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ABSTRACT

AI has emerged as a powerful tool in the healthcare and biomedical domains. In the field of

medicine, AI must demonstrate strong performance while adhering to human ethics. Throughout

my Ph.D., I focused on designing and developing human-centered AI tools for precision medicine,

with a special emphasis on addressing ethical concerns in medical AI. To bridge the gap between

AI and medicine, I delved into cutting-edge AI methods, including knowledge distillation, rein-

forcement learning, multi-task learning, multi-modality learning and contrastive learning. To make

our contribution focused, I specialized in the phenotyping, disease diagnosis, organ transplant, and

health event prediction scenario which are essential medical tasks. Four-folds challenges of design-

ing human-centered AI framework towards precision medicine are summarized as (1).Trade-off be-

tween performance and fairness, (2).AI integration in clinical workflow, (3).Multi-task prediction

on related medical indicators. (4).Multi-modality EHR data. To comprehensively investigate the

fairness issue in the clinical prediction algorithm, I conduct extensive experiments on the disease

diagnosis to benchmark the performance and bias in the electronic phenotyping. I design a two-

step debiasing strategy with unbiased knowledge distillation to predict the graft failure after liver

transplant fairly and precisely. In order to support the doctor’s clinical decision, FairAlloc frame-

work is proposed to directly generate accurate and unbiased patient prioritization decisions with

reinforcement learning. To simultaneously predict highly related medical indicators, CoD-MTL is

designed to take advantage of multiple highly related tasks to predict multiple cause-of-death after

the liver transplant. When it comes to multimodal EHR data, I design a cross-modality knowledge

distillation framework to distill the knowledge from LLM into the predictive model on structured

EHR. My research efforts paved a way to design powerful and trustworthy AI frameworks to sup-

port precision medicine with human-centered AI principles.
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1. INTRODUCTION

1.1 Background and Related Work

Precision medicine [1] has become the focus of the biomedicine field, with more and more

research and clinical efforts being invested in this area. The core of precision medicine is precisely

identifying, diagnosing, treating each individual patient with their personal genetics, symptom

and environment in consideration. With the development of techniques to record the healthcare

and biomedicine data, large scale medical data becomes accessible, e.g., electronic health records

(EHR) [2]. Artificial Intelligence (AI) has shown its promising performance when trained on large

scale data and has non-trivial applications in the medical domain with its transformative power in

prediction and analysis [3]. For example, surgical robots can assist the doctor with the surgery [4],

AI powered medical chatbot can serve as the assistant for patients [5], etc. Before grounding the

AI in medicine tasks, we need to make sure the medical AI system performs towards human good.

However the ethical issue e.g., fairness [6], robustness [7, 8], etc is less investigated in medical

AI compared to model performance like accuracy, precision, etc. So we need to develop human-

centered AI (HAI) framework to support the precision medicine. We summarize the related works

as follows.

Human-centered AI: Human-centered AI aims to design AI system that does human good

and benefit the human beings [9]. The AI model needs to be unbiased, robust, and interpretable for

human to apply it. In this dissertation, we will focus on the bias issue of AI model from the human

perspective. The fairness of the AI requires the model outcome to be unbiased across different

subgroups [10]. There are many initial efforts put into the fair AI from the ML community. For

example, there are adversarial debiasing strategy [11], fairness regularization [12], etc. However,

the fairness needs to be specially defined in many medical tasks and the debiasing strategies needs

to be specially tailored for different medical scenarios [13].

Precision Medicine with AI: Precision medicine can be boosted by AI with its strong power in
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the prediction and generation [14]. For example, AI can provide precise diagnosis of diseases [15],

identify the phenotype from large group of patients [16], recommend the treatment for patients [17],

etc. The AI system in medicine can support the doctors clinical decision rather than replacing

them [18]. With more precise information and predictions on the hand, the doctor will make more

informed decisions. However, direct usage of AI to support the precision medicine may cause

some issues like bias, untrustworthy, etc [19]. Thus we need to take the consideration of ethical

issue of AI in precision medicine [20].

To guide the development of medical HAI, we summarize three aspects corresponding to pa-

tients, doctors and developers respectively. (1). How to make sure the AI prediction is fair? (2).

How does AI generate precise and fair ranking? (3). How to let AI take multi-modality data and

perform multi-task like human? I put my research efforts around these three research questions

with an emphasis on a wide range of medical applications including disease diagnosis, phenotyp-

ing, organ transplant, health event prediction, clinical decision support, etc.

1.2 Motivations and Challenges

For the first research question, we investigate the fairness and bias issue in the model prediction.

The AI models could tend to be biased towards some underrepresented groups. How to make

sure the predictions is fair and unbiased is our goal. However, there is a trade-off between the

performance and fairness when we mitigate the bias of model predictions. So, we summarize

the challenge (1) as: How to make a trade-off between performance and fairness. Because the

performance and fairness are both very essential and the balance between them is a challenging

task [21]. For the second research question, we find that the direct usage of AI predicted score

in the clinical decision may incur the bias, even when the score is predicted with precision and

fairness. The challenge (2) can be summarized as: How to generate precise and unbiased clinical

decisions. From the prelim experiments, we show that the direct use of AI outputs in the organ

transplant allocation will lead to the bias in patient prioritization. How to integrate the AI in

the current clinical workflow to support the doctors clinical decision remains as a challenge [22].

For the third research question, we discuss the design of medical AI framework that is inspired
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by human expertise. The human doctors will refer to multiple medical records with different

modalities, e.g., radiology image, structured EHR, biomedical signal, etc [23]. Meanwhile, the

doctor will usually have multiple tasks to do simultaneously, e.g., multiple potential diseases to

diagnosis, treatment plan recommendation, etc [24]. Thus, we are inspired to design multi-task

medical AI frameworks on multi-modality medical data. The challenge (3) is: How to leverage

the inner and natural relations between different medical indicators. For example, the rejection

and infection after the transplant are highly related [25], how to take advantage of this relation

and precisely predict multiple indicators at the same time. The challenge (4) can be summarized

as: How to learn from the multi-modality medical data. To tackle these 4 challenges, I have the

contributions as follows.

1.3 Contributions

This dissertation aims to develop human-centered AI framework that can effectively support

the precision medicine. We design novel methods to help the AI framework better collaborate the

doctors in decision making and guarantee the precise as well as ethical outputs of AI model. As the

prelim works, we conduct extensive experiments to benchmark the bias in health predictive mod-

els via the electronic phenotyping task. This benchmark comprehensively shows the non-trivial

bias existing in the medical AI models. For the challenge (1), we design a two-step debiasing

framework to precisely and fairly predict the medical outcomes in the context of organ transplant.

The fair-aware knowledge distillation is elaborated to improve the prediction precision as well as

constrain the bias in outputs. The bias exists in both knowledge distillation and end-to-end training

stage, for which we should both apply the fairness regularization. For the challenge (2), we further

illustrate the fairness in prediction score is not identical to the fairness in ranking, which is a very

important task in the clinical decision. We propose a policy generation framework with reinforce-

ment learning, which can directly generate precise and unbiased ranking policy to prioritize the

patients for organ transplant. The fairness in ranking problem is defined from the computational

perspective. In this work, we will consider both group and individual level fairness. The reinforce-

ment learning can directly optimize the utility goal and the fairness goal which are non-differential
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objectives. For the challenge (3), we design a multi-task learning framework to distill multiple

tree-based model into the neural networks to learn the inner relations between post-transplant out-

comes and predict them simultaneously. This framework take advantage of the superiority of tree

model on tabular data and distill them into the heads part of multi-task learning framework. For

the challenge (4), we design a framework to learn from multi-modality EHR data. To efficiently

and effectively take advantage of large language model (LLM), we propose a cross-modality distil-

lation framework to distill the knowledge from LLM into the predictive Transformer on structured

EHR data. Meanwhile, we also model the patient similarity with contrastive learning. So the

multi-modaltiy and patient similarity can be learnt within the same framework.

In summary, our contribution have five folds:

• A comprehensive benchmark to identify and mitigate the bias in electronic phenotyping. We

evaluate the bias of baseline ML models on the phenotyping task and the effectiveness of

commonly used debiasing strategies.

• The precise and fair medical outcome predictions achieved by a two-step debiasing frame-

work and fair-ware knowledge distillation strategy. This framework is validated on the post-

transplant outcome analysis in liver transplant.

• A clinical decision support framework that aims to optimize both utility and fairness goal

with reinforcement learning. The results shows the generated policy can significantly reduce

the bias in decision making.

• The novel tree-distilled multitask learning framework that can learn multiple related medical

tasks on EHR data. The results further shows the power of AI in personalized medicine.

• A cross-modality framework is proposed to distill the knowledge from large language model

(LLM) to boost the performance of predictive model on structured EHR data. We also model

the patient similarity with the contrastive loss to further improve the performance on health

event prediction.
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1.4 Overview

The dissertation is organized as follows:

• Chapter 2: We will introduce the importance of electronic phenotyping and the bias in

current electronic phenotyping methods. The debiasing strategies are evaluated on different

baseline ML models for phenotyping.

• Chapter 3: We will introduce how to design a precise and fair predicting model. A two-step

debiasing strategy and tree distillation method will be described with more details.

• Chapter 4: We will introduce the FairAlloc, a pipeline to directly generate precise and fair

organ allocation policies by ranking the patients on waiting list.

• Chapter 5: We will introduce tree-based multitask learning framework that can process mul-

tiple tasks simultaneously. This chapter will also introduce a case study on the personalized

treatment example.

• Chapter 6: We will introduce the CKLE framework, which distill the cross-modality knowl-

edge from LLM and learn the patient similarity with contrastive loss. The effectiveness of

CKLE is validated on cardiovascular health event predictions.

• Chapter 7: We summarize the dissertation by providing key insights and our contribution

in this line of research. Meanwhile, we provide several promising directions in the future.
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2. MEDICAL HAI WITH ELECTRONIC PHENOTYPING BIAS BENCHMARK

2.1 Overview

Electronic phenotyping is a fundamental task that identifies the special group of patients, which

plays an important role in precision medicine in the era of digital health. Phenotyping provides

real-world evidence for other related biomedical research and clinical tasks, e.g., disease diagnosis,

drug development, and clinical trials, etc. With the development of electronic health records, the

performance of electronic phenotyping has been significantly boosted by advanced machine learn-

ing techniques. In the healthcare domain, precision and fairness are both essential aspects that

should be taken into consideration. However, most related efforts are put into designing phenotyp-

ing models with higher accuracy. Few attention is put on the fairness perspective of phenotyping.

The neglection of bias in phenotyping leads to subgroups of patients being underrepresented which

will further affect the following healthcare activities such as patient recruitment in clinical trials.

In this work, we are motivated to bridge this gap through a comprehensive experimental study to

identify the bias existing in electronic phenotyping models and evaluate the widely-used debiasing

methods’ performance on these models. We choose pneumonia and sepsis as our phenotyping tar-

get diseases. We benchmark 9 kinds of electronic phenotyping methods spanning from rule-based

to data-driven methods. Meanwhile, we evaluate the performance of the 5 bias mitigation strategies

covering pre-processing, in-processing, and post-processing. Through the extensive experiments,

we summarize several insightful findings from the bias identified in the phenotyping and key points

of the bias mitigation strategies in phenotyping.

2.2 Introduction

Phenotyping stands as a cornerstone in the realm of biomedical research, serving as the linch-

pin that enables medical practitioners to accurately pinpoint diseases [26, 27], facilitates the ac-

celeration of drug development [28], and plays a pivotal role in the meticulous design of clinical

trials [29]. Its foundational significance reverberates throughout the entire healthcare ecosystem,
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fundamentally shaping the trajectory of patient care, research advancements, and medical innova-

tion as illustrated in Figure 2.1.

Riding the wave of progress in electronic health records within the biomedical domain [30],

the landscape of phenotyping has undergone a remarkable transformation, driven by the integra-

tion of cutting-edge computational methodologies, including advanced statistical analyses and ar-

tificial intelligence techniques [31]. As a result, electronic phenotyping methods have consistently

demonstrated their prowess, exhibiting exceptional precision and efficiency across a multitude of

scenarios [32]. This evolution heralds a new era in healthcare, one where data-driven insights are

poised to revolutionize medical diagnosis and treatment.

However, bias is an inevitable factor in computational-based phenotyping methods, and its

implications extend to various biomedical activities, including clinical trial design [29]. In this

work, we will focus on the group bias which indicates the bias between different patient subgroups

to make our contribution focused. For instance, when minority groups are underrepresented in

the phenotyping process, this bias carries over to clinical trials during patient recruitment [33].

Addressing bias in electronic phenotyping poses a dual challenge for several reasons. Firstly, iden-

tifying bias from a computational standpoint is complex, as it often originates from two primary

sources: data bias and model bias. Secondly, mitigating bias in electronic phenotyping and select-

ing appropriate debiasing techniques for different phenotype applications require careful consider-

ation.

We are, therefore, highly motivated to embark on an extensive investigation aimed at identify-

ing and mitigating biases within the realm of electronic phenotyping. This comprehensive study

will encompass a meticulous review of prevalent electronic phenotyping methodologies, diligently

scrutinizing the inherent biases within these approaches. Subsequently, we will delve into the

computational aspects of bias identification and mitigation. Our research will encompass practical

experiments designed to assess both the prevailing biases within existing electronic phenotyping

algorithms and the efficacy of widely employed debiasing techniques. In addition, we present

pivotal insights derived from our extensive experimentation. These findings encapsulate valuable
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Figure 2.1: Overview of the identification and mitigation of the bias in electronic phenotyping.

knowledge and discoveries that shed light on the intricacies of electronic phenotyping and bias mit-

igation. By undertaking this multifaceted examination, we aim to pave the way for more equitable

and unbiased electronic phenotyping practices. The contributions of this work can be succinctly

summarized in three key aspects as follows:

• We benchmark and analyze the bias of 9 commonly used phenotyping models from the

computational perspective.

• We evaluate 5 machine learning-based debiasing strategies for the phenotyping models. We

analyze the advantages and disadvantages of each category debiasing strategy.

• We conduct extensive experiments to identify and mitigate the bias on pneumonia and sepsis

phenotyping tasks and summarize insightful key findings from the experimental results.

2.3 Background

In this section, we embark on a comprehensive exploration of prevalent electronic phenotyping

methods, classifying them for clarity and context. Subsequently, we delve into an insightful dis-
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cussion on the latent biases that can emerge within these methods, dissecting them from both the

data and model perspectives.

2.3.1 Electronic Phenotyping Methods

We categorize the electronic phenotyping methods into 4 categories, which are rule-based,

traditional machine learning, neural network, and tensor factorization as shown in Figure 2.1(c).

Rule-based Method: Rule-based method is one of the most fundamental and widely applied

phenotyping techniques [34, 35]. The core idea is to heuristically identify the phenotypes from elec-

tronic health records by the expert-defined rules. The widely adopted rule-based methods benefit

from the characteristics of interpretability, simplicity, and ease of implementation. PheKB [34] is

a public rule-based phenotyping algorithm that is widely used. However, due to the human-defined

rules are usually limited to some specific scenarios, they are hard to adapt to different disease or

patient distributions. For example, Kho at al. [36] designed a phenotyping method specialized for

type II diabetes.

Traditional Machine Learning: The main kinds of traditional machine learning include logis-

tic regression (LR) [37], tree-based methods [38, 39], and SVM [40]. These methods don’t require

large amounts of data in the training stage. Feature engineering [41] is an essential step for these

methods to achieve competitive performance which will also require domain expertise. While tra-

ditional machine learning has found applications in various disease phenotyping tasks [42, 43],

Li et al. introduced Xrare [44], which leverages Gradient Boosting Decision Trees (GBDT) for

diagnosing rare diseases from genetics and phenotypic data. Nonetheless, these methods still have

limitations that impact their performance and adaptability. For instance, SVM is tailored for bi-

nary classification, rendering it impractical for multiclass phenotyping. LR is sensitive to outlier

data [45], which is very common in EHR [46], and the tree-based model needs laborious hyper-

parameter tuning for a stable performance [47].

Neural Network: With the increasing availability of electronic health records [48], neural

networks have garnered significant attention in the healthcare domain due to their outstanding

performance [49]. Their robust performance is primarily attributed to large-scale training data.
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Furthermore, the diverse architectures of neural networks facilitate seamless adaptation to vari-

ous tasks; for instance, RNN-based networks effectively process temporal EHR data [50], while

Transformer-based models excel in clinical text analysis [51]. However, their inherent black-box

nature [52] poses a challenge in real-world applications [53, 54]. Additionally, the scarcity of

data in certain rare disease phenotyping tasks may render direct application of neural networks

unfeasible [55].

Tensor factorization: Alongside traditional machine learning and neural network models, ten-

sor factorization stands out as another prominent computational phenotyping method [56, 57]. Ho

et al. [56] propose Limestone to generate patients’ phenotypes without supervision. Afshar et al.

designed a framework TASTE [57] for the temporal EHR data. Tensor factorization has the abil-

ity to break down high-dimensional patient data into more manageable low-dimensional vectors,

which can then serve as phenotypes for various downstream tasks.

Given the strengths and weaknesses of these electronic phenotyping methods, the selection of

the most suitable approach should be tailored to the specific task and application context.

2.3.2 Bias in Electronic Phenotyping

We conduct a comprehensive analysis of bias in electronic phenotyping, examining it from both

data and model perspectives as presented in Figure 2.1(a). Bias in phenotyping becomes evident

when we observe variations in the method’s performance across different subgroups defined by

sensitive attributes like gender, race, and other factors. The origins of potential bias and their

impact on phenotype outcomes will be discussed in greater detail below.

Data-level bias: The EHR data encompasses a diverse range of sources, including lab tests,

diagnosis codes, treatment codes, and more. Given that electronic phenotyping methods heavily

rely on data, any bias within the data significantly impacts the phenotyping outcomes. We cate-

gorize data bias into two main types: human decision bias and patient distribution bias. Human

decision bias arises from clinical judgments, where certain records, such as diagnoses [58] and

treatments [59], may exhibit biases due to human clinical decisions. For instance, phenotype rules

crafted by humans may inadvertently underrepresent certain subgroups [58]. On the other hand,
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patient distribution bias indicates an imbalance in patient representation due to disparities in cohort

selection procedures. This can occur when minority patient groups are underrepresented, possibly

stemming from limited access to the healthcare system [60]. It’s crucial to recognize that biases at

the data level inevitably permeate into the models trained on such data [10].

Model-level bias: The bias in the phenotyping model will also affect the phenotype fairness.

As described in Section 2.3.1, the bias can be summarized into two categories. The first one is

the bias in human-defined rules, which usually exists in some heuristic phenotyping methods like

the rule-based method [58]. The second one is algorithm bias which commonly exists in artificial

intelligence methods. The artificial intelligence algorithm will be trained toward optimal prediction

accuracy while sacrificing fairness [61, 62]. There will be prediction disparities between different

subgroups, e.g., some subgroups will have more positive predictions, the accuracy will also be

higher on some subgroups, etc [12].

The presence of bias in electronic phenotyping can lead to unfair treatment of certain patient

subgroups. Moreover, the patient cohorts derived from phenotyping may introduce bias into sub-

sequent processes, such as the recruitment of patients for clinical trials. Addressing bias in pheno-

typing, both at the data and model levels, represents an ongoing challenge and an area for further

research.

