMC5273824)

To study the Vitamin D nutritional status of pregnant women with gestational diabetes mellitus (GDM) in 
the middle and late pregnancy and analyze the different sources of Vitamin D intake

Trajectory of vitamin D status during pregnancy in relation to 
neonatal birth size and fetal survival: a prospective cohort study 
(PMC5812027)

We investigated the associations between vitamin D status in early and late pregnancy with neonatal small 
for gestational age (SGA), low birth weight (LBW) and preterm delivery

Vitamin D levels in an Australian and New Zealand cohort and the 
association with pregnancy outcome (PMC6011374)

We aimed to compare vitamin D status in two distinct populations of pregnant women in Australia and New 
Zealand and to investigate the relationship between vitamin D status and pregnancy outcome

Figure 5.1: Summaries of articles example. A one sentence summary of each article based on the first
ignorance statement that is an indication of answered research question, a statement of a goal or objective of
a study that is attempted or completed during the study. The knowledge goal is to find the answer(s) in the
article to determine if the question(s) is (are) fully answered in the article. The lexical cues are highlighted
in yellow.
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Research is disseminated to everyone through science communications such as science

news articles. Ignorance-base tools focused on science communication and journalism could

create a stronger connection between journalism and research. Tools could be created to help

journalists create news stories and provide more context for stories. For example, it could have

been valuable to see the progression of questions and subsequent knowledge around the Covid-19

pandemic as it developed (see [17] for a similar idea). Further, journalists could use an

ignorance-base to find the most pertinent questions to publish. Future work could focus on

methods and tools to help journalists better communicate the current science. This ecosystem

would create connections between researchers, journalists, and people in general, helping to

bridge the divide between them.

The general computational idea of an ignorance-base can be applied to anything with data

that contains some form of a question, knowledge goal, or ignorance statement. Creating an

ignorance-base in general helps organize and connect questions to ideally provide and spark new

ideas for questions to pursue in the future. Another application of these ideas is the field of

investing and market research. Investors want to know what ideas and products (questions) to

invest in (answer/pursue). These same methodologies could be applied to patent documents, grant

applications, and idea documents (e.g., Shark Tank television transcripts) to find the next best idea

to invest in. These tools could be a part of market research in the future. The difficulty in any

application of these general ideas will be what data to use based on the goal.

The main difficulty and limitation of all of this work is data. Which data should be used to

capture the known unknowns? These known unknowns begin as unknown unknowns that by

definition cannot be captured in any form. The unknown unknowns come to light in the initial

discovery of an idea. With the advent of natural language generation (NLG) [293, 294] and

applying it to chatbots (e.g., ChatGPT from OpenAI [295]), it may be possible for a chatbot to

help researchers capture the unknown unknowns. ChatGPT from OpenAI [295] created a

dialogue chatbot system that can answer follow-up questions and challenge incorrect premises.

Future work could create a similar system but based on the ignorance-base to help researchers and
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others generate and refine novel questions and ideas, getting at the unknown unknowns. Note

many conversational systems, like ChatGPT, rely on reinforcement learning [296], which is quite

difficult to evaluate. The systems cannot guarantee correct answers and can be biased quite easily

[295]. Even still, using the current ignorance-base as starting data to create a chatbot could help

generate new data as unknown unknowns. This would ideally also be a part of the question

ecosystem.

Lastly, many ethical questions arise when studying questions or ignorance, and future

work can tackle these challenges. For example, who asks the question matters in terms of any

hidden agendas. Looking at the authors of scientific articles and their backgrounds could help

elucidate this. What biases exist in the askers? Racial? Gender? Location? Can all questions be

asked by everyone? Future work could look at both published articles and grant proposals to help

answer these questions. Further, future work could apply these ignorance methods to the ethics

literature itself and see what questions arise. All of this future work could impact the current

understanding of science by fostering a questioning and curiosity driven society.

Reflections

This work has taught me how to both create and communicate a novel NLP task.

Consistent and concise definitions of the phenomenon were necessary for both communication of

the work and annotation of the phenomenon. It was an iterative process to determine these

definitions along with examining many examples. To move from my own understanding of these

definitions and examples to others understanding them was quite difficult and time consuming.

Manual annotation tasks are very time consuming. Further, the adoption of a new task is slow

even with a clear and concise definition, a corpus, and classification models. Honing in on the

application and impact of the work was very important to convince publishers and funders of

these ideas. Researchers also did not like that the name “ignorance" has negative connotations. In

the beginning of this work, the main questions I received were about my use of the word

“ignorance". It was difficult in general to choose a name, let alone define unknowns using current
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knowledge and comparing it to current knowledge. I spent a lot of my PhD focused on how to

communicate these ideas to the annotators, my advisors, publishers, and other researchers.

