The Good, Bad, and Ugly of Real-World Al Use: Practical applications of transformative impact of Al in healthcare, informatics, and the research community

Who We Are

RTI at a Glance Worldwide Presence and Financial Strength

\$1.2B FY2023 Revenue

1,126 FY2023 Clients

3,832 FY2023 Projects 8 U.S. Offices

Research Triangle Park, NC Ann Arbor, MI Atlanta, GA Berkeley, CA Chicago, IL Fort Collins, CO Waltham, MA Washington, DC International Offices

Barcelona, Spain Belfast, Northern Ireland Jakarta, Indonesia Ljungskile, Sweden Manchester, United Kingdom Lyon, France Nairobi, Kenya New Delhi, India San Salvador, El Salvador

RTI Teams and Talent		
Analytics		
Communication	Over 550	More then 1 600
Data	IT specialists and	staff holding advanced
Education	data scientists	degrees in clinical, public health, and biomedical
Environment	•	
Health	Researchers subject m	atter experts and
Justice	technologists collabora	ate on projects
Technology	Working in many scie public health, informatic	ntific domains, including cs, and data science
Transformative Research Unit for Equity		

Center for Informatics at RTI International

Comprised of ~50 staff in three programs:

Bioinformatics: Leverages computational tools to capture, curate, and analyze genetic, epidemiologic, and clinical data, turning raw information into actionable insights for human health.

Environmental Informatics: Uses data and computational approaches to transform environmental information into evidence-based solutions and policies that promote human and environmental health

Health Informatics: Lead and support projects across a wide variety of health-related areas including clinical and translational research, healthcare quality, and applied public health. Work with a wide variety of clients on large (>\$100M) and small projects (~\$100K)

Potential Uses for LLMs in Care Delivery and Health Research

Informatics, Decision Support and Artificial Intelligence

Al has the potential to impact many areas of informatics, including:

- shared decision making (SDM)
- shared care coordination and planning
- decision support (DS) solutions
- clinical decision support (CDS)
- patient-centered CDS (PC CDS)

Key areas of CDS impact include:

Automating processing

Improving sharing and replication

Accelerating technical development

Supporting patient decision making

Enhancing cognitive processing

Increasing patient-provider interaction

https://cdsic.ahrq.gov/cdsic/implementation-case-studies

Webinar Speakers

Laura Marcial, PhD, FAMIA (she/her): Senior Director, Center of Informatics, RTI International, <u>Imarcial@rti.org</u>

Jamie Pina, PhD, MSPH (he/him): Senior Director, Center for Data Modernization Solutions, RTI International, RTI International, jpina@rti.org

Daniel Brannock, M.S. (he/him): Research data scientist, RTI International, <u>mbrannock@rti.org</u>

Emily Hadley, M.S. (she/her): Research data scientist, RTI International, <u>ehadley@rti.org</u>

Background

Types of Artificial Intelligence

Narrow Al also known as "weak Al," focuses on performing specific tasks within a limited domain

Generative AI (genAI) refers to artificial intelligence systems that can create new, original content, such as text, images, or music, by learning patterns and structures from existing data.

General Al refers to highly autonomous systems that feel like they possess human-level intelligence and can handle various cognitive tasks across different domains. Still considered theoretical.

Significant Events in Artificial Intelligence

Transformer Attention Mechanisms

Transformer attention mechanisms

enable models to dynamically focus on different parts of the input data, improving understanding and processing of natural language

Contextual Understanding

Parallel Processing

Scalability

Flexible

Attention Is All You Need				
Ashish Vaswani* Google Brain avaswani@google.com	Noam Shazeer" Google Brain noam@google.com	Niki Parmar" Google Research nikip@google.com	Jakob Uszkoreit* Google Research usz@google.com	
Llion Jones* Google Research	Llion Jones* Aidan N. Gomez* † Google Research University of Toronto		Lukasz Kaiser* Google Brain	
	Illia Polosu	khin ^{* ‡}		
The dominant seque convolutional neuroperforming models in mechanism. We probased solely on attention be superior in qualities the transmission of the to-German translate ensembles, by over our model establish training for 3.5 day best models from th other tasks by apply large and limited tra	Abstri ence transduction mode al networks that include also connect the enco- topose a new simple n tion mechanisms, dispe not new anachine tri ty while being more pa- tion model achieves 28 ion task, improving ov 28 LEU. On the WMT 2 es a new single-model at s on eight GPUs, a sam le literature. We show the ing it successfully to E uning data.	ect els are based on comple e an encoder and a dec der and decoder throug tevork architecture, th anslation tasks show th rallelizable and requirit ef the existing best res ate-of-the-art BLEU use all fraction of the traini at the Transformer gen nglish constituency par	EX recurrent or oder. The best th an attention e Transformer, di convolutions uses models to g significantly 2014 English- ults, including translation task, are of 41.8 after ang costs of the eralizes well to raising both with	
I Introduction Recurrent neural networks, in a particular, have been firm "Equal contribution. Listing the effort to evaluate this idea has been crucially involved in eva ttention and the parameter-free letail. Niki designed, implement ensor2tensor. Lion also experi	long short-term memor ly established as state o order is random. Jakob pre Ashish, with Illia, designe ery aspect of this work. Ne position representation as ted, tuned and evaluated c mented with novel model J	y [13] and gated recurr f the art approaches in posed replacing RNNs wit and implemented the fin am proposed scaled dot-pt of became the other perso- ountless model variants in genient, mice memorible G	ent [7] neural network: sequence modeling and th self-attention and started it Transformer models an oduct attention, multi-hea on involved in nearly every our original codebase an or or initial codebase.	