2.3.3 Bias Mitigation Method

The methods for mitigating bias can be classified into three categories: pre-processing, in-

processing, and post-processing [12]. These approaches are implemented at various stages within

the electronic phenotyping pipeline as demonstrated in Figure 2.1(d).

Pre-processing method: Pre-processing method [63, 64] aims to remove the bias-related in-

formation in the input data. There are two kinds of input bias-related information. The first one

is sensitive features (explicit bias information) such as gender and race for which we can directly

remove them. The second one is implicit bias [65, 66]. For example, the zip code is not a sensitive

attribute but may be related to the race population. Moreover, we can resample the subgroups in

the training data or re-weight each sample to mitigate the bias in training [63].
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Table 2.1: Statistical summary of MIMIC-III database

# Patients # Healthy # Diagnoses # ICD codes # Medications

MIMIC-III 38699 7821 15692 5435 1339918
Pneumonia 1419 1419 \ 1606 954

Sepsis 1096 1096 \ 1513 892

In-processing method: In-processing method focuses on the model training part. The in-

processing method will guide the model to be trained for unbiased predictions by adding fairness-

related constraints or regularization. This kind of method is the most commonly used one in the

machine learning community because of its flexibility and generalizability for different scenarios

and settings. One kind of in-processing method is adding regularization, e.g., neural network

local interpretation during the training stage [67, 68]. Another main category of the method is

adversarial learning, which will train a model for prediction and another model for adversarial

classification [66, 69].

Post-processing method: The post-processing method directly processes the model outputs

to force the outputs to be less biased. This method can be widely applied to various kinds of

methods but it needs the patients’ sensitive attributes which may be unavailable due to the private

issue [70, 71].

2.4 Datasets and Methods

2.4.1 Datasets and Tasks

Pneumonia and sepsis phenotype. We use the widely applied MIMIC-III [72, 73] as the

dataset for the following experiments in this work. Based on the MIMIC-III, we choose pneumonia

and sepsis as our target phenotyping diseases because of their significant importance [74, 75].

Cohort selection. We select the target patient cohort based on their "DIAGNOSIS" feature in

the "ADMISSIONS" file. We filter out 1419 patients diagnosed with pneumonia and 1096 patients

diagnosed with sepsis as shown in Table 2.1. For the negative patients, we randomly sampled the

same number as the positive patients from the neonatal patients in MIMIC-III.
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Data processing. We extract the diagnostic codes and drug names from the patients’ histories.

We follow the data preprocessing procedures in TASTE framework [57] to group these ICD-9

codes and medical names into higher-level categories to avoid the potential data leakage issue

in the following model training. We will first convert the ICD-9 codes to the ICD-10 codes and

respectively use the Clinical Classification Software (CCS) system and the Anatomical Therapeutic

Chemical (ATC) classification system to transfer ICD codes and drug names into more general

classifications. The large number of features from ICD codes and medications has been reduced

discernibly to CCS and ATC codes. For pneumonia, we get 232 CCS codes and 285 ATC codes.

For sepsis, we get 231 CCS codes and 270 ATC codes. As each patient may have multiple visits,

we formulate the input containing both temporal features and static features. We formulate the

input as 3D tensors [57] consisting of patients, hospital visits, and temporal attributes. For the

sensitive attributes, we chose gender and race as the research targets.

2.4.2 Study Design

In this section, we will introduce the proposed study design to comprehensively investigate and

mitigate the bias in electronic phenotyping. First, we will discuss how to quantitatively identify

and measure the bias in phenotyping with two bias metrics. Then, we will investigate how to

mitigate the bias from the computational perspective.

Identify bias in electronic phenotyping. To investigate the bias in electronic phenotyping

comprehensively, we first benchmark 4 main categories of widely used phenotyping methods as

described in Section 2.3.1. We include 9 electronic phenotyping methods in this work, which

are the rule-based method, logistic regression (LR) [37], random forest (RF) [39], SVM [40],

gradient boosting decision tree (GBDT) [38], MLP [76], RNN [50], and LSTM [77]. We use

the ROCAUC as metrics to measure the phenotyping accuracy and demographic parity difference

(DPD), and equality odds difference (EOD) as the bias metrics. We will introduce the details

of the phenotyping methods and metrics in Section 2.4.3.1. We will analyze different methods’

performance on the phenotyping tasks and the bias respectively.

Mitigate bias from the computational perspective. We evaluate three main categories of de-
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biasing algorithms as introduced in Section 2.3.3 to mitigate the phenotyping bias. We choose

2 pre-processing debias method, 2 in-processing debias method and 1 post-processing debias

method. All these representative debiasing methods will be tested on the phenotyping methods

described above if applicable. We will use the bias and performance metrics to investigate the

mitigation effectiveness of different debiasing methods on various phenotyping algorithms.

2.4.3 Methods

2.4.3.1 Bias measure metrics

We will introduce the details of two bias metrics and their clinical meaning in the electronic

phenotyping as follows. We use Ŷ to denote the prediction of the phenotyping model, Y to denote

the true label, and S to denote the sensitive attribute of each patient, e.g., gender, race, etc.

Demographic Parity Difference (DPD): The DPD measures the disparities of positive model

outputs between different subgroups as shown in the equation (2.1). In the context of phenotype,

the positive outputs indicate the diagnosis of specific diseases. DPD implies the bias in the proba-

bility of diagnosis between different patient groups.

DPD = |P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)| (2.1)

Equalized Odds Difference (EOD): The EOD measures the disparities of true positive out-

comes between different subgroups as presented in the equation (2.2). EOD measures the bias of

correctly identifying patients with specific diseases or phenotypes.

EOD = |P (Ŷ = 1|Y = 1, S = 0)− P (Ŷ = 1|Y = 1, S = 1)| (2.2)

2.4.3.2 Eletronic phenotyping methods

We formulate four categories of phenotyping methods as follows.

Rule-based methods: Rule-based methods are usually human-defined if...else... rules, whose

inputs are selected features Xselected, e.g., ICD-codes, etc. Rule-based methods can be represented
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as follows in general.

Ŷ = Rules(Xselected) (2.3)

The rule-based method adopted in this work is based on the PheKB.

Traditional machine learning: Traditional machine learning methods consist of training and

testing stages and require feature engineering on the raw patient data Rawtrain, Rawtest. We for-

mulate the traditional machine learning phenotype pipeline as follows:

Xtrain, Xtest = FE(Rawtrain, Rawtest) (2.4)

Ŷtrain = ML(Xtrain) (2.5)

Ŷtest = ML(Xtest), (2.6)

where ML models can be LR, RF, GBDT, and SVM in this work.

Neural networks: Neural network needs to design the network architecture and train on large-

scale data. We formulate the phenotyping method with the neural network as follows.

Ŷtrain = NN(Xtrain, θ), Loss = l(Ŷtrain, Ytrain) (2.7)

Ŷtest = NN(Xtest, θ), (2.8)

where θ is the trainable parameters of the neural network and the loss function l can be binary

cross entropy. We choose MLP, RNN, and LSTM these three representative models to instantiate

NN in this work.

Tensor factorization: Tensor factorization algorithm decomposes the input data into latent

factor matrices for all three dimensions. We use the latent factor matrix of patient dimension
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for our phenotyping task and one machine learning algorithm as the classifier. This phenotyping

method can be formulated as follows.

Mp,M v,M t = TF (X), Loss = l(Mp ·M v ·M t, X) (2.9)

Mp
train,M

p
test = split(Mp) (2.10)

Ŷtest = ML(Mp
test), (2.11)

where X represents the raw input and split() is to separate the whole dataset into train and

test sets. TF represents the tensor factorization process, and the loss function is based on the cross

entropy between the product of the resulting three latent factor matrices and the raw input data. We

choose PARAFAC [78] as the tensor factorization algorithm and LR as the classifier in this work.

2.4.3.3 Debiasing methods

We formulate three kinds of debiasing methods as follows.

Pre-processing debias: One kind of pre-processing debias method will be operated on the

input data to remove the explicit and implicit bias features. Specifically, we utilize the Pearson

Correlation Coefficient (PCC) to determine the level of correlation between the two variables and

set a threshold to remove strongly correlated features that exceed this threshold. This process can

be presented as follows.

Xdebias = Remover(X, threshold) (2.12)

Ŷ = Model(Xdebias), (2.13)

where Remover() is the algorithm that removes the sensitive related features, for which we

choose correlation remover in this work. The threshold is manually set for determining if the

feature should be eliminated.

16



Another pre-processing debias method is resampling, which resample the ratio of different

subgroups to make the balance of them. The process can be represented as follows.

Xresample = Resampler(X,S) (2.14)

Ŷ = Model(Xresample), (2.15)

In-processing debias: In-processing debias method performs during the model training stage.

One method to guide the model to be trained toward fair predictions is by adding some fairness

constraints, which is one kind of widely applied method. In our experiment, the classification

reduction algorithm [79] is adopted for this guiding. Typically, the objective of this algorithm is

to minimize the disparity in prediction between different groups during the training process. This

process can be presented as follows.

Ŷ = Model(X), (2.16)

Loss = l(Ŷtrain, Ytrain) + fairness_constraint, (2.17)

where fairness_constraint is the regularization that ensures the prediction fairness, for which

we use demographic parity constraint in this work.

Another mainstream of the in-processing debiasing method is adversarial learning, which will

train a predictor model and an adversary model. The predictor model will be trained with conven-

tional strategy as shown below.

Ŷtrain = Predictor(Xtrain, θP ), LP = l(Ŷtrain, Ytrain) (2.18)

Meanwhile, an adversary model will be trained to predict the sensitive attributes based on the
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predictions from the Predictor model. This process can be formulated as follows:

Ŝtrain = AdverseNN(Ŷtrain, θA), LA = l(Ŝtrain, Strain) (2.19)

The overall optimization goal is combining two losses of predictor network and adversary

model as follows.

L = αLP + βLA, (2.20)

where α, β are hyper-parameters that control the ratio of two losses. In this work, we use the

adversarial debiasing method proposed by Zhang et al. [11].

Post-processing debias: Post-processing debiasing method directly calibrates the model out-

puts, which can be formulated as:

Ŷ = Model(X), (2.21)

Ŷcal = Calibrator(Ŷ ), (2.22)

In this work, a threshold-based post-processing technique is employed as a method of calibra-

tion, based on the principle of equality of opportunity in model predictions, as articulated by Hardt

et al. [71].

2.4.4 Implementation Details

This section introduces the implementation details of different types of rule-based and machine

learning models.

Algorithm implementation: In our experiment, all algorithmic implementations have been

actualized within the Python 3.8 environment. We leverage the rule-based algorithms available
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from the Phenotype Knowledgebase (PheKB) [34] community as part of our analytical framework

on the MIMIC-III. Furthermore, we leverage the scikit-learn library to implement traditional ma-

chine learning methodologies, employing the tensorly library for tensor factorization algorithms

and the PyTorch library for the development and deployment of our neural network models. For

the critical task of debiasing methods, we call upon the 0.9.0 version of the fairlearn library for

the traditional machine learning implementation. However, in instances where the fairlearn library

does not provide any support, we undertake the development of our own debias procedures for our

models.

Model and training detail: In pursuit of robust and reliable results during the training phase,

we rigorously employ a 5-fold cross-validation methodology, thereby facilitating the robust estima-

tion of our measuring metrics. In configuring the training hyperparameters, we set the maximum

iterations for logistic regression (LR) and support vector machines (SVM) to 120, while opting for

a total of 30 estimators for tree-based models. The hidden size of both LSTM and RNN models is

set to 128. For neural network models, we deliberately define key parameters, specifying a learn-

ing rate of 1e− 04, a minibatch size of 256, and an epoch number of 40 to ensure convergence and

effective training. Additionally, in the context of tensor factorization, we establish the rank of the

latent factor matrix at 20.

2.5 Results

We analyze the experiment results from two perspectives. The first one is bias measurement in

the phenotyping. The other is how the debiasing algorithms perform.

2.5.1 Bias Measurement in Phenotyping

We summarize several key findings from the bias measurement results in two diseases pheno-

typing as follows.

• The electronic phenotyping bias across races is more significant than genders. From

Table 2.2, we can observe the race DPD bias is about 7% higher than the gender bias on

average across different phenotyping methods without debiasing strategies. From Table 2.4,
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Table 2.2: Debiasing results of pneumonia phenotyping (Demographic Parity Difference. Correla-
tion remover and resample are the pre-processing methods. Reduction and adversarial mitigation
are the in-processing methods. Threshold optimizer is a post-processing method.)

Disease
phenotyping

Rule
Based

Machine
Learning

Tensor
Factorization

Deep
Learning

Sensitive
Attribute

Debias
Method

PheKB-ICD LR RF SVM GBC PARAFAC+LR MLP RNN LSTM

Gender
(Input include)

Correlation
Remover

0.000 0.031±0.001 0.036±0.001 0.047±0.001 0.037±0.001 0.037±0.001 0.041±0.001 0.041±0.001 0.040±0.001

Resample 0.010 0.036±0.001 0.040±0.001 0.043±0.001 0.038±0.001 0.037±0.001 0.038±0.001 0.035±0.002 0.037±0.001
Reduction / 0.039±0.001 0.036±0.001 0.039±0.001 0.037±0.001 0.047±0.001 0.036±0.001 0.036±0.001 0.035±0.001
Threshold
Optimizer

0.000 0.049±0.001 0.045±0.000 0.052±0.001 0.045±0.001 0.048±0.001 0.053±0.001 0.043±0.001 0.040±0.001

Adversarial
Mitigation

/ / / / / / 0.043±0.001 0.038±0.001 0.087±0.014

w/o debias 0.000 0.031±0.001 0.036±0.001 0.047±0.001 0.037±0.001 0.037±0.001 0.041±0.001 0.064±0.001 0.040±0.001

Race
(Input include)

Correlation
Remover

0.006 0.127±0.002 0.141±0.001 0.039±0.000 0.142±0.001 0.131±0.001 0.146±0.001 0.150±0.001 0.148±0.001

Resample 0.036 0.024±0.001 0.028±0.000 0.024±0.000 0.027±0.000 0.045±0.003 0.026±0.000 0.021±0.000 0.026±0.000
Reduction / 0.082±0.002 0.088±0.001 0.052±0.002 0.098±0.001 0.049±0.001 0.074±0.001 0.064±0.002 0.060±0.002
Threshold
Optimizer

0.001 0.034±0.001 0.034±0.001 0.026±0.000 0.036±0.002 0.029±0.001 0.030±0.000 0.023±0.000 0.028±0.001

Adversarial
Mitigation

/ / / / / / 0.141±0.001 0.169±0.002 0.146±0.001

w/o debias 0.006 0.127±0.002 0.141±0.001 0.039±0.000 0.142±0.001 0.131±0.001 0.148±0.001 0.145±0.001 0.072±0.022

Gender
(Input exclude)

Correlation
Remover

0.000 0.037±0.001 0.037±0.001 0.037±0.000 0.037±0.001 0.050±0.001 0.036±0.001 0.043±0.001 0.043±0.001

Resample 0.010 0.038±0.001 0.038±0.001 0.038±0.001 0.038±0.001 0.039±0.001 0.039±0.001 0.040±0.001 0.038±0.001
Reduction / 0.037±0.001 0.037±0.001 0.037±0.000 0.037±0.001 0.050±0.001 0.037±0.001 0.040±0.001 0.042±0.001
Threshold
Optimizer

0.000 0.047±0.001 0.037±0.001 0.047±0.001 0.043±0.001 0.060±0.001 0.041±0.001 0.044±0.001 0.040±0.001

Adversarial
Mitigation

/ / / / / / 0.041±0.001 0.035±0.001 0.035±0.000

w/o debias 0.000 0.037±0.001 0.037±0.001 0.037±0.001 0.037±0.001 0.050±0.001 0.036±0.001 0.043±0.001 0.041±0.001

Race
(Input exclude)

Correlation
Remover

0.006 0.142±0.001 0.142±0.001 0.142±0.0009 0.142±0.001 0.103±0.000 0.141±0.001 0.138±0.001 0.141±0.000

Resample 0.036 0.027±0.000 0.028±0.001 0.028±0.001 0.027±0.000 0.043±0.001 0.028±0.001 0.033±0.001 0.030±0.001
Reduction / 0.126±0.002 0.144±0.002 0.125±0.001 0.123±0.001 0.101±0.001 0.135±0.001 0.136±0.000 0.138±0.000
Threshold
Optimizer

0.001 0.025±0.000 0.027±0.001 0.043±0.000 0.041±0.000 0.019±0.000 0.033±0.000 0.044±0.000 0.035±0.001

Adversarial
Mitigation

/ / / / / / 0.125±0.001 0.135±0.001 0.110±0.004

w/o debias 0.006 0.142±0.001 0.142±0.001 0.142±0.001 0.142±0.001 0.103±0.000 0.141±0.001 0.141±0.001 0.141±0.001
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Table 2.3: Debiasing results of pneumonia phenotyping (Equalized Odds Difference)
Disease

phenotyping
Rule

Based
Machine
Learning

Tensor
Factorization

Deep
Learning

Sensitive
Attribute

Debias
Method

PheKB-ICD LR RF SVM GBC PARAFAC+LR MLP RNN LSTM

Gender
(Input included)

Correlation
Remover

0.007 0.030±0.000 0.008±0.000 0.055±0.002 0.000±0.000 0.024±0.000 0.007±0.000 0.010±0.000 0.006±0.000

Resample 0.019 0.009±0.000 0.007±0.000 0.025±0.000 0.000±0.000 0.016±0.000 0.007±0.000 0.010±0.000 0.007±0.000
Reduction / 0.025±0.000 0.008±0.000 0.039±0.001 0.000±0.000 0.029±0.001 0.010±0.000 0.017±0.000 0.013±0.000
Threshold
Optimizer

0.005 0.039±0.001 0.061±0.001 0.052±0.002 0.055±0.001 0.037±0.000 0.050±0.001 0.045±0.001 0.043±0.000

Adversarial
Mitigation

/ / / / / / 0.015±0.000 0.010±0.000 0.146±0.084

w/o debias 0.007 0.030±0.000 0.008±0.000 0.055±0.002 0.000±0.000 0.024±0.000 0.007±0.000 0.011±0.000 0.006±0.000

Race
(Input included)

Correlation
Remover

0.048 0.064±0.000 0.010±0.000 0.121±0.003 0.000±0.000 0.049±0.000 0.020±0.000 0.024±0.000 0.021±0.000

Resample 0.072 0.053±0.003 0.009±0.000 0.074±0.004 0.000±0.000 0.107±0.003 0.021±0.000 0.028±0.000 0.043±0.001
Reduction / 0.102±0.001 0.093±0.001 0.116±0.002 0.074±0.001 0.140±0.002 0.110±0.001 0.125±0.003 0.135±0.003
Threshold
Optimizer

0.048 0.224±0.004 0.246±0.001 0.210±0.005 0.252±0.004 0.234±0.002 0.215±0.002 0.243±0.001 0.238±0.002

Adversarial
Mitigation

/ / / / / / 0.016±0.000 0.047±0.005 0.146±0.001

w/o debias 0.048 0.064±0.000 0.010±0.000 0.121±0.003 0.000±0.000 0.049±0.000 0.018±0.000 0.021±0.000 0.024±0.000

Gender
(Input excluded)

Correlation
Remover

0.007 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.040±0.002 0.001±0.000 0.017±0.000 0.020±0.000

Resample 0.019 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.050±0.000 0.002±0.000 0.015±0.000 0.006±0.000
Reduction / 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.040±0.002 0.000±0.000 0.019±0.000 0.020±0.001
Threshold
Optimizer

0.005 0.046±0.002 0.049±0.000 0.040±0.001 0.038±0.001 0.053±0.001 0.031±0.001 0.039±0.000 0.027±0.000

Adversarial
Mitigation

/ / / / / / 0.020±0.000 0.015±0.000 0.016±0.000

w/o debias 0.007 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.040±0.002 0.001±0.000 0.020±0.000 0.017±0.000

Race
(Input excluded)

Correlation
Remover

0.048 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.028±0.001 0.001±0.000 0.010±0.000 0.013±0.000

Resample 0.072 0.000±0.000 0.003±0.000 0.003±0.000 0.000±0.000 0.058±0.000 0.003±0.000 0.023±0.000 0.018±0.000
Reduction / 0.026±0.000 0.018±0.000 0.022±0.001 0.026±0.000 0.052±0.000 0.019±0.000 0.017±0.000 0.022±0.000
Threshold
Optimizer

0.048 0.247±0.001 0.257±0.001 0.241±0.002 0.236±0.003 0.125±0.000 0.216±0.001 0.230±0.004 0.195±0.001

Adversarial
Mitigation

/ / / / / / 0.036±0.001 0.017±0.000 0.010±0.000

w/o debias 0.048 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.028±0.001 0.001±0.000 0.012±0.000 0.012±0.000

the race DPD bias is over 12% larger than gender bias. Similarly, when the bias metric is

EOD, the race bias is 2%, 3% higher than gender bias on pneumonia and sepsis phenotyping

respectively according to the Table 2.3 and Table 2.5.