Consulting experts in my field of study early on helped me both communicate it better and

determine the application and impact of it. From the beginning, I worked on my ignorance

taxonomy in consultation with an ontologist to ensure my correctness in defining unknowns. Once

I chose the field of prenatal nutrition to apply all of these ideas to, I found a prenatal nutrition

expert to help with everything from collecting the prenatal nutrition articles to the insights I found

from the ignorance-base. Domain experts were invaluable to this work.

Lastly, it is important to explain all methods and results (at least the plausibility of them).

Many different types of methods exist for classification. Some can be optimized (e.g., a CRF) and

some cannot (e.g., neural networks). For understanding, it is important to provide the reasons why

a specific classification model was chosen. For reproducibility, it is important to provide all the

resource constraints on the algorithms. Not everyone has equal access to resources and so

providing alternative models with differing resource needs is helpful [249]. In terms of results,

surprising results happen. (I even have an ignorance category to capture it - indication of

anomalous or curious research finding.) For example, our results that machine translation from a

biomedical concept to its ID on the character level improved concept normalization was

unexpected because the IDs should not have any underlying semantics. The IDs were meant to be

arbitrary and yet it seems we found some structure. When we noticed this worked, we did not fully

trust the results at first. To provide more evidence for their feasibility, we conducted several

experiments to both break the structure (shuffled and random assignments) and to add more

(alphabetical assignments). These experiments gave further evidence to our results. Further, we

convinced the reviewer of the paper that even though our results were unexpected, it seemed to be

true. Thus, it is important to provide explanations for methods and enough evidence for results.

The main motivation for this work stemmed from my lack of a question to ask for my PhD

dissertation because I did not know the questions in my field of computational bioscience. Now at

the end of my PhD, I not only have many questions, but helped enumerate some of them for my
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dissertation. This work has taught me the importance of questions and curiosity. I hope to use this

work and these lessons to help society foster it in education and research to create both scientists

and people who trust and can digest science communications.
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CHAPTER VI

CONCLUSION

Research not only begins with a question but also ends with one. The first section of a

research article, the introduction or background, introduces the main questions of the work. After

all the experiments and results, the last sections of a paper, the discussion and conclusion sections,

discuss the claims in the broader research context along with limitations and future work. The

scientific method is also a cycle beginning where it ended back at the question, known unknown,

or ignorance (see Figures 6.1 and 6.2). This dissertation aimed to bring these ideas to the

forefront: to automatically help researchers stay up to date on the questions in a field and spark

new ideas for future research. We created the first ignorance-base grounded in knowledge goals

and the OBOs over the prenatal nutrition literature as a proof of concept of these ideas. We

provided all the necessary tools and methods. This pilot study provided research avenues that

could affect the health and well-being of mothers and offspring globally. This work revealed and

explored the literature’s known unknowns to show how ignorance drives science and research.

“The only solid piece of scientific truth about which I feel totally confident is that we are

profoundly ignorant about nature... It is this sudden confrontation with the depth and scope of

ignorance that represents the most significant contribution of twentieth-century science to the

human intellect." (Lewis Thomas [297]).
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Figure 6.1: The scientific method from Wikipedia.
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Answered Research 
Question

EPISTEMIC INDICATION OF 
RESEARCH TOPIC, 

ASSERTION OR VARIABLES

• Unknown or novel 
research topic/assertion

• Explicit research inquiry
• Proposed/incompletely 

understood research topic 
or assertion

• Indefinite relationship 
among research variables

• Largely understood 
research topic/assertion

Anomalous/curious research 
finding

INDICATION OF BARRIER TO 
RESEARCH

• Alternative research 
options/controversy of 
research

• Difficult research task
• Research 

problem/complication

FUTURE RESEARCH ACTIVITY

• Future research work
• Future research prediction
• Important consideration 

for future research work

Known Unknowns/ Ignorance

Knowns/Answers/Facts/Not Ignorance

Knowledge 
Goals

Find the answer in 
the article to confirm 
fully answered

Find more evidence 
based on confidence (in 
increasing order)

Explore the result and 
determine if repeatable

Explore new avenues to 
overcome the barrier

Consider the future 
information

Research

Figure 6.2: Ignorance taxonomy embedded in the research context: Starting from the top, research starts
from known unknowns or ignorance. Our ignorance taxonomy is in green (an ignorance statement is an
indication of each ignorance category) with knowledge goals underneath. Research is then conducted based
on the knowledge goals to get answers; these then filter back to the known unknowns to identify the next
research questions.
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