• Phenotyping bias varies across different phenotyping algorithms. Rule-based Pheno-

typing method shows significantly less bias. From Table 2.2 and Table 2.4, we can find

different phenotyping method presents various levels of bias under different settings. When

sensitive attribute is included, in pneumonia phenotyping, RNN shows the highest gender

bias, and MLP has the highest racial bias. For the sepsis phenotyping, SVM and MLP

present the highest gender bias when gender is not included in the input. Meanwhile, MLP

and RNN have the highest racial bias in sepsis phenotyping. When we exclude the sensitive
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Table 2.4: Debiasing results of sepsis phenotyping (Demographic Parity Difference)
Disease

phenotyping
Rule

Based
Machine
Learning

Tensor
Factorization

Deel
Learning

Sensitive
Attribute

Debias
Method

PheKB-ICD LR RF SVM GBC PARAFAC+LR MLP RNN LSTM

Gender
(Input include)

Correlation
Remover

0.007 0.017±0.000 0.012±0.000 0.019±0.000 0.014±0.000 0.018±0.000 0.018±0.000 0.019±0.000 0.016±0.000

Resample 0.001 0.041±0.001 0.032±0.001 0.042±0.001 0.033±0.000 0.034±0.000 0.033±0.000 0.037±0.000 0.035±0.001
Reduction / 0.021±0.000 0.012±0.000 0.025±0.000 0.014±0.000 0.042±0.001 0.019±0.000 0.016±0.000 0.019±0.000
Threshold
Optimizer

0.000 0.023±0.000 0.015±0.000 0.060±0.003 0.017±0.000 0.024±0.000 0.022±0.000 0.023±0.000 0.027±0.000

Adversarial
Mitigation

/ / / / / / 0.027±0.000 0.012±0.000 0.015±0.000

w/o debias 0.007 0.017±0.000 0.012±0.000 0.019±0.000 0.014±0.000 0.018±0.000 0.019±0.000 0.016±0.000 0.016±0.000

Race
(Input include)

Correlation
Remover

0.140 0.122±0.001 0.149±0.001 0.051±0.002 0.148±0.001 0.135±0.002 0.163±0.001 0.163±0.001 0.160±0.001

Resample 0.029 0.039±0.001 0.028±0.000 0.043±0.002 0.037±0.000 0.021±0.000 0.024±0.000 0.020±0.000 0.022±0.000
Reduction / 0.091±0.003 0.094±0.003 0.061±0.003 0.092±0.003 0.060±0.001 0.068±0.002 0.072±0.002 0.066±0.002
Threshold
Optimizer

0.004 0.041±0.001 0.033±0.000 0.028±0.001 0.053±0.001 0.029±0.000 0.035±0.001 0.047±0.001 0.047±0.002

Adversarial
Mitigation

/ / / / / / 0.158±0.001 0.156±0.002 0.166±0.001

w/o debias 0.140 0.122±0.001 0.148±0.001 0.051±0.002 0.148±0.001 0.135±0.002 0.163±0.001 0.163±0.001 0.162±0.001

Gender
(Input exclude)

Correlation
Remover

0.007 0.015±0.000 0.014±0.000 0.015±0.000 0.015±0.000 0.063±0.002 0.014±0.000 0.017±0.000 0.019±0.000

Resample 0.001 0.034±0.000 0.034±0.000 0.034±0.000 0.034±0.000 0.050±0.001 0.033±0.000 0.038±0.001 0.038±0.002
Reduction / 0.015±0.000 0.014±0.000 0.015±0.000 0.015±0.000 0.063±0.002 0.014±0.000 0.017±0.000 0.019±0.000
Threshold
Optimizer

0.000 0.026±0.000 0.025±0.000 0.020±0.000 0.019±0.000 0.050±0.001 0.016±0.000 0.026±0.000 0.020±0.000

Adversarial
Mitigation

/ / / / / / 0.013±0.000 0.010±0.000 0.023±0.000

w/o debias 0.007 0.015±0.000 0.014±0.000 0.015±0.000 0.015±0.000 0.063±0.002 0.014±0.000 0.019±0.000 0.018±0.000

Race
(Input exclude)

Correlation
Remover

0.140 0.149±0.001 0.148±0.001 0.149±0.001 0.149±0.001 0.138±0.003 0.148±0.001 0.155±0.001 0.156±0.001

Resample 0.029 0.035±0.000 0.034±0.000 0.034±0.000 0.035±0.000 0.058±0.001 0.035±0.000 0.026±0.000 0.026±0.000
Reduction / 0.127±0.000 0.147±0.001 0.138±0.000 0.125±0.002 0.127±0.001 0.149±0.001 0.156±0.002 0.154±0.001
Threshold
Optimizer

0.004 0.021±0.000 0.044±0.002 0.018±0.000 0.055±0.000 0.032±0.000 0.036±0.001 0.046±0.001 0.032±0.001

Adversarial
Mitigation

/ / / / / / 0.141±0.001 0.140±0.001 0.149±0.002

w/o debias 0.140 0.149±0.001 0.148±0.001 0.149±0.001 0.149±0.001 0.138±0.003 0.148±0.001 0.155±0.001 0.154±0.001

attribute from input features, the RNN presents the largest gender bias while 4 ML models

show the highest racial bias in both pneumonia and sepsis phenotyping. Moreover, we find

the rule-based method presents significantly less bias compared to other methods. In the

pneumonia phenotyping, rule-based method shows 4% lower gender bias and 11% lower

race bias in terms of DPD. Noticeably, observed from Table 2.3 and Table 2.5, while the

EOD gap in gender is 1% lower, the average race bias of rule-based algorithms is 1% higher.

• Exclude the sensitive attributes from input data has a trivial effect on the bias. Ex-

cluding the sensitive attributes is the most intuitive method to mitigate the bias from the

observation in Table 2.2, 2.3, 2.4, and 2.5. However, we find that after excluding the sensi-

tive attributes, the bias is still significant. In pneumonia phenotyping, the gender bias of LR,
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Table 2.5: Debiasing results of sepsis phenotyping (Equalized Odds Difference)
Disease

phenotyping
Rule

Based
Machine
Learning

Tensor
Factorization

Deep
Learning

Sensitive
Attribute

Debias
Method

PheKB-ICD LR RF SVM GBC PARAFAC+LR MLP RNN LSTM

Gender
(Input included)

Correlation
Remover

0.005 0.037±0.000 0.010±0.000 0.085±0.001 0.004±0.000 0.027±0.000 0.011±0.000 0.011±0.000 0.009±0.000

Resample 0.004 0.026±0.000 0.014±0.000 0.062±0.002 0.004±0.000 0.036±0.000 0.013±0.000 0.015±0.000 0.013±0.000
Reduction / 0.015±0.000 0.010±0.000 0.049±0.001 0.004±0.000 0.058±0.001 0.009±0.000 0.029±0.000 0.025±0.000
Threshold
Optimizer

0.010 0.029±0.000 0.014±0.000 0.121±0.002 0.012±0.000 0.027±0.000 0.019±0.000 0.020±0.000 0.020±0.000

Adversarial
Mitigation

/ / / / / / 0.046±0.002 0.016±0.000 0.007±0.000

w/o debias 0.005 0.037±0.000 0.010±0.000 0.085±0.001 0.004±0.000 0.027±0.000 0.011±0.000 0.013±0.000 0.009±0.000

Race
(Input included)

Correlation
Remover

0.093 0.093±0.001 0.010±0.000 0.129±0.007 0.006±0.000 0.063±0.003 0.038±0.001 0.049±0.003 0.038±0.002

Resample 0.062 0.056±0.004 0.010±0.000 0.087±0.004 0.007±0.000 0.111±0.003 0.048±0.000 0.063±0.001 0.063±0.001
Reduction / 0.100±0.002 0.091±0.001 0.090±0.002 0.096±0.002 0.150±0.001 0.141±0.001 0.129±0.001 0.142±0.001
Threshold
Optimizer

0.187 0.251±0.003 0.266±0.000 0.130±0.005 0.241±0.003 0.220±0.000 0.265±0.002 0.255±0.004 0.264±0.006

Adversarial
Mitigation

/ / / / / / 0.039±0.003 0.040±0.003 0.043±0.001

w/o debias 0.093 0.093±0.001 0.010±0.000 0.129±0.007 0.006±0.000 0.063±0.003 0.038±0.001 0.042±0.002 0.042±0.002

Gender
(Input excluded)

Correlation
Remover

0.005 0.002±0.000 0.001±0.000 0.002±0.000 0.002±0.000 0.091±0.006 0.000±0.000 0.029±0.000 0.033±0.000

Resample 0.004 0.002±0.000 0.006±0.000 0.002±0.000 0.002±0.000 0.093±0.000 0.004±0.000 0.027±0.000 0.031±0.000
Reduction / 0.002±0.000 0.001±0.000 0.002±0.000 0.002±0.000 0.091±0.006 0.000±0.000 0.028±0.000 0.032±0.000
Threshold
Optimizer

0.010 0.024±0.000 0.032±0.001 0.024±0.000 0.013±0.000 0.068±0.002 0.004±0.000 0.041±0.000 0.035±0.000

Adversarial
Mitigation

/ / / / / / 0.027±0.000 0.012±0.000 0.028±0.000

w/o debias 0.005 0.002±0.000 0.001±0.000 0.002±0.000 0.002±0.000 0.091±0.006 0.000±0.000 0.034±0.000 0.034±0.000

Race
(Input excluded)

Correlation
Remover

0.093 0.004±0.000 0.001±0.000 0.004±0.000 0.004±0.000 0.090±0.004 0.002±0.000 0.039±0.001 0.045±0.001

Resample 0.062 0.004±0.000 0.007±0.000 0.007±0.000 0.004±0.000 0.081±0.002 0.004±0.000 0.040±0.001 0.029±0.000
Reduction / 0.047±0.001 0.014±0.000 0.044±0.001 0.027±0.000 0.095±0.003 0.017±0.000 0.044±0.002 0.038±0.001
Threshold
Optimizer

0.187 0.229±0.003 0.253±0.005 0.225±0.001 0.280±0.005 0.134±0.001 0.264±0.001 0.232±0.002 0.255±0.001

Adversarial
Mitigation

/ / / / / / 0.015±0.000 0.022±0.000 0.032±0.001

w/o debias 0.093 0.004±0.000 0.001±0.000 0.004±0.000 0.004±0.000 0.090±0.004 0.002±0.000 0.043±0.001 0.041±0.001

RF, GBC, and LSTM increases after the gender feature is excluded, and the racial bias of

LR, RF, SVM, LSTM increases after the race is excluded. In sepsis phenotyping, RF, GBC,

RNN, and LSTM’s gender bias increases. SVM, GBC’s racial bias increases after the race

attribute is excluded.

2.5.2 Performance of Debiasing Algorithms

• The debiasing strategies are more effective on racial bias than gender bias. From the

gender part in both Table 2.2 and Table 2.4, we can find that the gender bias decreases with a

non-trivial level. The reason may be the bias across genders is relatively small and trivial. So

the debiasing method couldn’t effectively mitigate the gender bias. However, most debiasing

methods can reduce race bias significantly. For example, the race bias of MLP in pneumonia
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Figure 2.2: Pneumonia phenotype performance.

phenotyping is reduced by 12.2% with the resample debiasing method. The race bias of

SVM can be further reduced by 1.5% with resample strategy in the sepsis phenotyping task.

• Correlation removing method is not capable of mitigating the bias in phenotyping. We

can observe from Table 2.2 and Table 2.4, that removing the sensitive correlation from input

features doesn’t work for the sepsis and pneumonia phenotyping. For pneumonia pheno-

typing, the gender bias even increases a bit after the correlation removal in DL methods of

LSTM. The race bias of MLP and RNN increases after the correlation removal. The situa-

tion is similar in the sepsis phenotype. This may be caused by the input feature containing
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Figure 2.3: Sepsis phenotype performance.

little information related to the sensitive attributes.

• Resample the patients’ data and postprocess the outputs are two very simple yet effec-

tive debiasing methods. From Table 2.2 and Table 2.4, we can find resampling the patients’

data to make each subgroup size more balanced can significantly reduce the phenotype bias.

The race bias in pneumonia phenotype has been reduced by 9% on average with either of

resampling or postprocessing method. The highest gender bias can be reduced by 2.9% with

resampling on RNN. For the sepsis phenotyping task, the highest race bias decrease by 14%.

Nevertheless, the gender biases of our models are almost all below 2% and can hardly be

further reduced even with resampling or postprocessing.
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• There is a trade-off between phenotyping accuracy and bias. From Figure 2.2, we can

find that most phenotyping models’ phenotype accuracy will decrease when the debiasing

method is applied. This phenomenon also appears in sepsis phenotype as shown in Fig-

ure 2.3. So when we develop and deploy the phenotyping method, we need to make a

trade-off between accuracy and bias based on the real-world phenotyping requirement.

2.6 Discussion and Conclusion

From the experiment analysis on the main categories of phenotyping models and debiasing

methods. We will discuss some limitations and future directions of this topic. We will also con-

clude this work with several takeaways and conclusions.

In this work, we choose two common diseases which are pneumonia and sepsis. However,

there are some diseases that have specific characteristics. These specialties may make phenotyping

bias on these diseases different from the findings we summarize in this work. For example, breast

cancer is more commonly diagnosed among females compared to males [80]. The patients’ data

distribution across genders will be obviously different between females and males, which may

cause significant gender bias in phenotyping. So for some specific diseases, we need to analyze

their potential bias case by case.

We investigate the bias issue in phenotyping from a computational perspective. However, there

is still a gap between the computational perspective and the clinical perspective. Addressing this

gap represents one of the most promising and crucial directions for future research. In our future

work, we will consider developing some methods that can clearly deliver computational fairness

to the clinical practitioners and involve them to collaborate in the study. In this work, we mainly

focus on the bias mitigation strategy in the data processing, model training, and output calibration

steps. However, the data collection in healthcare is also very important. How to collect the data

containing less bias remains a promising future direction.

To summarize, we comprehensively investigate the bias and the bias mitigation methods with

pneumonia and sepsis phenotyping. From the perspective of phenotyping bias, we find that race

bias is more obvious than gender bias and the rule-based phenotyping method demonstrates sig-
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nificantly less bias than machine learning phenotyping methods. Simply excluding the sensitive

attributes doesn’t work well in bias mitigation. Moreover, from the perspective of bias mitiga-

tion, we find that resample and post-process these two methods are simple yet effective in bias

mitigation. Moreover, if the fairness of the phenotyping model improves through mitigation, the

phenotyping accuracy will be negatively affected to some extent. So the trade-off between fairness

and accuracy needs to be considered when implementing and deploying the phenotyping model.

The future work in this line of research can be derived in several directions. The first one is to

develop more advanced debiasing methods for the phenotyping models according to the task spe-

cialties. The second is to bridge the gap of fairness between computation and clinical, which will

help translate the computational debiasing methods into real-world clinical practice. The third

direction is inspired by the findings from our experimental results that we can attach more impor-

tance to the healthcare data collection stage and improve the access of healthcare resources to the

underrepresented groups.
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3. MEDICAL HAI WITH FAIR-AWARE KNOWLEDGE DISTILLATION *

3.1 Overview

Liver transplant is an essential therapy performed for severe liver diseases. The fact of scarce

liver resources makes the organ assigning crucial. Model for End-stage Liver Disease (MELD)

score is a widely adopted criterion when making organ distribution decisions. However, it ignores

post-transplant outcomes and organ/donor features. These limitations motivate the emergence of

machine learning (ML) models. Unfortunately, ML models could be unfair and trigger bias against

certain groups of people. To tackle this problem, this work proposes a fair machine learning

framework targeting graft failure prediction in liver transplant. Specifically, knowledge distillation

is employed to handle dense and sparse features by combining the advantages of tree models and

neural networks. A two-step debiasing method is tailored for this framework to enhance fairness.

Experiments are conducted to analyze unfairness issues in existing models and demonstrate the

superiority of our method in both prediction and fairness performance.

3.2 Introduction

Liver transplant is an effective treatment option for end-stage liver diseases and acute liver

failure such as hepatic failure. However, the transplant organ resources are scarce compared with

the number of patients on the waiting list [81, 82]. Hence organ assignment becomes a crucial

decision that demands careful consideration. A prevalently used assigning strategy is based on

the Model for End-stage Liver Disease (MELD) score, which estimates the patient’s current status

based on three lab test results, including serum creatinine, total bilirubin, and INR of prothrombin

time [83]. A higher MELD score indicates a worse situation of a patient, and thus a higher priority

of the patient to receive organs. The new version MELD score also includes serum sodium for

calculation [84]. For pediatric patients, the score definition is different, called Pediatric End-stage

*Reprinted with permission from "Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning" by
Sirui Ding, Ruixiang Tang, Daochen Zha, Na Zou, Kai Zhang, Xiaoqian Jiang, Xia Hu, 2022, AMIA Annual Sympo-
sium, Copyright by 2022 AMIA.
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Liver Disease (PELD) score [85]. We do not differentiate those metrics in our study.

Despite its prevalence, MELD score has two main drawbacks. First, MELD score does not

explicitly consider the post-transplant outcome [83, 86], which is an important metric for organ

distributing decisions. Our experimental results show that MELD score only has a very weak

correlation with graft failure rate (i.e., the likelihood of graft failure occurs) across genders and

races with a Pearson correlation of only 0.36653 (see Table 3.2). Second, MELD score ignores

the features of organs and donors [83, 84], which may lead to injudicious organ assigning deci-

sions. (detailed in Section 3.6.1). As such, researchers are motivated to propose various substitute

assignment strategies for liver transplant [87, 88].

Machine learning (ML) has provided data-driven solutions for the organ transplant task to bet-

ter model post-transplant outcomes. The key idea is to train an ML model that takes the features

of patients and donors as input, and outputs the predicted outcomes such as pre-transplant mortal-

ity, post-transplant mortality, etc. Then, the trained model is deployed to predict a score for each

patient-donor pair, which can help clinicians make decisions of organ transplant. Recently, various

ML models have been deployed and show promises in the organ transplant task [89, 90, 91]. For

example, Byrd et al. [92] use logistic regression and gradient boosting models to predict mortal-

ity in liver transplant. Lau et al. apply neural network and random forest to predict graft failure

after transplant [93]. Berrevoets et al. propose an interpretable method for real-time organ alloca-

tion [94].

Unfortunately, recent studies suggest that ML models could be unfair and show bias against

certain groups of people in organ transplant. Several previous studies have discussed such fairness

issues [95, 96, 97]. For example, Byrd et al. [92] show that the scores predicted by ML models

underrate the mortality of the female group. Our preliminary experiments also show that the gap

between GBDT’s positive prediction rates across different race groups can be as large as 0.637

(see Table 3.3). The unfair predictions may cause unfair decisions towards specific race groups.

Although some pioneer works point out the unfair issue, there exists no concrete solution that can

tackle such unfairness problem to the best of our knowledge. Thus, we are motivated to study the
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following research question: can we develop an ML model that is both accurate and fair for the

liver transplant task?

While fairness problems in machine learning have been widely investigated recently [12, 10],

there are few attempts to study the fairness problem in organ transplant tasks. Developing a fair

ML system with competitive accuracy for organ transplant remains a challenging task due to two

roadblocks. Firstly, organ transplant datasets contain both dense features (e.g., numerical lab test

results) and sparse categorical features (e.g., blood type of recipients and donors). For sparse

features, the existing studies simply use one-hot encoding for transformation [98]. However, one-

hot encoding could lead to unsatisfactory performance when the feature cardinality is high due

to the curse of dimensionality [99]. Secondly, it is challenging to incorporate fairness goals into

the training process. Prior work mainly adopts tree-based models [100, 101] for organ transplant

prediction due to its strong performance on handling dense inputs. However, existing bias mitiga-

tion algorithms mainly focus on the training process [12], including loss design and representation

learning [102, 103]; neither of them can be directly applied to tree-based models because of the

indifferentiable property.

To tackle these challenges, we propose a fair ML framework for liver transplant. Specifically,

we focus on the prediction of liver* transplant graft failure which is one of the most important post-

transplant outcomes. Motivated by the strong performance of DeepGBM [104] in recommendation

tasks, we use an embedding layer to handle the sparse features and a distillation network with

distilled knowledge from a tree-based model to handle the dense features. This design can not only

combine the advantages of tree-based models and deep neural networks in handling the sparse and

dense features, but also enable us to apply in-processing debiasing techniques to achieve fairness.

In particular, we devise a two-step debiasing strategy that mitigates the fairness issues in both the

knowledge distillation stage and the end-to-end training stage. We demonstrate the superiority of

our framework through extensive experiments on the Standard Transplant Analysis and Research

(STAR) dataset. Empirical results show that the proposed framework can precisely and fairly

*Liver and organ are considered exchangeable in this work when the context has no ambiguity.

30



predict graft failure across different races and genders.

3.3 Background of Fairness in Liver Transplant

In this section, we first describe fairness problems in liver transplant. Then we quantify the

unfairness using the fairness metrics adopted in the ML community.

Fairness of liver transplant. Following the existing fairness research in medical fields [105,

106, 107], we study fairness in liver transplant at the group level and focus on race groups and

gender groups. Specifically, a fair graft failure predictor should allow patients of different races and

genders to have an equal chance of receiving compatible organs. However, fairness is a subjective

term so that equal chance could have different interpretations. In this work, we consider fairness

defined from two perspectives. On one hand, we expect the patients in different groups to have an

equal percentage of being predicted as graft failed. In this sense, the patient in different groups

will tend to equally receive an organ if allocating organs based on the predicted score. On the other

hand, ML models are expected to provide an equal prediction quality for different groups, which

can be quantified by true positive rates and false positive rates of the graft failure prediction.

Fairness metrics. The above two fairness definitions correspond to two commonly used fair-

ness metrics for ML models: demographic parity and equalized odds, where the former demands

different groups to have an equal percentage of a positive outcome, and the latter requires equal

true positive and false positive rates. Specifically, we follow previous work and quantify the de-

grees of demographic parity and equalized odds with demographic parity difference (DPD) and

equalized odds difference (EOD) [108], respectively. We put detailed mathematical definitions in

Section 3.4.

3.4 Data and Problem Description

Dataset. The Standard Transplant Analysis and Research (STAR) organ transplant dataset is

collected from patients registered on the Organ Procurement and Transplantation Network (OPTN)

waiting list, de-identified by removing all the identifiers from data and randomly shifted dates

under IRB protocol approval (HSC-MS-13-0549). It consists of the biomedical information of
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both patients and organs/donors. The patients include the ones on the waiting list and the recipients

who received organ transplants. The dataset also provides follow-up records of recipients’ post-

transplant outcomes. For the graft failure prediction task, we select 160360 recipients, where 41.8%

of them suffer from graft failure. We manually choose 40 features of recipients and 40 features

from organs/donors. The race and gender of each recipient are marked as sensitive attributes.

Notations. We denote scalars as lowercase alphabets (e.g., x), vectors as boldface lowercase

alphabets (e.g., x), matrices as boldface uppercase alphabets (e.g., X). We represent the liver

transplant dataset as D = {(ri, si,oi, yi)}Ni=1, where ri ∈ RMr denotes the features of the recipient

(e.g., various kinds of lab test results, etc), si ∈ RMs denotes the sensitive features of the recipient

(e.g., the demographic information), oi ∈ RMo denotes the features of the organ, and y ∈ {0, 1}

denotes the post-transplant outcome describing whether the graft fails or not; here, Mr, Ms, and

Mo are the corresponding feature dimensions, and N is the total number of data points.

Objective. The goal is to train a model that takes ri, and oi as input, such that it can accurately

predict yi and is also fair w.r.t. the sensitive features si in terms of the fairness metrics. Previous

studies have shown that, in most times, improving fairness can harm the model performance [109].

Thus, a desirable model is expected to achieve a good tradeoff and maximize prediction perfor-

mance and fairness simultaneously.

Fairness metric definitions. We adpot two fairness metrics DPD and EOD [108] in our exper-

iments, defined as follow:

DPD = diffsP (ŷ = 1|s), (3.1)

EOD = max[diffsP (ŷ = 1 | s, y = 1), diffsP (ŷ = 1 | s, y = 0)], (3.2)

where diffs specifies the difference between the largest and the smallest value among the ones

across all s, ŷ is the model prediction, where y = 1 represents the positive outcome, e.g., graft

failed. Specifically, DPD measures the performance gap between the positive outcomes across all

groups, while EOD measures the gap between true positive rates or false positive rates based on
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Figure 3.1: An overview of the workflow for graft failure prediction.

the confusion matrix across all groups.

3.5 Methodology

In this section, we propose our method for fairly predicting graft failure. Figure 5.1 shows the

workflow, which consists of data processing, prediction model, and fairness-aware training. Firstly,

we will introduce how we process the data to extract sparse and dense features from recipients and

organs (Section 3.5.1). Then we introduce a tailored framework that takes the advantage of tree-

based models and deep neural networks to make accurate predictions (Section 3.5.2). Finally, we

present a two-step debiasing strategy to achieve fairness (Section 3.5.3).

3.5.1 Data Pre-processing

Following the data pre-processing practice in machine learning, we first impute the missing

values. Specifically, we use zeros to replace the missing values for the numeric data. Then we

identify the categorical features (i.e., the features that only have a fixed number of values) and

numerical features from the recipient and organ features. For the categorical features, we employ

two kinds of encoders, including a one-hot encoder that maps the raw features to one-hot sparse

vectors, and an integer encoder which transforms the categorical features into numerical values,
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where the latter are further concatenated with the original numerical features to serve as the final

dense features.

3.5.2 Combining Deep Learning and Tree-based Model for Graft Failure Prediction

In previous works, tree-based methods such as random forest [93] have been adopted for graft

failure prediction. However, the input space of graft failure prediction consists of both sparse

categorical features and dense numerical ones. While tree-based methods often show strong per-

formance on the dense features, they can hardly deal with the sparse features when the feature

cardinality is high due to the curse of dimensionality [99]. In addition, it is quite difficult to incor-

porate fairness constraints into the tree-based methods. To tackle these challenges, we propose to

combine deep learning and tree-based model for graft failure prediction. Our method is motivated

by the success of DeepGBM [104] in recommendation tasks, where an embedding layer and a

distillation network with distilled knowledge from a tree-based method are employed to handle the

sparse and dense features, respectively. We will first elaborate on how we process the sparse and

dense features, and then introduce the end-to-end training objective.

Sparse features. The sparse features from the recipient and the organ are combined and pro-

cessed by a categorical neural network (CatNN) [110, 111], which is an embedding lookup layer

that maps categorical indices to dense vectors, followed by feature interactions. Formally, given

a recipient r and an organ o, we denote the combined sparse features within r and o as xs. The

embedding of a sparse feature can be denoted as

EVj
(xs

j) = embedding_layer(xs
j ,Vj), (3.3)

where xs
j is the value of the j th sparse feature of xs, Vj ∈ Rc×d stores all the trainable embedding

vectors of the j th sparse feature, and c and d are the cardinality and the dimension of the embedding

table, respectively. Then a factorization machine (FM) is adopted to learn the first/second-order

interactions of these features, denoted as Efm(x
s), and a deep neural network is applied to learn the

higher order interactions of these features, denoted as Edeep(x
s). For more details of FM and the
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deep neural network, please refer to Eq. (2) and Eq. (3) in [104]. The output of FM and the neural

network are summed to obtain the final sparse representations:

yCatNN(x
s) = Efm(x

s) + Edeep(x
s) (3.4)

Dense features. Similarly, we combine the dense features of recipient r and organ o, denoted

as xd. To take the advantage of the tree-based models in handling dense features, we train a neural

network to distill the knowledge from a trained tree-based model [112]. This is not an easy task

because the structures of the trees and neural networks are naturally different. Fortunately, Ke et

al. [104] proposes an effective tree distillation strategy by distilling the clustering patterns of the

leaf nodes. First, since tree-based methods often do not use all the features but instead greedily

choose the useful features, we only select the used features of a tree to train the neural network.

Formally, let NNdense be the neural network for processing the dense features, I be the indices of

the features that are used in the tree, and xd[I] denote the used dense features. Then NNdense will

take as input xd[I]. Second, we train NNdense by distilling the knowledge of how the tree partitions

the data. Specifically, a tree-based model essentially partition the data into different clusters, where

the data in the same leaf node belong to the same cluster. We train NNdense to distill the knowledge

from such tree structure by minimizing the following loss function:

LKD =
N∑
i=1

mse(NNdense(x
d
i [I]), ci), (3.5)

where ci is the one-hot encoded cluster of the ith instance, cross-entropy(·, ·) is the cross-entropy

loss. Due to the strong expressiveness of deep neural networks, NNdense can well approximate the

tree structure. Given NNdense, the dense representations can be obtained by

yKD(x
d) = NNdense(x

d
i [I])× q, (3.6)

where q is the leaf values of the tree. For multiple trees, we learn leaf embedding to reduce the
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dimension of ci and group the trees to reduce the number of neural networks following [104]. The

leaf embeddings are trained independently based on the tree-based model and will be used as dense

representations in the end-to-end training.

End-to-end training. The final output is obtained by combining sparse and dense representa-

tions, given as

ŷ(x) = σ
(
w1 × yKD(x

d) + w2 × yCatNN(x
s)
)
, (3.7)

where w1 and w2 are trainable parameters to balance the two representations, x is combined sparse

and dense features from r and o, and σ(·) is the transformation function, such as Sigmoid. Finally,

we can train the model in an end-to-end fashion with the following loss:

L =
N∑
i=1

cross-entropy(ŷ(x), y). (3.8)

3.5.3 Bias Mitigation

This subsection proposes a two-step debiasing strategy to mitigate the unfairness in the distil-

lation stage and the final training stage, where the former focuses on the bias inherited from the

tree-based model when performing knowledge distillation, and the latter aims to achieve fairness

in the end-to-end training.

Fairness loss. Motivated by the successes of in-processing methods in debiasing machine

learning models [102, 103], we use fairness loss to incorporate demographic parity in model train-

ing. Specifically, we propose the following loss:

fairness-loss(ŷ, smaj) = (E[ŷ]− E[ŷ|smaj])
2 (3.9)

where ŷ is the prediction, smaj is the majority group, E[ŷ] is the expected prediction regardless of

the sensitive groups, E[ŷ|smaj] is the expected prediction of the majority group. The key idea is to

enforce all the sensitive attributes to have similar prediction distributions like the majority group.

In training, E[ŷ] and E[ŷ|smaj] can be approximated with a batch of data. Thus, Eq.3.9 can be
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naturally applied to the min-batch training of deep learning models.

Two-step debiasing. We propose to debias both the categorical neural network and the network

for dense features. In the first step, we achieve fair knowledge distillation by plugging in Eq. 3.9

into Eq. 3.5:

LKD =
N∑
i=1

mse(NNdense(x
d
i [I]), ci) + αKG × fairness-loss(yKD(x

d), smaj), (3.10)

where αKG is a hyperparameter to balance prediction performance and fairness. In the second step,

we incorporate the fairness constraint into the end-to-end training. Specifically, we similarly debias

Eq. 3.8 with

L =
N∑
i=1

cross-entropy(ŷ(x), y) + α× fairness-loss(ŷ(x), smaj), (3.11)

where α is a balancing hyperparameter. These two debiasing steps complement each other towards

fair final predictions, where the first step focuses on the dense representations which serve as the

input of the end-to-end training, and the second step debiases the CatNN and the embedding tables.

3.6 Experiments

In this section, we perform analysis on the datasets and conduct experiments to evaluate the

proposed framework. We mainly focus on the following research questions:

• RQ1: Does MELD score align with the post-transplant outcomes for different races and

genders (Section 3.6.1)?

• RQ2: Can the proposed framework makes accurate and fair predictions of the graft failure

(Section 3.6.2)?

• RQ3: How does each stage of debiasing contribute to the fair predictions (Section 3.6.3)?
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Race
MELD-score Number of people Receiving rate Graft failure rate

Male Female Male Female Male Female Male Female
I 20.05852 20.36856 89700 49815 0.56405 0.49941 0.32300 0.29592
II 21.56156 22.74271 10209 8131 0.60251 0.57004 0.36482 0.34067
III 21.14621 21.49130 18282 12074 0.51400 0.47176 0.27754 0.26194
IV 17.82069 19.35089 5878 3095 0.53215 0.53312 0.24616 0.25818
V 22.13557 23.38609 686 676 0.54082 0.44822 0.28032 0.28713
VI 22.20161 19.42105 248 152 0.50000 0.55263 0.26613 0.29762
VII 19.80120 20.59470 664 491 0.63253 0.60285 0.26905 0.27703

Table 3.1: Statistical information from liver transplant dataset

3.6.1 Statistical Analysis of the Liver Transplant Dataset

For statistical analysis, we select the patients from 7 main races and 2 genders with recorded

MELD scores. There are 14 subgroups intersected by races and genders. The average MELD

score and the total number of people of each divided subgroup are calculated in Table 3.1. We

can observe there are obvious gaps between each subgroups’ MELD score. The minimum MELD

score is only 76.2% of the maximum MELD score. Additionally, the size of majority races is much

larger than minority races.

Due to the variety existing in each subgroup’s MELD score and group size, we take two per-

spectives that correspond to the organ receiving rate and graft failure rate to better investigate the

liver transplant task.

• Organ receiving rate (ORR) represents the chance of a group of patients on the waiting list

to receive organs. We use the accumulated samples on the waiting list recorded receiving

liver transplants based on the MELD score as the number of receiving patients for each

subgroup, denoted as nr. The receiving rate is calculated by dividing them by the total

number of people in this group registered on the waiting list, denoted as nw.

• Graft failure rate(GFR) reflects the percentage of graft failed for a group of patients who

have received the transplant liver. We count the recorded graft failure samples, denoted

as nf , and divide it by the number of patients who already received organs, denoted as
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nr. These two metrics provide an intuitive measure to explore organ assigning and post-

transplant outcomes, which are the most essential stages in the liver transplant task.

Formally, these two metrics can be denoted as:

ORR =
nr

nw

;GFR =
nf

nr

. (3.12)

For the organ receiving rate, we can observe from the organ receiving rate column in Table 3.1

that obvious gaps exist between organ receiving rate of different subgroups. The highest receiving

rate is 0.63253 of subgroup interacted by race VII and male, while the lowest receiving rate is

0.44822 of subgroup interacted by race V and female. However, the latter subgroup’s average

MELD score is significantly higher than the former subgroup. This means the latter subgroup

should have higher priority on the waiting list, which contradicts our findings from the observed

data. This phenomenon indicates the MELD score does not align with organ receiving rate. As

presented in Table 3.2, the Pearson correlation between organ receiving rate and MELD score is

−0.32376. This means the MELD score has no close relation with the organ receiving rate from

the group-level analysis.

For the graft failure rate, we can observe that notable gaps exist between graft failure rates

across different subgroups as shown in the graft failure rate column in Table 3.1. The subgroup

with the highest graft failure rate is the male race II subgroup with a 0.36482 graft failure rate.

The lowest graft failure rate exists in race IV male groups, which is 0.24616. The MELD score of

the latter subgroup is smaller than the former subgroup. It suggests better pre-transplant medical

condition, which may explain the lower graft failure rate. To quantify and further look into the

relations between MELD score and graft failure rate, we calculate the Pearson correlation between

them. The Pearson correlation is still very weak as shown in Table 3.2. It implies the MELD-score

cannot indicate group-level graft failure rate at the post-transplant stage.

To summarize, we analyze two main components of organ transplant statistically, the organ

assignment and post-transplant outcome. The results show remarkable gaps across subgroups in
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Figure 3.2: Population size and average MELD score across races and genders.

MELD-score Population size
Organ receiving rate -0.32376 -0.02243

Graft failure rate 0.36653 0.33444

Table 3.2: Pearson correlation between demographic information and liver transplant metrics

both two components, which indicates a strong bias existing in organ transplant systems.

3.6.2 Results of Prediction and Fairness Performance

We conduct experiments to compare the prediction and fairness performance of the proposed

method with multiple baseline methods (Table 3.3). The key observation is that the proposed model

can provide competitive prediction performance with less bias across subgroups.
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Figure 3.3: Average organ receiving rate and graft failure rate across races and genders.
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Model
Sensitive attribute: Race Sensitive attribute: Gender

ROC AUC DPD EOD ROC AUC DPD EOD
MELD-score 0.505±0.000 — — 0.505±0.000 — —

Logistic Regression 0.777±0.000 0.648±0.017 0.834±0.007 0.777±0.000 0.021±0.000 0.033±0.001
Random forest 0.804±0.000 0.630±0.030 0.703±0.047 0.804±0.000 0.020±0.001 0.036±0.001

GBDT 0.809±0.000 0.637±0.027 0.713±0.033 0.809±0.000 0.017±0.000 0.031±0.001
W/o first-step 0.793±0.000 0.596±0.022 0.687±0.038 0.792±0.000 0.016±0.002 0.027±0.002

W/o second-step 0.793±0.001 0.616±0.041 0.745±0.076 0.793±0.001 0.014±0.007 0.026±0.009
Ours 0.792±0.000 0.597±0.015 0.662±0.029 0.793±0.001 0.011±0.001 0.022±0.003

Table 3.3: Comparison of prediction and fairness performance on graft failure prediction

Compared with the MELD score, we observe that machine learning models show much stronger

prediction capability of graft failure. The poor graft failure prediction performance of MELD score

aligns with the weak correlations between MELD score and graft failure rate from statistic analysis

in Table 3.2. The tree model has better and less biased prediction performance than linear model.

This may be caused by the tree model’s internal selection of features, which could implicitly omit

some features with bias.

Compared with baseline machine learning methods, when the sensitive attribute is race, the

proposed method can significantly debias the prediction with only 2.1% decreases of ROC AUC,

while the two fairness metrics decrease by 5.5% averagely. As for gender, the ROC AUC decreases

only 2.0%, however, the two fairness metrics decrease by 32.2% on average. Recall that the parity

loss we applied is based on the demographic parity. In Table 3.3, we observe improvement not

only on DPD but also on EOD. This can validate the effectiveness of our debiasing method, which

can generally mitigate the unfairness issues.

3.6.3 Ablation Study

To validate the effectiveness of our two-step debiasing strategy, we conduct ablation study to

investigate the contribution of each component. From Table 3.3, we observe that by only adding the

debiasing method in knowledge distillation step (first step), the proposed model can only improve

the DPD metrics. When only debiasing the end-to-end training step, both fairness metrics improve

to some extent. The model achieves the best debiasing performance when the two debiasing steps
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are combined. This is because the knowledge-distilled embedding and end-to-end training are

interleaved, which verifies the necessity of the two-step debiasing strategy.

3.7 Conclusion

This work aims at fair graft failure prediction for developing unbiased organ assigning strat-

egy. A two-step knowledge distillation framework is built to encourage fair prediction towards

different groups while preserving competitive performance. The fair and competitive prediction

performance of the whole framework has been experimentally signified on graft failure prediction

dataset. In the future, we will investigate and identify more fairness issues such as intersection

fairness problem. Furthermore, we will continue designing debiasing methods for liver transplant

tasks, fairness problem discovered from the liver transplant task can also inspire research on other

organ transplant systems.
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4. MEDICAL HAI WITH REINFORCEMENT LEARNING BASED FAIR RANKING

4.1 Overview

Liver transplant is a widely adopted solution for many end-stage liver diseases. In practice, it

is important to match liver organs with patients fairly. Our goal is to train an agent to rank the

patients for each organ to optimize three objectives: (1). post-transplant metrics (e.g., graft failure

rate and survival rate), (2). fairness across sensitive groups (e.g., gender and race), and (3). fairness

across individuals. We formulate organ allocation as a ranking problem and define two fairness

metrics from group and individual perspectives. Our approach FairAlloc learns an agent to jointly

optimize the ranking and fairness metrics. We train FairAlloc and compare it with six baselines on

the organ-patient data collected from Organ Procurement and Transplantation Network (OPTN).

FairAlloc significantly improves group and individual fairness metrics by up to 37.9% and 39.9%,

respectively, while achieving a competitive ranking performance based on post-transplant metrics.

4.2 Introduction

Liver transplant has become a widely used and the only life-saving therapy for patients who

suffer from end-stage liver disease. Organ allocation is a critical decision for this treatment to

match organs with patients: given an available organ from a donor, how should we rank the patients

on the waiting list? From the guidelines of the U.S. Department of Health & Human Services [113],

utility and justice are the major principles to be balanced in organ allocation, where the former

refers to the maximization of the important medical factors, e.g., patient survival time, and the

latter refers to the fairness of the allocation for the patients on the waiting list, which has been

rarely studied in the literature. In organ transplants, fairness is synonymous with justice to a large

extent. Fairness means the patients are treated with equity regardless of their social class, race,

gender, etc. Meanwhile, the current allocation strategy used in liver transplants is based on the

MELD score, calculated based on the lab test results of patients on the waiting list. The higher the

score, the higher the priority of the patient to receive an organ. However, the MELD score does not
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Figure 4.1: An illustrative example of unfairness in organ allocation (the numerical value in this
figure is just for illustration with no real-world meanings).

explicitly consider justice in its calculation. It is an open challenge to allocate the organs to achieve

both utility and justice since there are conflicts between them under many circumstances [114],

which makes the balance between them very important.

Organ allocation aims to rank the patients on the waiting list, which is currently based on the

MELD score. The list of the ranked patients serves as an important criterion for the allocation. In

practice, the top-ranked patient is not guaranteed a donor’s liver; some other factors can also affect

doctors decisions [115], such as the age of the patient, the distance between donor and recipient,

etc.

We now use an illustrative example to discuss the fairness issue in the patient ranking problem.

In Figure 4.1, the average score of the male group is the same as that of the female group. Whereas

the top 2 patients are all males. As a result, the male group has a significantly higher chance of

being selected because the doctors may only focus on the top-ranked patients. Beyond gender,
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the fairness issue may also exist in other sensitive groups (e.g., races) and even individuals (i.e.,

a patient with a slightly lower score could be ranked significantly lower). However, enabling a

fair ranking is challenging because (1). the ranking procedure is non-differentiable, which means

many existing gradient-based debiasing methods can not be applied [12, 102], and (2). It is hard

to balance fairness and utility and achieve fairness at both group and individual levels. In the

following, we present FairAlloc to address these challenges.

In this work, we consider organ allocation fairness from the group perspective (i.e., certain

groups of people with the same characteristics, such as gender and race) and the individual per-

spective (i.e., each pair of individual patients). Then we present FairAlloc, a general framework

for fair organ allocation based on deep reinforcement learning. FairAlloc trains a neural network

with policy gradients to predict the score of each patient to optimize the ranking reward defined by

utility, group fairness, and individual fairness. We apply FairAlloc to the organ allocation datasets

from Organ Procurement and Transplantation Network (OPTN) [116] to provide potential sugges-

tions for doctors to make decisions.

4.3 Background and Significance

4.3.1 Machine Learning for Organ Transplant

Compared to traditional clinical analysis methods, which are mainly based on statistics, ma-

chine learning (ML) models are trained on a large volume of data and can provide a more precise

prediction of the medical indicators in organ transplant, e.g., mortality, transplant successful rate,

etc. This can potentially increase the success rate of the transplant surgery since the ML model

could better pair patients with organs. ML has recently shown promising results in organ alloca-

tion. Some previous works [117, 118, 119] employ ML for precise prediction of various factors

such as post-transplant living rate, graft failure rate, etc. For instance, Rhu et al. [118] use the cox

regression model with medical indicators such as total bilirubin to predict graft failure after a liver

transplant. Liu et al. [117] adopt random forests to predict short-term survival rates based on blood

test results. Additionally, some initial studies [90, 91] leverage ML to directly allocate organs.
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Xu et al. [120] propose to learn the matching representations for organ allocation. Berrevoets et

al. [121] design the allocation algorithm by applying queuing theory and synthetic control. How-

ever, existing works [122] mainly focus on maximizing utility, and the fairness issue caused by ML

in the allocation was rarely studied in the literature.

4.3.2 Fairness in ML

When ML is applied in the organ transplant scenario, the prediction of ML will serve as an

important indicator in clinical decisions. So, we need to ensure the predictions are fair across

different groups. Most existing ML debiasing techniques incorporate fairness objectives as part

of the loss functions [11] so that the fairness objectives can be optimized with gradient descent.

Unfortunately, the fairness objective in the patient ranking problem is non-differentiable, so these

methods can not be directly applied. Some recent studies have investigated fairness in ranking

problems. Singh et al. [123] approach fairness in ranking from the exposure allocation perspective

and propose a reinforcement learning framework [124] to learn fair ranking policies. However,

unlike the standard ranking problem, patient ranking needs to consider lots of factors from both

organs and patients. Moreover, the post-transplant metrics are delayed feedback that could only be

available years after the transplant, and thus they are hard to predict.

4.3.3 Fairness in Organ Transplantation

Fairness in organ transplantation means the patients are allocated organs based on their medical

conditions rather than their social attributes such as gender, race, social class, etc. The bias in organ

transplantation occurs when the patients do not have their deserved chance of receiving the organ

based on their medical condition. This bias can be caused by the patients being discriminated

against by their non-medical attributes, e.g., race, gender, etc. Note that we are pursuing equity

rather than equality in organ transplantation. The former suggests that patients are given organs

based on their medical condition. The latter indicates that the patients are given organs equally

regardless of their conditions, which is not desirable in organ transplants. The fairness issue in

organ transplants has gained considerable attention from the healthcare community [95, 96]. Parent
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et al. [96] identify the geographic bias of liver transplant allocation and propose a new region

districting model to alleviate this bias. However, mitigating the bias in organ allocation has rarely

been studied for ML models. Our previous work [61] proposes a fair ML prediction framework for

organ transplants. Whereas this framework only predicts the graft status after transplant, which are

only intermediate results before ranking. In practice, doctors may only look into the top-ranked

patients in their decision so that the higher-ranked patients will have a significant advantage. In

this work, we aim to develop a framework to directly rank the patients fairly.

4.4 Proposed Methods

This section first introduces the motivation and challenges of fair ranking for organ allocation.

Then we mathematically formulate the ranking problem, followed by an introduction of utility and

fairness metrics. Further, we elaborate on the FairAlloc framework.

4.4.1 Problem Formulation and Notations

Organ allocation can be formulated as a ranking problem. Given an organ O and n patients

P = ⟨p1, p2, . . . , pn⟩, where pi denotes a patient (i ∈ {1, 2, . . . , n}), an ML model is expected to

output a permutation π = ⟨π(p1), π(p2), . . . , π(pn)⟩, where π(pi) denotes the rank of patient pi in

the permutation. Given a training set Xtrain = {⟨Oj, Pj⟩}mj=1 of size m, the goal of organ allocation

is to learn an ML permutation policy π such that it can optimize utility and fairness ranking metrics

on an unseen testing set Xtest.

4.4.2 Ranking Metrics in Organ Allocation

The ranking metrics are defined based on a given scoring criterion that quantifies the medical

conditions. In previous work, some common criteria have been used, such as CTP score [125],

MELD score [126], and post-transplant scores (e.g., graft failure rate and survival rate) [127]. In

our work, the scores are predicted by a neural network with the donor and patient features as the

input (we will elaborate in the later sections). Based on the scores, we first introduce the exposure

rate, which defines the chance of receiving an organ for a specific ranking position. Let r be a

ranking position, where 1 ≤ r ≤ n. Following [124], we define the exposure rate of position r as
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Ex(r) =
1

log2(r + 1)
(4.1)

Intuitively, the highly ranked patients will have a higher chance of being selected. A doctor

will often go through the list starting from the top-ranked one until a suitable patient is found. If

a patient is ranked high, he/she will have a higher chance of being assigned an organ since he/she

is more likely to be seen by the doctor. Clinically, the exposure rate is used to measure a patients

chance of receiving an organ in the liver transplant scenario. Now we introduce a utility metric and

two fairness metrics.

Utility metric. We adopt Normalized Discounted Cumulative Gain (NDCG) as the utility met-

ric, which has been commonly used in ranking tasks [128]. We first define Discounted Cumulative

Gain (DCG) as:

DCG =
n∑

i=1

yi
log2(ri + 1)

(4.2)

where yi is the groundtruth score of the patient that is ranked ri. Ideally, if the patients are

perfectly ranked (i.e., a patient with a higher score will always be ranked higher), the DCG metric

will be maximized, which is defined as Ideal DCG (IDCG). In practice, we often adopt Normalized

DCG, i.e., NDCG, which is defined as follows:

NDCG =
DCG

IDCG
(4.3)

Note that NDCG ∈ [0, 1], where a larger value indicates a better utility.

Group-level fairness metric. At the group level [129], we demand that the patients exposure

rates from different groups (e.g., gender and race) align with their scores. For example, if the

female group has a higher average score, then we expect the female group should also have a

higher average exposure rate. Formally, we define the group bias as follows:

Biasgrp =
Ranges(Exs(r))

Ranges(ys)
, (4.4)

48



Figure 4.2: An overview of FairAlloc. In the training phase, we sample patients rankings with the
score prediction network and update the network based on rewards. In the testing phase, we apply
the trained network to rank patients given an unseen organ.

where Exs(r) is the average exposure rate for the patient in group s, ys is the average score for the

patients in group s, and Ranges(·) is the difference between the maximum value and the minimum

value across groups. A larger Biasgrp suggests a higher group bias. Our ranking algorithm aims to

minimize Biasgrp.

Individual-level fairness metric. The individual-level fairness [130] demands that the expo-

sure rate of each patient align with his/her score. For instance, if two patients have very similar

scores, they should also have similar exposure rates. Formally we define individual bias as

Biasind =
Ranges(Exs(r))

Ranges(ys)
, (4.5)

where E(xi(r)) is the exposure rate for each individual patient, yi is the score for each individ-

ual patient, and Rangei(·) is the difference between the maximum value and the minimum value

across all patients. Similarly, we aim to minimize Biasind.
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4.4.3 Learning Fair Allocation Policy Framework

It is challenging to optimize the above three metrics because the ranking procedure is non-

differentiable. To tackle the challenge, we design FairAlloc to optimize the three utility/fairness

metrics with deep reinforcement learning. FairAlloc consists of three modules: (1). a score pre-

diction module that predicts scores for unseen organ-patient pairs, (2). a rank-sampling module

that samples permutations of the patients, and (3). a policy gradient module that trains the score

prediction network based on rewards. An overview of FairAlloc is presented in Figure 4.2.

Score prediction with neural networks. For unseen organ-patient pairs, we use a neural

network to estimate their scores, which will be used for ranking. Specifically, we pre-train a

multilayer perceptron (MLP) network using the training data and apply this network to the testing

data. The input of the MLP is the concatenated features of the organs and patients. The score

prediction is naturally a regression task. Thus, we train the MLP with the mean squared error

(MSE) loss:

Lscore =
m∑
j=1

(yj − MLP(xj))
2 (4.6)

where yj is the true score, and xj is the concatenated feature. In practice, we use mini-batch

training [131]. More details are provided in the appendices. Once trained, the MLP can be applied

to unseen organ-patient pairs to predict the score:

y′ = MLP(x) (4.7)

where x is the organ-patient feature, y′ is the predicted score. Note that the initial score predic-

tion network may not achieve the best-ranking performance. Thus, the network will be fine-tuned

later with the end-to-end ranking reward.

Rank sampling. Inspired by [124], we use a Plackett-Luce [132] based method to generate

rankings from the predicted scores. Starting from the highest-ranked position, we sample the

remaining patients with probabilities proportional to their predicted scores. We repeat the sampling
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process and insert patients one by one into the list until there is no patient left. Formally, for ranking

position r, the probability of a patient pi being sampled is

P (π(pi) = r) =
ey

′
i∑n

j=1 I(pj)e
y′j
, (4.8)

where I(pj) is a binary indicator suggesting whether pj is already in the list. Specifically,

I(pj) = 1 if pj is not in the list, and I(pj) = 0 otherwise. This sampling strategy converts scores

to rankings. The probability for a specific ranking perturbation can be obtained by

P (π) = P (π(p1) = r1, . . . , π(pn) = rn) =
n∏

i=1

P (π(pi) = ri). (4.9)

Reward optimization with policy gradient. Now we aim to adjust the ranking to optimize

the utility/fairness metrics. To achieve this, we apply a policy gradient [133] to fine-tune the score

prediction network to maximize the ranking reward. The reward is a combination of the three

ranking metrics:

R = α ·NDCG− β · Biasind − γ · Biasgrp, (4.10)

where α, β, γ are hyperparameters. NDCG, Biasind, and Biasgrp are the three utility/fairness

metrics. Let θ be the parameters of the score prediction network MLP.

Our objective is to maximize the expected reward:

J = E[R]. (4.11)

Following the policy gradient theorem [133], we can calculate the gradient of J with respect to

θ:

∇θJ = ∇θE[R] = E[∇θ logP (π)R], (4.12)

where P (π) is defined in the rank sampling module. Note that the gradient of P (π) can be
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Sensitive attribute: Gender Sensitive attribute: Race
Model Ind bias Grp bias NDCG Ind bias Grp bias NDCG
MLP 0.475±0.052 0.063±0.009 0.899±0.045 0.475±0.052 0.153±0.016 0.899±0.045

GBDT 0.426±0.041 0.061±0.011 0.922±0.038 0.426±0.041 0.136±0.015 0.922±0.038
LR 0.428±0.040 0.061±0.008 0.923±0.037 0.428±0.040 0.141±0.009 0.923±0.037

RankNet 0.467±0.063 0.061±0.008 0.901±0.049 0.467±0.063 0.143±0.019 0.901±0.049
LambdaRank 0.469±0.057 0.063±0.010 0.901±0.049 0.469±0.057 0.151±0.014 0.901±0.049
DebiasedMLP 0.479±0.068 0.066±0.008 0.897±0.055 0.477±0.077 0.145±0.020 0.900±0.058

Ours 0.288±0.038 0.041±0.009 0.905±0.047 0.288±0.036 0.102±0.018 0.905±0.047

Table 4.1: Overall performance with graft status as score criteria.

backpropagated to the score prediction network so that MLP can be updated. However, this update

can be unstable because of high variance. Thus, we further use a baseline to reduce variance [134]:

∇θJ = E[∇θ logP (π)(R− B)], (4.13)

where B is the average reward for the current matching organ.

4.5 Experiments

We design experiments to answer the following research questions:

• RQ1: Can FairAlloc mitigate the bias in organ allocation while maintaining comparable

ranking performance?

• RQ2: How will each of the proposed fairness-related rewards contribute to the performance

of FairAlloc?

• RQ3: How will FairAlloc perform under different hyper-parameters settings?

4.5.1 Performance Comparison

To answer RQ1, we compare FairAlloc with the baselines. Quantitatively, Tables 4.1 and 4.2

report the overall performances using the graft status and the survival time as the scoring criterion,

respectively. We make several observations:
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Sensitive attribute: Gender Sensitive attribute: Race
Model Ind bias Grp bias NDCG Ind bias Grp bias NDCG
MLP 0.468±0.075 0.049±0.017 0.766±0.031 0.468±0.075 0.129±0.034 0.766±0.031

GBDT 0.421±0.077 0.048±0.017 0.782±0.037 0.421±0.077 0.116±0.034 0.782±0.037
LR 0.421±0.077 0.047±0.015 0.784±0.044 0.421±0.077 0.116±0.026 0.784±0.044

RankNet 0.448±0.070 0.048±0.017 0.771±0.038 0.448±0.070 0.120±0.027 0.771±0.038
LambdaRank 0.449±0.064 0.048±0.010 0.774±0.039 0.449±0.064 0.127±0.035 0.774±0.039
DebiasedMLP 0.459±0.088 0.048±0.018 0.761±0.041 0.458±0.080 0.120±0.031 0.767±0.052

Ours 0.341±0.024 0.037±0.006 0.775±0.040 0.339±0.024 0.099±0.011 0.774±0.040

Table 4.2: Overall performance with survival time as score criteria.

The rankings generated by the standard ML methods have very high individual and

group biases. For the survival time criterion, while NDCG can reach up to 0.784, there are signif-

icant group biases (up to 0.049 for the gender group and 0.129 for the race group) and individual

bias (up to 0.468). Similarly, for the graft status, the individual bias can be as large as 0.479, while

the gender and race group biases are up to 0.066 and 0.153, respectively. The results suggest that

the standard ML methods suffer from a significant unfairness issue.

FairAlloc achieves lower group and individual biases and competitive NDCG. (1). The

gender (race) group bias has been reduced by 37.9% (33.3%) and 24.5% (23.3%) for the graft

status and the survival time, respectively. (2). The individual bias is reduced by 39.9% for graft

status and 27.6% for survival time. 3) Meanwhile, FairAlloc has only 0.017 and 0.009 NDCG

drops for graft status and survival time, respectively, which is greatly outweighed by the fairness

improvement it provides. Overall, FairAlloc significantly reduces group and individual biases and

retains the ranking performance.

Simply debiasing the scores can not reduce the individual bias and group bias compared

to the standard MLP model. For the graft status criterion, although the Debiased MLP decreases

the race group bias from 0.153 to 0.145, the individual bias increases from 0.475 to 0.479, and the

gender group bias increases from 0.063 to 0.066. For the survival time, while the individual bias

and group bias are reduced, the NDCG is negatively and significantly affected, decreasing from

0.766 to 0.761. The unsatisfactory performance of the Debiased MLP suggests a gap between

scoring and ranking, i.e., simply debiasing the prediction score may not necessarily lead to a fair
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Number of
ranking patients

Score
gap

Ranking gap
of baseline

Ranking gap
of FairAlloc

NDCG
of baseline

NDCG
of FairAlloc

30 0.050 7.05 0.000 0.938 0.909
14 0.133 5.13 0.467 0.912 0.891
12 0.100 2.40 0.600 0.836 0.778
30 0.056 5.83 0.556 0.770 0.821

Table 4.3: Ranking patients for the case study.

ranking. In contrast, our FairAlloc optimizes the ranking with reinforcement learning, which leads

to much better performance.

The bias across races is larger than the bias across gender. When the graft status is used

as scoring criteria, the race group bias of MLP is 0.153, which is 2.4 times larger than the gender

group bias. For the survival time, the race group bias of MLP is 0.129, which is 2.6 times compared

to the gender group bias. A possible explanation is that some race groups are very rare, while the

populations of the male and female groups are relatively more balanced. Some rare race groups

could have only very few patients, so they are significantly underrepresented. This observation

suggests that we may need to pay more attention to race unfairness in the future [135].

Qualitatively, we analyze the ranked patients of different organs by comparing FairAlloc with

MLP on gender groups. We are particularly interested in how the algorithms rank the patients

when different gender groups have similar scores. Table 5.5.4 lists the patient ranking of four

organs, where the score gaps are very small. We make the following observations:

The standard ML methods can cause a significant ranking bias even when the score gap

is small. The ranking gap between the male and female groups of the baseline is small for all four

cases, while the ranking gap is large. In particular, for the first organ, the ranking gap reaches 7.05,

while the score gap is 0.050. This suggests that the scoring bias does not align with the ranking

bias, which explains why simply devising the score does not work.

FairAlloc significantly reduces the ranking gap. Compared with the baseline, FairAlloc

reduces the ranking gap by at least 4X for all four organs. Notably, for the first organ, the ranking

gap is reduced from 7.05 to 0.00.
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Figure 4.3: Utility and fairness results with graft status as score criteria under different hyper-
parameters.

FairAlloc has a competitive ranking performance. The NDCG gap between FairAlloc and

the baseline is at most 0.058. Interestingly, for the fourth organ, FairAlloc even improves the

ranking performance by 0.051. The improvement could be attributed to fine-tuning the scores with

policy gradients to optimize NDCG.

4.5.2 Hyper-parameters Sensitivity Analysis

To study RQ3, we analyze how the key hyper-parameters impact the performance of FairAlloc.

We consider three hyper-parameters: the weight of group fairness reward, the weight of individual

fairness reward, and the weight of utility reward. Figure 4.3 visualizes their impacts. We make
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three interesting observations: (1). The group fairness across different genders and races (yellow

and green lines) can be further improved when the weight of group fairness reward increases. (2).

Similarly, the individual bias (red line) can be reduced with a larger weight of individual fairness

reward. (3). NDCG (blue line) increases as the weight of the utility reward increases. The results

suggest that the three hyper-parameters can control and balance the importance of the three ranking

metrics. They can be specified based on their needs.

4.6 Conclusion

The equity issue in organ transplantation has gained increasing attention. In this work, we de-

sign a reinforcement learning framework, FairAlloc, for fairly ranking the patients given an organ.

By considering both recipient and organ features, FairAlloc can fairly assign the organ to patients

on the waiting list. The reinforcement learning objective can directly optimize the utility metrics,

such as NDCG and the fairness metrics. Thus, the policy generated by FairAlloc can not only

achieve a high ranking performance but also be fair across individual patients and groups of dif-

ferent races and genders. Extensive experiments demonstrate that FairAlloc significantly reduces

individual and group bias while maintaining a competitive ranking performance, ensuring equity

in organ allocation. Beyond the comparison with the baselines, we have conducted comprehensive

analytical experiments to understand how FairAlloc performs under different hyper-parameters set-

tings and reward functions. We also take an insightful look at the allocation strategy with a case

study, showing that FairAlloc can significantly reduce the bias. Overall, our work could pave the

way for real-world fair organ allocation systems and inspire the fair allocation of various medical

resources.
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5. MEDICAL HAI WITH TREE-BASED MULTITASK LEARNING *

5.1 Overview

Organ transplant is the essential treatment method for some end-stage diseases, such as liver

failure. Analyzing the post-transplant cause of death (CoD) after organ transplant provides a

powerful tool for clinical decision making, including personalized treatment and organ alloca-

tion. However, traditional methods like Model for End-stage Liver Disease (MELD) score and

conventional machine learning (ML) methods are limited in CoD analysis due to two major data

and model-related challenges. To address this, we propose a novel framework called CoD-MTL

leveraging multi-task learning to model the semantic relationships between various CoD predic-

tion tasks jointly. Specifically, we develop a novel tree distillation strategy for multi-task learning,

which combines the strength of both the tree model and multi-task learning. Experimental results

are presented to show the precise and reliable CoD predictions of our framework. A case study is

conducted to demonstrate the clinical importance of our method in the liver transplant.

5.2 Introduction

Organ transplant is a crucial therapeutic option for individuals with end-stage diseases, e.g.,

kidney failure [136], liver failure [137], liver cancer [138], etc. However, due to the complex

surgical procedures and high risk of graft failure [139], how to allocate organs properly remains

an important yet challenging problem. To increase allocation precision and effectiveness, doctors

often need to consider a series of post-transplant factors, especially the cause of death (CoD) anal-

ysis [140], such as rejection, infection, cancer, and recurrent disease [141]. Accurately predicting

and analyzing these CoDs before the transplant can aid doctors in making better clinical decisions

regarding organ allocation [142] and precise treatment after the surgery [143]. In this work, we

focus on liver transplant as a case study. Currently, the MELD score [83] is widely used as the

*Reprinted with permission from "Multi-Task Learning for Post-transplant Cause of Death Analysis: A Case
Study on Liver Transplant" by Sirui Ding, Qiaoyu Tan, Chia-yuan Chang, Na Zou, Kai Zhang, Nathan R. Hoot,
Xiaoqian Jiang, Xia Hu, 2023, AMIA Annual Symposium, Copyright by 2023 AMIA.
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standard medical indicator to aid doctors in making better clinical decisions. Nevertheless, MELD

cannot provide a granular analysis of the aforementioned CoDs factors, since it was originally

designed for the 3-month mortality prediction of liver-related diseases. While some statistical

methods have been proposed, they are either intended for a limited number of predictors [144] or

make strong assumptions about the input features and outcomes, such as linear relations and fea-

ture independence [119]. These limitations hinder the accurate prediction of post-transplant CoDs,

necessitating the development of more advanced computational methods to support precise clinical

decision-making in liver transplant.

Machine learning (ML) has recently received remarkable success in predicting transplant-

related medical outcomes [145]. For example, Lau et al. employed neural networks and random

forest to predict post-transplant graft failure [93]. Ding et al. developed a prediction framework

based on knowledge distillation for the graft status prediction with consideration of fairness is-

sues [146]. Despite their success, the complex nature of liver transplant makes it infeasible to

apply previous ML methods directly for post-transplant CoD prediction. We identify two signifi-

cant challenges from the data and model-related aspects as follows.

First, from a data perspective, a patient usually has multiple CoDs which makes the analysis

a multi-label learning task. In addition, recorded CoDs (positive samples) are scarce compared

to negative samples, i.e., successful transplantation or unrecorded data. As a result, there is an

imbalance problem in the data, making it difficult for machine learning models to accurately predict

the positive class [147]. This is because we do not have enough data to learn ML models for

different CoD tasks independently.

Therefore, it is infeasible to directly apply traditional multi-class learning methods [148] and

existing ML methods for organ transplant [145] in the post-transplant CoDs analysis.

Second, from a modeling perspective, tree-based models like GBDT [38, 149] tend to perform

better than neural network (NN) based approaches [150] in the healthcare field, since the majority

of organ transplantation records are EHR/tabular data [151].

We also verified this in our preliminary experiments, as shown in Table 5.1. Despite the relative
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advantages of tree-based models, they are still limited in tackling our CoD tasks, since they cannot

capture the complementary correlations among different CoD tasks (a.k.a. multiple labels) [152].

Thus, there is an urgent need to devise more advanced tree-aware models that can simultaneously

handle multiple prediction targets.

To tackle the above challenges, we propose a tree-distillation multitask learning framework,

called CoD-MTL, for post-transplant CoD analysis. In this paper, we focus on the prediction of

rejection and infection since they are the most common post-transplant CoDs [140]. Specifically,

for challenge (1), instead of modeling the rejection and infection independently, we develop a

multitask learning model [153] with a shared network layer under the CoD-MTL framework to

capture their semantic correlations, since they are intrinsically associated with each other in the

organ transplantation field. The shared neural networks will take advantage of the various related

tasks to alleviate the unbalanced data problem in CoD analysis. For challenge (2), we design a

novel tree distillation strategy in CoD-MTL to effectively transfer the advances of tree-based mod-

els into neural networks for different CoD tasks. As a result, a principled approach is obtained to

integrate the capacity of multitask learning in capturing complementary information across various

tasks and the power of tree-based models in modeling tabular data in an end-to-end fashion.

We validate the effectiveness of our framework on the real-world liver transplant dataset. Ex-

periment results show the CoD-MTL can accurately predict the post-transplant CoDs. The case

study demonstrates the clinical importance of CoD-MTL to help doctors in organ transplant clini-

cal decisions.

5.3 Data and Problem Description

Data preparation. In this work, we use a patient cohort obtained from the patients regis-

tered on the liver transplant waiting list of the Organ Procurement and Transplantation Network

(OPTN) [116], consisting of a total of 8, 922 patients who underwent liver transplantation. Out of

these patients, 4, 160 died due to rejection (including both acute and chronic rejection), and 3627

died due to infection after the transplant. In addition, we also randomly selected 2000 patients

as negative samples who had no documented death after transplantation. In this study, we con-
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Figure 5.1: An overview of the CoD-MTL workflow for multiple CoDs prediction.

sider 102 features from both the donor organs and recipients, excluding sensitive attributes such

as gender and race. The donor/organ features are divided into three categories: the donor’s basic

information, the donor’s history of diseases, and information on the donor’s death. Similarly, the

patient/recipient features are categorized as the patient’s basic information, history of diseases, and

transplant-related laboratory tests.

Problem formulation. We are given a dataset {pi, oi, Yi}Ni=1 consisting of N patient-organ

pairs. Each patient pi (or organ oi) is associated with a Lp (or Lo) dimensional feature vector

xp
i ∈ RLp (or xo

i ∈ RLo). For each patient-organ pair (pi, oi), there are M possible causes of death

(CoDs), denoted as Yi = {yj ∈ {0, 1}}Mj=1, where yj = 1 if the j-th CoD causes the death of

the patient and yj = 0 otherwise. The goal is to train a machine learning model that can predict

the probability of each CoD for a given patient-organ pair (pi, oi) based on their input features

xi = ⟨xp
i ,x

o
i ⟩. The model should learn to predict multiple CoDs simultaneously, and the learning

objective is to minimize the cross-entropy loss between the predicted probabilities and the ground-

truth labels.
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5.4 Methodology

This section will introduce the proposed post-transplant CoD prediction framework (CoD-

MTL) in detail. Firstly, we will describe the pre-processing procedure for input data (Section 5.4.1).

Then we introduce the multi-task learning framework for post-transplant CoDs prediction (Sec-

tion 5.4.2). Finally, the proposed tree-distillation strategy for multi-task learning will be elaborated

(Section 5.4.3).

5.4.1 Data Pre-processing

To effectively learn from original liver transplant EHR data, we use an encoder to transform

categorical features into numerical values following the standard ways of processing raw data.

These numerical features are then concatenated with the original numerical features. To address

any missing values, we impute all features with zero. This processed data is used as input for both

the tree and multi-task learning models in the CoD-MTL framework. Additionally, to ensure a

robust evaluation, the data samples are shuffled during the K-fold cross-validation stage.

5.4.2 Multi-task Learning for Multiple CoDs Prediction

Immunosuppressive drugs that patients take to prevent rejection after liver transplant surgery

can weaken their immune system and increase their susceptibility to infections [154]. To in-

vestigate the clinical relationship between rejection and infection prediction tasks, we adopt a

multi-task learning approach that uses a shared deep learning module and customized prediction

heads for different CoDs. The CoD-MTL framework is designed based on the multi-task learning

paradigm [24], as illustrated in Figure 5.1. To predict the j-th CoD, we formulate the output as

follows:

yj = Headj(SharedLayer(xi)), (5.1)

where Headj(·) refers to the prediction head part for the j-th task, and SharedLayer(·) denotes

the shared layer of multiple tasks in the multi-task learning pipeline. We will provide further details
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about the Head and SharedLayer modules in the following subsection.

5.4.3 Tree-distillation Boosted Multi-task Learning

In this subsection, we will elaborate on the proposed tree-distillation strategy in the multi-task

learning framework. Firstly, we will present the process of integrating the tree model into neural

networks using knowledge distillation. Next, we will introduce a new approach to integrate the

tree models into the multi-task learning framework. Then we will describe the learning process of

the whole CoD-MTL framework.

Tree distillation in the neural network. Tree-based models like GBDT have shown great

success across various healthcare scenarios and tabular data [155, 156]. Recently, DeepGBM [104]

has been developed to combine the merits of GBDT and deep neural networks by distilling the

knowledge of GBDT to deep neural networks. Despite its effectiveness, DeepGBM is designed for

a single learning task and cannot model the correlations between multiple learning tasks, as shown

in CoD analysis. Inspired by this, we propose to upgrade DeepGBM for multi-task learning, i.e.,

distilling multiple task-specific GBDT models into a multi-task deep neural network. Assume V t,i

denotes the sparse leaf index that corresponds to the i-th patient of the training data in the t-th tree

of T , we first transform the leaf outputs of one GBDT model T into a dense embedding as below:

Ei = Emb(||t∈T (V t,i); θ), (5.2)

where Ei represents the dense embedding table obtained from the embedding model Emb(·)

with trainable parameter θ, where Emb(·) is a fully connected neural network. The notation

||t∈T (V t,i) indicates the concatenated sparse representation across multiple trees in GBDT. To learn

the embedding model, we optimize the objective function as:

min
1

N

N∑
i=1

L′(W × Emb(||t∈T (V t,i); θ) + b, qi), (5.3)

where W and b are the parameters that map the dense embedding into the final prediction, and

qi is the corresponding leaf prediction of the i-th sample. The loss function L′ can be chosen as

62



Model type Model CoD: Rejection CoD: Infection
AUROC AUPRC AUROC AUPRC

Traditional ML (single task)
Logistic Regression 0.551±0.008 0.482±0.005 0.569±0.013 0.471±0.013

GBDT 0.588±0.008 0.497±0.010 0.611±0.011 0.499±0.014
Random Forest 0.583±0.016 0.504±0.009 0.608±0.009 0.506±0.020

Neural Networks (single task) MLP 0.571±0.012 0.493±0.008 0.592±0.003 0.483±0.011
Multitask learning model Multitask Learning 0.595±0.021 0.517±0.015 0.614±0.019 0.515±0.028

The proposed method CoD-MTL 0.640±0.012 0.557±0.012 0.646±0.007 0.553±0.018

Table 5.1: Performance comparison on Two CoD Prediction Tasks

the cross-entropy loss function, which is commonly used in classification tasks.

After the embedding of sparse representations from tree models’ leaves, we can use this dense

embedding Ei as the distillation target to further distill the tree structures into a neural network.

The distilled neural network can approximate the tree model by optimizing the following objective:

Ldistill =
1

N

N∑
i=1

L(NN(xp
i [IT ]); θNN),E

i), (5.4)

where NN(·) represents the distilled neural network with trainable parameters θNN , and xp
i is

the input feature for the i-th patient. I denotes the indices of the features selected from the tree

model.

Integration of tree model in multi-task learning. When it comes to predicting multiple post-

transplant CoDs, we propose a multi-task tree-distillation paradigm to achieve this. First, we train

a GBDT model for each CoD prediction task. For the j-th CoD, we have GBDT model Tj and

the distilled network NNj(·) with trainable parameters θNNj
. We then develop the distilled neural

network for multiple CoD tasks, as shown in Figure 5.1. Specifically, the distilled model NNj for

each CoD task includes a shared layer for representation learning and a task-specific prediction

head for each CoD task, as shown in Formula 5.1. The prediction head for the j-th CoD is a simple

neural network as follows.

yj(x
i) = Wj ×NNj(xi[ITj ]); θNNj

) + bj, (5.5)
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Figure 5.2: ROC curves for rejection and infection CoDs (From left to right).

where Wj,bj are associated parameters to transfer the dense embedding to final predictions

for the j-th task.

Learning process of CoD-MTL. To train our model, we optimize the parameters of CoD-MTL

according to the following multi-task loss function.

Lj =
1

N

N∑
i=1

L(NNj(xi[ITj ]); θNNj
),Ei

j),

Lmulti =
M∑
j=1

αj(βjL′(yj, y
′
j) + γjLj).

(5.6)

Lj is the knowledge distillation loss function for the j-th CoD task, i.e, NNj . Lmulti is the

overall multi-task loss function for M CoD tasks, where αj, βj , and γj are trade-off parameters to

control the importance of different terms.

5.5 Experiment

In this section, we provide a comprehensive evaluation of CoD-MTL from the computational

and clinical perspectives by answering the following research questions (RQ).

• RQ1: Can the CoD-MTL accurately predict the rejection and infection as the CoDs? (Sec-

tion 5.5.2)

• RQ2: To what extent can the Cod-MTL be considered trustworthy for predicting CoDs?
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Figure 5.3: Calibration curves for rejection and infection CoDs (From left to right)

(Section 5.5.3)

• RQ3: How could the CoD-MTL help the doctor make the clinical decision in liver trans-

plant? (Section 5.5.4)

5.5.1 Experimental Settings

Baseline methods. We choose the baseline methods from three categories which are traditional

ML, neural network, and multitask learning model respectively. For traditional ML, we select three

commonly used methods as baselines, which are Logistic Regression (LR) [37], Gradient Boosting

Decision Tree (GBDT), and Random Forest (RF) [39]. For the neural network, we use a multi-layer

perceptron (MLP) [157] as the neural network baseline model. For the multitask learning model,

we use the hard parameter sharing multitask learning frameworks as the baseline method.

Evaluation metrics. To ensure a fair comparison, we adopt the K-fold cross-validation strategy

to evaluate the baseline and proposed methods. The AUROC and AUPRC metrics will be computed

by averaging across multiple folds to assess the prediction accuracy. Additionally, we calculate

the standard deviation (STD) of AUROC/AUPRC across different folds to evaluate the model

uncertainty. To evaluate the clinical significance of CoD-MTL, we will engage a clinical expert to

assist us in the case study.

Implementation details. We implemented the baseline machine learning methods using scikit-
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Figure 5.4: Calibration performance on rejection and infection prediction tasks.

learn [158] and PyTorch. The CoD-MTL framework was implemented using LightGBM [112] and

PyTorch. We trained the CoD-MTL for 100 epochs using AdamW as the optimizer with a learning

rate of 0.001. All the experiments were conducted on a server equipped with NVIDIA V100 GPUs

and Intel Xeon CPUs. We set K to 4 for cross-validation.

5.5.2 Prediction Performance on Rejection and Infection as CoDs

We present the superior performance of CoD-MTL compared to the baseline machine learning

methods as shown in Table 5.1. Several observations can be summarized as follows:

Firstly, the tree model outperforms MLP method on the CoD prediction task. For the rejection

prediction, we observe that GBDT can achieve higher AUROC and AUPRC by 3.0% and 0.81%

compared to MLP. For the infection prediction task, the AUROC and AUPRC of GBDT are higher

than MLP by 3.2% and 3.3% respectively. This may be due to the ability of GBDT to identify

important features from the EHR and eliminate irrelevant features that are less related.

Secondly, the multitask learning model improves performance compared to the single MLP. For

the rejection prediction, the multitask learning baseline outperforms the single MLP by 4.2% and

4.9% on AUROC and AUPRC, respectively. For the infection prediction, the multitask learning

baseline achieves 3.7% and 6.6% higher AUROC and AUPRC than the single MLP model. Our

findings demonstrate that combining two highly related tasks in the multitask learning model can

boost the performance of each single task. The shared model parameters can help the model learn
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Figure 5.5: Illustration of how can CoD-MTL help the doctor make the clinical decisions in liver
transplant.

common knowledge for both tasks and make more precise predictions for each CoD of the patients.

Thirdly, our results demonstrate that CoD-MTL outperforms the other baseline methods by

a significant margin. Specifically, we observe a maximum improvement of 16.1% and 15.6% in

terms of AUROC for rejection and infection prediction, respectively. Similarly, the maximum

improvement in AUPRC is 15.6% and 17.4% for rejection and infection prediction, respectively.

These results provide strong evidence of the effectiveness of CoD-MTL in leveraging the advan-

tages of both tree models and multitask learning. By utilizing highly related features and common

knowledge between the two tasks, CoD-MTL achieves superior performance on both CoD predic-

tion tasks.

Moreover, we performed the sensitivity analysis using the ROC curve for a single fold of data.

Figure 5.2 shows the ROC curves for rejection and infection prediction tasks. As seen in the figure,

CoD-MTL exhibits a steeper slope than other baseline methods for both tasks. This indicates that

CoD-MTL has a higher sensitivity, which is crucial for accurately identifying patients at high risk

of rejection and infection. Early detection of rejection and infection is critical for preventing organ

failure or loss and timely medical intervention. Therefore, the superior sensitivity of CoD-MTL

makes it a promising approach for liver transplant outcome prediction.
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5.5.3 Model Calibration Analysis

The proposed ML model can produce reliable predictions with well-calibrated probabilities,

which is crucial for clinical applications [159]. To further investigate the model uncertainty on

rejection and infection prediction, we plot the calibration curves on one fold of data, as shown in

Figure 5.3. The calibration curve of CoD-MTL in both the left and right parts of Figure 5.3 is

close to the diagonal line, indicating that the predicted probabilities correspond to the observed

fractions well. To quantitatively measure the calibration performance of the models, we calculate

the calibration slope and intercept of the calibration curve in Figure 5.3, as shown in Figure 5.4.

The calibration slope of CoD-MTL is close to 1 on both tasks, indicating that the predicted prob-

abilities are well-calibrated with the true probabilities. Although LR’s calibration slope is closer

to 1 on the rejection prediction task, it is not well-calibrated on the infection task. Similarly, the

proposed model achieves a calibration intercept near 0 on both tasks, indicating that the predicted

probabilities are well-centered around the observed fractions. These observations suggest that the

proposed CoD-MTL model can output reliable predictions with rather small uncertainty across

different tasks, making it a promising tool for organ transplant outcome prediction.

5.5.4 Case Study

Our proposed model represents a significant improvement in clinical decision support for liver

transplantation as shown in Figure 5.5. It takes into account a variety of factors that can affect pa-

tient outcomes, such as the likelihood of rejection or infection, to provide a more nuanced analysis

of each patient’s individual medical situation.

For instance, in cases where two patients from the same transplant center appear to be very

similar, our model may reveal that they have different probabilities of dying from rejection or

infection. We present two pairs of patients as shown in Figure 5.6. Patients A and B come from the

same transplant center, and patients C and D come from another transplant center. We can observe

that patients A and B have the same MELD score which is 20, the same age which is 38, and nearly

the same distance from the donor which is 30 and 29 respectively. Our model predicts patient A
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Figure 5.6: Two pairs of patients with similar features from the same transplant centers.

with a higher probability of dying from infection and patient B with a higher probability of dying

from rejection. The situation is similar for patients C and D, who share very similar characteristics

related to allocation. Patient D is predicted with a higher probability of infection.

This kind of detailed analysis can be invaluable for clinicians who are looking to make more

informed decisions about patient care [140]. With this level of information, doctors can develop

more personalized treatment plans that are tailored to the specific needs of each patient. For ex-

ample, they may choose to administer more aggressive immunosuppressant therapy to a patient

who is at a higher risk of rejection, while opting for a more cautious approach for a patient who

is at a lower risk. By providing doctors with more detailed and accurate information about patient

outcomes, our model can help to improve the overall efficiency and effectiveness of liver transplan-

tation. This, in turn, can lead to better outcomes for patients and more efficient use of healthcare

resources.

5.6 Discussion of Limitation

Additionally, we need to address some limitations and identify corresponding solutions for

future improvement of our CoD-MTL framework. A critical constraint of our current model is its

lack of interpretability, as the inability to explain predictions may impede its deployment in organ

transplant scenarios. To address this gap, we will incorporate explainable AI techniques [160]
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into our future work to provide a human-understandable interpretation of the predictions. Another

limitation is the failure to consider fairness in our current framework. Equity is an ethical goal that

clinical decision support systems should aim to achieve [161, 162]. Therefore, our future work

will place a strong emphasis on integrating fairness constraints within our prediction framework

to ensure it is suitable for multiple outcomes in organ transplants. The proposed framework has

the potential to extend beyond our focus on organ transplants and can be applied to other medical

fields that use multi-task learning. For instance, the prediction of complications and the length of

stay in the ICU [77, 27] may benefit from our CoD-MTL framework, subject to future refinement.

5.7 Conclusion

In this work, we propose a novel multi-task learning framework named CoD-MTL for the cause

of death prediction in organ transplant. The key innovation lies in designing a tree-distillation strat-

egy in multi-task learning, which serves as a bridge to combine the merits of tree-based models and

multi-task deep neural networks for more accurate prediction of the transplant EHR data. Empiri-

cal results on the liver transplant cohort show the output of CoD-MTL to be accurate and reliable

for the precise liver transplant. The clinical case study further demonstrates our framework can be

a promising clinical decision support tool for physicians in organ transplantation-related allocation

and treatment procedures. We will attach more emphasis on the explainability and fairness of the

framework as a future direction.
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6. MEDICAL HAI WITH CROSS-MODALITY DISTILLATION FROM LARGE

LANGUAGE MODEL

6.1 Overview

Health event prediction is empowered by the rapid and wide application of electronic health

records (EHR). In the Intensive Care Unit (ICU), precisely predicting the health related events

in advance is essential for providing treatment and intervention to improve the patients outcomes.

EHR is a kind of multi-modal data containing clinical text, time series, structured data, etc. Most

health event prediction works focus on a single modality, e.g., text or tabular EHR. How to effec-

tively learn from the multi-modal EHR for health event prediction remains a challenge. Inspired by

the strong capability in text processing of large language model (LLM), we propose the framework

CKLE for health event prediction by distilling the knowledge from LLM and learning from multi-

modal EHR. There are two challenges of applying LLM in the health event prediction, the first one

is most LLM can only handle text data rather than other modalities, e.g., structured data. The sec-

ond challenge is the privacy issue of health applications requires the LLM to be locally deployed,

which may be limited by the computational resource. CKLE solves the challenges of LLM scal-

ability and portability in the healthcare domain by distilling the cross-modality knowledge from

LLM into the health event predictive model. To fully take advantage of the strong power of LLM,

the raw clinical text is refined and augmented with prompt learning. The embedding of clinical

text are generated by LLM. To effectively distill the knowledge of LLM into the predictive model,

we design a cross-modality knowledge distillation (KD) method. A specially designed training

objective will be used for the KD process with the consideration of multiple modality and patient

similarity. The KD loss function consists of two parts. The first one is cross-modality contrastive

loss function, which models the correlation of different modalities from the same patient. The

second one is patient similarity learning loss function to model the correlations between similar

patients. The cross-modality knowledge distillation can distill the rich information in clinical text
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and the knowledge of LLM into the predictive model on structured EHR data. To demonstrate

the effectiveness of CKLE, we evaluate CKLE on two health event prediction tasks in the field

of cardiology, heart failure prediction and hypertension prediction. We select the 7125 patients

from MIMIC-III dataset and split them into train/validation/test sets. We can achieve a maximum

4.48% improvement in accuracy compared to state-of-the-art predictive model designed for health

event prediction. The results demonstrate CKLE can surpass the baseline prediction models sig-

nificantly on both normal and limited label settings. We also conduct the case study on cardiology

disease analysis in the heart failure and hypertension prediction. Through the feature importance

calculation, we analyse the salient features related to the cardiology disease which corresponds

to the medical domain knowledge. The superior performance and interpretability of CKLE pave

a promising way to leverage the power and knowledge of LLM in the health event prediction in

real-world clinical settings.

6.2 Introduction

The rapid adoption of Electronic Health Records (EHR) [163] has transformed healthcare, of-

fering vast repositories of patient information. In the Intensive Care Unit (ICU), the ability to pre-

dict health-related events [164, 165] in advance is paramount for optimizing treatment strategies

and improving patient outcomes. EHR is multi-modality data [166] containing clinical text [167]

(e.g., diagnosis notes) and time series data [168] (e.g., ECG, EEG), and structured data [169] (e.g.,

lab tests). However, existing health event prediction models often focus on a singular modality,

such as text [170] or tabular EHR [171], presenting a significant challenge in effectively harness-

ing the entirety of multi-modal EHR data [172]. Health event prediction [173] is an essential task in

the field of medicine. It is the foundation for precision medicine [1], personalized treatment [174],

etc. With the rapid development of electronic health records (EHR), the data in healthcare becomes

more accessible for training the ML models. In the realm of digital health [175], we can design

ML models to precisely predict health event in advance from the EHR data.

Heart failure [176], a multifaceted clinical syndrome marked by the heart’s compromised abil-

ity to pump blood effectively, stands as a formidable challenge within healthcare systems globally.
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The unpredictable nature of heart failure exacerbations necessitates predictive models that can an-

ticipate events, enabling clinicians to intervene proactively [177]. Hospitalizations and adverse

outcomes associated with heart failure place a considerable burden on both patients and healthcare

resources [178]. Accurate prediction models offer the potential to enhance patient care, reduce

hospitalizations, and optimize treatment strategies [179]. Hypertension, often referred to as the

"silent killer," remains a prevalent cardiovascular condition characterized by elevated blood pres-

sure levels [180]. The insidious nature of hypertension makes it imperative to identify and predict

impending events, such as severe complications like strokes and heart attacks [181]. Timely in-

terventions based on accurate predictions can mitigate risks and improve long-term outcomes for

individuals living with hypertension [182]. Predictive models tailored to the dynamic nature of

blood pressure fluctuations and patient-specific factors are instrumental in shaping personalized

care plans. While traditional predictive models have made strides in these domains, the integration

of multi-modal data and advanced processing techniques, such as those offered by LLMs [183],

opens new avenues for refined predictions. Predicting events in heart failure and hypertension in-

troduces specific challenges that necessitate a targeted approach. These challenges include the need

to assimilate and interpret diverse data modalities within EHRs, ranging from clinical narratives

to structured data and temporal trends. Additionally, the intricate interplay of factors contributing

to heart failure and hypertension requires models that can capture the complexity of patient health

trajectories.

Efforts are put into building health event predictive model on EHR. Some works [184] use

the structured EHR to build the predictive model. Others [185] use clinical text to predict health

events. There are some works [186, 187] that use both structured and text EHR data. Some of them

simply use the clinical text as auxiliary information [186]. Others generate the embedding from

clinical text and fuse the multi-modal representations to make final predictions. With the widely

application of large language model (LLM), it provides a transformative way to build predictive

model on multi-modality EHR data [188]. Some previous works are put into how to apply LLM

in health event prediction [189]. However, there are still challenges that hinder the landing of
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LLM applied to health event prediction. Compared to the traditional deep learning models for text

processing, the special characteristics of LLM pose several challenges in the healthcare application.

We summarized the challenges from the model and data perspectives as follows.

The size of LLM is not scalable and portable for real-world health predictive applica-

tions [190]. As we know, directly using the online LLM for inference has privacy issues [191]

and is very expensive [192]. The local model is needed in many real-world clinical scenarios,

e.g., hospitals, medical centers, etc [193]. However, the large size of LLM limits its local deploy-

ment and the efficiency of inference didn’t meet the real-time requirement of AI healthcare algo-

rithms [194]. Learning from both clinical text and structured data remains a challenge. LLM

mainly handles the text data, which is only one modality in EHR data. There are other modalities

like structured EHR data which could be learned with predictive models, e.g., Transformer. There

is a need to effectively learn both modalities in one framework and adapt LLM in the end-to-end

training pipeline [195, 196]. Meanwhile, the clinical text usually contains much noise [197], which

will mislead the model learning if directly embedded [198]. How to model the patient similarity

in multi-modality learning. Previous multi-modal methods fuse the embeddings of multi-modal

data and cannot mine the latent relations between patients [199]. Learning the patient similarity is

inspired by the doctor’s clinical practice which will refer to the past and related patients’ history.

We are motivated to mitigate these challenges by proposing the CKLE framework. For the

first and second challenge, the CKLE framework distills the knowledge from LLM on the cross-

modality EHR data. The cross-modality distilling can integrate the LLM’s knowledge into the

prediction model without increasing the model complexity. To fully exploit and utilize the knowl-

edge from LLM, we refine and augment the raw clinical text with prompt learning on LLM which

can effectively remove the noise. The augmented clinical text from LLM contains less noise and

more general textual information with augmentation. To simultaneously mine the patient simi-

larities and the latent cross-modality relations, we design a contrastive loss to model the pairs of

patients and each patient’s text-visit pairs. The contributions of this work can be summarized as

follows:
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Figure 6.1: Overview of the CKLE framework.

• We distill the cross-modal knowledge from LLM to boost the health event prediction and

fully exploit the LLM capability by prompting for the text augmentation.

• We design a contrastive distillation loss to learn the multi-modality knowledge from teacher

model and similarities between patients at the same time.

• Extensive experiments are conducted on two representative health event prediction tasks to

validate the effectiveness of the CKLE framework. CKLE can achieve competitive predic-

tion performance on the real-world text-rich EHR data.

6.3 Method

6.3.1 Problem Formulation

For each patient, there will be multiple visits Vi, where i ∈ [1,m] indicates the m visits to

the hospital. Each visit can be represented by the ICD codes demonstrating the diagnosis and

treatment in the i-th visit as Ci = {c1, c2, ..., ck}, where k is a constant number of the ICD codes.

Additionally, there are attached clinical notes from the doctors for each visit denoted as Ni. The

75



dataset and problem can be formulated as follows.

Patient visits dataset: The input dataset can be denoted as D = P1, P2, ..., Pn containing n

patients. For the ith patient, Pi = (Vi, Ni) where each patient has both visits data and text data.

Health event prediction: Given the i-th patient features of previous t− 1 visits P t−1
i , the goal

is to train the prediction model Q(θ) with learnable θ parameters, which takes P t−1
i as input and

precisely predict the targeted health event yi at the t-th visit of the patient. For diagnosis prediction,

yi is a multi-class target. For heart failure prediction and ventilator intervention prediction, yi ∈ 0, 1

is a binary-class target.

6.3.2 CKLE Framework Overview

6.3.2.1 Representation learning from visits data

Long-short term feature modeling. We adopt the dilated convolution to learn the long term

and short term information from the multiple visits features inspired by [200]. The long-short term

feature extraction can be achieved by setting different dilation rate d. The dilation convolution

layers dconv with dilation rate d can be represented as follows.

dconvd(V q
i ) =

K∑
j=0

V q
i [q + d · j] · f(j), (6.1)

where V q
i is the q-th dimension feature corresponds to i-th patient input Vi. The convolution

filer with filter size K is denoted as f(j), j ∈ [0, K]. This illustrates how to learn the represen-

tations with a given reception length. Modeling the hidden features at different scale requires

multiple convolution with various dilated rate which can be represented as follows.

ci = concat[dconvd1(Vi), ..., dconv
dr(Vi)], (6.2)

where ci is the convolution embedding of the i-th patient by combining multiple dilated convo-

lution representations with dilated rate from d1 to dr. r is the number of different dilated convolu-

tion.
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We also employed the feature recalibration module proposed in [200] to attach suitable atten-

tion to different features. The feature recalibration module can be formulated as follows.

recal(ci) = σ1(W1σ2(W2ci))), (6.3)

The ci is hidden representation learnt by dilated convolution. W1,W2 are trainable parameters

that serves as the features learnable weights. σ1, σ2 are activation function which are Sigmoid,

ReLU respectively. The recal weights are then applied to ci with element-wise multiplying.

c′i = recal(ci)⊙ ci (6.4)

To further improve the representation learning performance, a residual module is applied to

remain the original information from patients.

V ′
i = recal(Vi)⊙ Vi, (6.5)

Ei = concat[c′i, V
′
i ] (6.6)

The Ei is the concatenated embedding after the convolution and feature recalibration. The

temporal embedding zi will be generated by feeding Ei into a temporal model temp, e.g., RNN,

GRU.

zi = temp(Ei). (6.7)

Patient similarity modeling. When the doctors are making diagnosis and clinical decisions,

they will usually refer to the history of similar patients. Inspired by this process in traditional

clinical workflow, we design a contrastive learning module to model the patient similarity which

could take advantage of the features from similar patients for health event prediction.

In the conventional contrastive learning setting [201], the embedding of each patient should
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be the closet as their own embedding (positive pairs) and farthest to other patients embedding

(negative pairs). The target of the contrastive loss is an identity matrix. However, this could not

learn the similarity between different patients. So we design a soft target for the contrastive loss to

model patient similarity.

We use the ICD codes of each patient as the semantic label Ip of patients. The soft target can

be represented as:

sp =
Ip · I⊤p
||Ip||2

, (6.8)

where sp denotes the similarity between each patient pairs. The logits yi between patients with

batch size |bs| are obtained through:

yi =
exp(dis(zi

⊤, zi)/τ))∑|bs|
j=1 exp(dis(zi

⊤, zi)/τ))
, (6.9)

dis can be distance computation method which is cosine similarity in this work and τ indicates

the temperature hyper-parameters. Similarly, the target of patient-patient pairs can be calculated

with sp as:

y′i =
exp(sp)∑|bs|

j=1 exp(sp)))
, (6.10)

Thus the loss function Lpsim for patient similarity modeling can be represented as:

Lpsim = − 1

|bs|

|bs|∑
i=1

y′i log yi, (6.11)

6.3.2.2 Exploit medical knowledge from LLM

Text augmentation with prompt learning. The raw clinical text contains unignorable noise

and redundant information. To remove the unrelated information and increase the generalizability

of text, we propose to achieve the text augmentation with prompt learning on LLM. For each

patient i, we have raw notes Ni. The LLM with frozen knowledgeable parameters are exploited

to augment and polish the raw text with prompt learning. The prompt E input to the LLM are
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designed as "Refine the following clinical text without changing its meanings:". Then the prompt

will be attached with each patient’s clinical notes Ni. The augmented and refined clinical text can

be generated as follows.

N ′
i = LLM(E,Ni), (6.12)

where N ′
i is the augmented and refined notes.

Cross-modality distillation from LLM. Each patient have clinical text and tabular data, we

obtain the embedding zi of tabular data through the representation learning on multiple visits. To

further take advantage of the strong power of LLM, we generate the embedding hi of clinical text

from the LLM as follows.

hi = LLMemb(N
′
i). (6.13)

To exploit the rich information from multi-modality, a cross-modality distillation strategy is

designed to transfer the knowledge from LLM to the health prediction model. The LLM serves

as the teacher model with frozen parameters and the prediction model Q is the student model with

parameters θ. The zi, hi are structured EHR and clinical text embedding generated by LLM and

Q respectively.

As each patient has structured EHR and clinical text, the zi, hi from the same patient Pi are

highly related. On the other hand, the EHR and clinical text from different patients shares few

common information for which the embeddings should have larger distance. Inspired by this do-

main knowledge, the distillation objective Lcmkd is designed to learn the contrastive relations [202]

between EHR-text pairs formulated as:

Lcmkd = − 1

bs

|bs|∑
i=1

log
exp(dis(zi, hi)/γ))∑|bs|
j=1 exp(dis(zi, hj)/γ))

, (6.14)

where γ is the temperature hyper-parameters.
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6.3.2.3 Training for CKLE

The final prediction of the health event can be represented as:

ŷt = σ(Whi + b), (6.15)

where W, b are learnable parameters and σ is the activation function, like sigmoid. The overall

loss function L of CKLE can be represented by combining these objectives together.

L = αl(ŷt, y) + βLpsim + ηLcmkd, (6.16)

where l is the conventional prediction loss function, e.g., cross entropy. y is the ground truth

label. α, β, η are hyper-parameters to control the ratio of different objectives.

6.3.3 Experimental Setup

6.3.3.1 Dataset and tasks

The well-known medical EHR dataset MIMIC-III is used for the experiments. We filter out to

get patients with both clinical text and the corresponding structured data. Inspired by [186], the

patients with multiple visits will be used for the health event prediction. Each patient’s previous

visits will be used to to predict the last visit. Two tasks related to cardiology diseases are selected as

the representative health event prediction tasks in this work. Details of each task will be introduced

as follows.

• Hypertension prediction: This task is a binary classification to predict the hypertension of

the patient’s next hospital visit.

• Heart failure prediction: This task is a binary classification, which predicts whether the heart

failure will happen to the patient in the next hospital visit.

6.3.3.2 Baselines

• RETAIN: A widely used interpretable healthcare prediction framework with the reverse at-

tention module proposed by Choid et al [203].
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• AdaCare: Ma et al. [200] designed the AdaCare framework for representation learning on

EHR data by modeling the short and long term features and provide explainability with

competitive performance.

• Dipole: An interpretable prediction framework based on bi-directional RNN is proposed by

Ma et al. [204]. Dipole can memorize the long-term history information and provide clinical

meaningful interpretation.

• CGL: This is a speciallized health event prediction framework [186] with text-rich EHR data.

CGL use graph learning to learn the patient similarities for event prediction.

• Chet: It is proposed by Lu et al [184] to use dynamic disease graph to learn the temporal

variation of diseases for each patient.

• EHR+LLM: This is the baseline multi-modal method that use BlueBERT to generate clinical

text embeddings. The fusing embeddings of text and structured EHR will be used to make

predictions.

6.3.3.3 Implementation details

We adopt the data pre-processing method from CGL framework [186]. The clinical notes "Dis-

charge summary" from the patient will be filtered out for its high correlation with the prediction

targets. The train-valid-test set are splited with the ratio of 6000/125/1000. We use PyTorch

to implement all the baseline and train/test all models on the Nvidia Tesla V100 GPU. F1-score,

AUROC, and AUPRC are used as metrics to evaluate the performance of prediction.

6.4 Results

In this section, the results of experiments aim to answer several research questions (RQ) as

follows:

• RQ1: How does the CKLE framework performed in health event prediction compared to

SOTA baselines?
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Models Hypertension Heart Failure
F1 (%) AUROC (%) AUPRC (%) F1 (%) AUROC (%) AUPRC (%)

RETAIN 76.02(0.33) 75.04(0.77) 80.24(0.78) 68.70(0.10) 84.53(0.06) 76.90(0.10)
AdaCare 78.89(0.42) 75.80(0.01) 79.41(0.00) 70.67(1.01) 84.87(0.12) 77.33(0.38)
Dipole 78.13(0.98) 73.28(2.20) 77.82(0.68) 70.37(0.31) 84.40(0.62) 76.13(0.15)
CGL 72.14(1.90) 70.52(0.15) 73.01(0.46) 71.18(0.30) 84.79(0.20) 73.88(1.33)
Chet 77.35(0.74) 77.77(0.11) 80.56(0.18) 71.06(0.67) 84.88(0.19) 77.88(0.54)

EHR+LLM 77.60(0.35) 74.79(0.29) 76.40(1.39) 67.47(0.76) 84.40(0.26) 74.03(0.91)
CKLE 78.28(0.67) 78.14(0.86) 79.71(1.14) 70.77(0.15) 85.30(0.10) 78.00(0.00)

Table 6.1: Prediction performance on cardiovascular diseases.

• RQ2: When the labeled data is limited, can the CKLE still shows competitive performance?

• RQ3: What are the contribution of each core part in the CKLE framework?

• RQ4: What are the visualization results of the model embedding? Can it explain the learning

mechanism behind CKLE?

6.4.1 CKLE Precisely Predicts the Health Event on Multi-modal EHR Data

From the Table 6.1, the proposed framework CKLE are compared with baseline methods on

cardiovascular prediction tasks (Hypertension prediction and heart failure prediction). Several key

findings are summarized from the results.

The proposed CKLE framework can achieve competitive performance compared to state-

of-the-art baselines on health event prediction tasks. For the hypertension prediction, we

observe the CKLE achieves the best performance measured by AUROC. Meanwhile, CKLE

achieves best performance on AUROC and AUPRC on the heart failure prediction. The high per-

formance on these two cardiology related event prediction demonstrates the potential of applying

CKLE for health event prediction in advance, especially for emergency medicine.

Modeling the patient similarity can improve the health event prediction performance.

From two tasks presented in Table 6.1, we can observe the graph based prediction method e.g.,

Chet and the CKLE framework can outperforms other categories of baselines including CNN-

based method (Adacare), RNN-based (Diploe). The CKLE framework outperforms the RETAIN
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by 2.52% and Adacare by 1.80% on average. The reason behind this phenomenon is probably due

to either graph based method or our proposed method take the patient similarity into the modeling

process. We take advantage of the patient similarity to help improve the health event prediction of

a particular patient. With more related information as the input, the event prediction accuracy can

be reasonably increased.

Directly combining the text features generated from clinical text is infeasible for the per-

formance improvement. The baseline LLM method for health event predictions directly lever-

age the embedded clinical text generated from LLM as the additional features doesn’t work effi-

ciently to enhance the prediction accuracy to some extent. For example, compared to the backbone

model, the naive LLM boosted method improves 2.08% F1 score on the hypertension prediction

task. Meanwhile the other performance metrics on hypertension and heart failure prediction drops,

which means the direct use of text features cannot improve the performance. There are two po-

tential causes of this unsatisfying performance with additional LLM generated features. Firstly,

the direct encoding of clinical text with LLM will inevitably include noise and redundant infor-

mation which will affect the performance of the model. The second reason is the cross-modality

knowledge distillation from LLM is more effective than naive LLM usage.

Cross-modality distillation from LLM is more effective than directly concatenating gener-

ated features. For the hypertension prediction, the CKLE improves the prediction performance by

3.61% on average compared to single modality model and 4.48% on average compared to directly

using LLM generated text features. For the heart failure prediction, the average improvement is

0.709% compared to single modality model and 1.07% compared to directly using LLM. We take

a further step to investigate the superiority of the cross-modality distillation strategy. The first

reason is directly concatenating the features increase the dimension of the input data, which will

suffer from the curse of high dimension. The second reason is cross-modality distillation with the

proposed contrastive loss can learn the inner correlations between different modality features.
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Figure 6.2: Performance comparison with limited labeled training data.
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Figure 6.3: Results of ablation study.

6.4.2 CKLE has Competitive Performance with Limited Labeled Data

To evaluate the effectiveness of CKLE under the limited label settings which is a common

scenario in the medical application, we conduct the experiments by reducing the ratio of labeled

training data on the heart failure prediction. From Figure 6.2, we have two observations as follows.

Increase the number of labeled data can increase the overall prediction performance, but

the marginal effect exists. We can observe the performance of these models can gain non-trivial

improvement when the ratio of labeled data is increased from 0.1 to 0.5. But the performance on

whole dataset doesn’t have obvious improvement compared to half of the dataset, which indicates

increasing the training data has marginal performance improve when reaches a threshold of enough

labeled data.

The CKLE framework can outperform baseline methods with limited labeled data. As

presented in Figure 6.2, the CKLE framework can still surpass the baselines under different ratio

of the training data. When we only use 0.1 labeled data to train the CKLE, we can still gain 3.18%
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improvement compared to the Chet model. Similarly, the CKLE can achieve the competitive

performance with only 0.5 training data compared to the best baseline model trained on full data.

6.4.3 Ablation Study

We conduct ablation study to evaluate the contribution of each part in our framework. The

two key designs in the CKLE framework is cross-modality distillation from LLM and patient sim-

ilarity modeling with contrastive loss (PSIM). The ablation study is conducted on heart failure

prediction and the results are presented in Figure 6.3. We can observe each part has significant

contribution to the performance improvement. If the knowledge is not distilled from the LLM to

the predictive model, the performance is not competitive compared to the CKLE because the rich

knowledge from LLM is powerful and helpful for various downstream health predictive tasks. Ad-

ditionally, the PSIM part which leverages the patient similarity can further improve the predictive

performance.

6.4.4 Embedding Visualization

To illustrate the effectiveness of the representation learning ability of the CKLE framework,

we plot the embedding of each patients in hypertension and heart failure prediction via t-SNE.

As shown in Figure 6.4, we compare the embeddings generated from the baseline method and the

CKLE framework. For hypertension prediction task, the embedding visualized in Figure 6.4b have

better clusters of negative and positive patient samples compared with the visualized embedding

of the baseline method RETAIN in Figure 6.4a. Similarly, CKLE can produce better clusters of

embedding on the heart failure prediction tasks.

6.4.5 Case Studies on Model Interpretation

6.4.5.1 Case study I: Important Features of Hypertension Prediction

As shown in the left part of the Figure 6.5, we present the 20 most important features for the

hypertension prediction. Each feature is assigned a score that signifies its relative importance in the

prediction model. Higher scores imply a stronger relationship with the occurrence of hypertension.

The most influential feature is coded 401.9, corresponding to unspecified essential hypertension,
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Figure 6.4: Embedding visualizations (t-SNE) on hypertension and heart failure prediction by
RETAIN and CKLE.
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which is intuitive as it directly relates to the condition being predicted. Subsequent features include

a mix of codes representing both related conditions and general health indicators. We have three

observations as follows: (1). The hypertension in previous visits is an important indicator for the

occurrence of hypertension the future visits. This makes sense because patients with a history of

hypertension tend to be more have hypertension in future hospital visits. (2). The renal disease

is highly related to the hypertension. This is a kind of complex and bidirectional relationship.

The renal disease can cause and exacerbate the hypertension and vice versa. This finding also

corresponds to the medical knowledge in this field [205]. (3). There are also several important

features related to newborn infants, which may suggest a correlation between the circumstances of

birth and the likelihood of developing hypertension later in life. Compared to hypertension in the

other groups of patients, newborn hypertension is relatively rare [206]. From the salient features

we observed in the hypertension prediction, the infection of infant(V29.0), respiratory problem

in infant(769), feeding issue of the infant(V50.2, 779.3), preterm infants (765.19) are risk factors

with high probabilities.

6.4.5.2 Case study II: Important Features of Heart Failure Prediction

In the heart failure prediction, the 20 most important features are presented on the right part of

the Figure 6.5. There are several types of the risk factors observed from the important input fea-

tures. (1). Previous cardiovascular conditions (428.0, 403.91, 428.33, 410.71) of the patients play

important role in the heart failure in the future visits. (2). Heart function can also be impacted by

metabolic factors (250.00, 272.4, 272.0, 276.5, 244.9, 276.1), e.g., diabetes, hyperlipidemia, and

thyroid disorders. (3). Infections and postoperative complications (599.0, 995.92, 998.11, 038.9,

995.91) can exacerbate heart failure and contribute to its development or progression as well. (4).

There are also other risk factors related to different organ have significant relations with the heart

failure. For example, there are renal and fluid disorders (584.9, 511.9), neurological and seizure

disorders (780.39), gastrointestinal disorders (530.81). Interestingly, urinary tract infection and

mechanical ventilation associated pneumonia are also included, which may reflect the complex

interactions between infections, treatment interventions, and heart failure risk. Hypertensive heart
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Figure 6.5: Feature importance heatmap for hypertension and heart failure prediction.

and chronic kidney disease and acute on chronic systolic heart failure are directly related to heart

function and therefore understandably have high importance scores. Moreover, some features

attract less attention from the medical field for heart failure analysis, e.g., disorders of mineral

metabolism (276.5), systemic inflammatory response syndrome due to infection (995.91), post-

operative infection (998.11) etc.The presence of features for subendocardial infarction and initial

episode of care, underscores the multifaceted nature of heart failure risk factors and highlights the

potential for machine learning models to discern complex patterns in clinical data for predictive

purposes.

6.5 Discussion

Multi-modality learning has been widely discussed and attracted lots of attention for health-

care data. The data in the healthcare domain has different characteristics compared with data in

the other domains. From the standpoint of data-centric AI, three healthcare data challenges are

summarized as follows: (1). The noise in the healthcare data is prevalent and unignorable. This

can be caused by the device noise, human bias, noise in recording process, etc. (2). The clinical

text is usually obscure. There are lots of professional terms in the medical domain, which requires

prior knowledge. (3). There is usually a privacy issue of the health data to request the model de-

ployed locally. Most hospitals will not put their data on the cloud server or use the online models
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to help with their clinical workflows. These data level challenges put out the requests to design

novel and suitable AI models with an emphasis on the precision, robustness and privacy.

Previous works mainly advance the technique and models to learn the embedding of different

modalities and combine them in an efficient way. In the realm of LLM, the representation learning

ability from text data has been transformativly boosted. How to efficiently leverage the LLM in the

multi-modality healthcare data remains as an open research question. We distinguish the CKLE

framework from the related work from four aspects. (1) The knowledge of LLM is effectively

learned by the health predictive model with knowledge distillation. The knowledge from LLM is

powerful which leads to large-scale parameters of the LLM that has efficiency issue. (2). We ex-

plore a novel method of patient similarity learning with contrastive loss function. The patient simi-

larity can be learned by taking advantage of the contrastive loss, which can be used to learn postive

and negative pairs. We design the soft labels for the contrastive loss function to learn the similar-

ities between patients with more granularity. This contrastive loss for patient similarity learning

can be easily adapted to other predictive model by inserting into the loss function. (3). Besides

competitive prediction accuracy, the CKLE framework can learn better representations validated

by embedding visualization. From the observations in the Table 6.1, the increase of performance

metrics indicates the effectiveness of the CKLE to improve the predict accuracy. However, we

cannot observe the representation effectiveness through the numerical results, which are also very

important to evaluate the model. In the t-SNE embedding visualization experiments, we can ob-

serve a more clear discrimination between two categories predicted by the CKLE compared to the

baseline method. (4). CKLE predictive model preserves the global model interpretability, which

can provide the feature importance by the attention score. The interpretability is a very essential

aspect when we build the medical AI models. In this paper, we distill the knowledge from LLM

into the predictive model, which is a type of Transformer. The interpretability of Transformer can

be represented as the attention score for each input features. The feature importance can show

which feature plays an important role in the predictions. From the model interpretation analysis,

we study two cases on hypertension and heart failure prediction. The top 20 important features
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we get corresponds to the medical knowledge with the domain expert. So our model can produce

precise as well as interpretable predictions on the health events.

From the collaboration with domain expert in the cardiology diseases, we can validate some

already known medical knowledge and discover some new features which lacks enough attention

previously. The CKLE can not only precisely predict health events but also can discover some

medical findings.
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7. CONCLUSION AND FUTURE DIRECTIONS

This dissertation presents the research efforts I devoted to the human-centered AI for precision

medicine. The aim of my research is to design and develop AI framework that can improve and

support the precision medicine with the human-centered principles, e.g., fairness. I achieved this

goal by combining advanced AI methods such as knowledge distillation, fairness ML, multitask

learning, multi-modality learning. First, we benchmark the bias in electronic phenotyping and the

commonly used debiasing strategies. Then, to address the challenge of balancing performance

and fairness trade-off, we design human-centered AI framework to support the precision medicine

through fair-aware knowledge distillation to make fair predictions of medical outcomes. Further-

more, to generate fair and precise clinical decisions, we design a reinforcement learning based fair

ranking framework to generate precise and unbiased organ allocation policy, which can directly

support the doctor’s decision. To simultaneously predict multiple medical outcomes, we integrate

the tree model into the multi-task learning framework for post-transplant cause-of-death analysis.

Moreover, we propose a cross-modality distillation framework to distill the knowledge from LLM

for health event prediction on structured EHR data.

In summary, this dissertation investigate and substantiate the potential of AI in precision medicine

with a special focus on the human good. Then I will discuss some potential future directions in

this line of research.

• Training Foundation Model from Unlabeled and Multimodal Medical Data: There are

large amounts of unlabeled and multimodal data in the medical domain. One potential direc-

tion is focusing on how to leverage the self-supervised learning to train a foundation model

on them. The foundation model can be used on various downstream tasks like diagnosis,

phenotyping, treatment, etc., by fine-tuning or prompt learning.

• Improve Fairness and Robustness of Medical Foundation Model: Another direction will

be investigating and evaluating the potential fairness and robustness issue in current medical
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foundation model and propose novel pre-training method to train less biased and more robust

medical foundation model.
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