our research. [†]Work performed while at Google Brain.

Dec

cs.CL] 6

arXiv:1706.03762v5

[‡]Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

AI Readiness in AMIA's Scope

Advanced Data Analytics

Al-driven algorithms are increasingly capable of analyzing vast amounts of healthcare data, leading to more accurate diagnostics and personalized treatment plans.

Regulatory and Ethical Frameworks

Ongoing development of guidelines and standards ensures safe, ethical, and responsible Al integration in healthcare practices.

Interoperability and Infrastructure

Improved healthcare IT infrastructure is facilitating seamless integration of AI tools, enhancing clinical decision-making and operational efficiency.

Understand the Responsible Use of AI in Healthcare through Real-world AI Applications

Explore Applications of AI in Large-scale EHR Data Repositories

Discover the Capabilities of Large Language Models (LLMs) for Novel Approaches to Text Analysis

Applying AI in Largescale EHR Data Repositories

Daniel Brannock

Massive (EHR) Databases

The Good

- Huge data enabling powerful Al
- Power for studying underserved groups (e.g., rare diseases)
- Shared costs and infrastructure

The Bad

- Esoteric data structures
- Steep learning curve
- Missing data abounds; positive, unlabeled data

The Ugly

- Bias driven by access and utilization
- Observational: causal analysis is challenging

The Data, They Proliferate

NIH All of Us

400k people EHRs, genetics, questionnaires

- NCATS National COVID Cohort Collaborative (N3C)
- 23M people, 9M with confirmed COVID
 EHRs

ğ

UK Biobank

- o 500K people
- EHRs, genetics, imaging, questionnaires

Managed Platforms

Shared access facilitates collaboration Managed distributed cloud compute Common Data Models

RECOV	ER—N3C		
	Purpose	0	Study Long COVID
	Platform Details	0 0 0	Palantir Foundry, excellent computational support Python, R, Spark SQL Assumes knowledge of OMOP data structures
	Multi-Disciplinary Team	0 0	Bioinformaticians Clinicians Patients

RECOVER—Characterizing Long COVID

- Identifying long COVID and its onset
- XGBoost model using clinically diagnosed cases
- Monitoring and retraining are critical even in research

RECOVER—Other Example Projects

Does Paxlovid prevent hospitalization and/or long COVID?

Target trial emulation

Does vaccination prevent long COVID?

CEM, IPTW

Characterizing reinfections and effect on long COVID

Building the right cohort: who is the best control?

Table 3 Odds of hospitalization in Paxlovid-treated vs. Non-Paxlovid-treated patients

	D	Dependent variable: Hospitalization			
	Unadjusted (1)	Adjusted (2)	Vaccine-adjusted (3)		
	OR (95% CI)	OR (95% CI)	OR (95% CI)		
Paxlovid Treatment					
No (control)	ref	ref	ref		
Yes (treatment)	0.33 (0.24-0.45)***	0.35 (0.29-0.42)***	$0.32 \ (0.24 - 0.42)^{***}$		
Vaccination Status ¹					
Unvaccinated	-	-	ref		
Vaccinated	-	-	$0.49 \ (0.41 - 0.58)^{***}$		
$Vaccination*Paxlovid^2$	-	-	1.08(0.71-1.64)		
Observations	410,642	410,642	136,815		
Log Likelihood	-31590.1	-25466.1	-6551.1		
Akaike Inf. Crit.	63184.0	51000.2	13172.3		

 1 Unvaccinated refers to patients who received 0 doses at index, Vaccinated refers to patients who received at least 2 doses at least 14 days prior to index.

²Interaction term

Note: Model (2) adjusts for sex, age, race and ethnicity, Charlson Comorbidity Index, Community-well being index, data partners, and month of COVID-19 Index date. Model (3) additionally adjusts for the main and interaction of Vaccination.

 $p < .05^*, \, p < .01^{**}, \, p < .001^{***}$

Analysis	Treatment Effect (95% CI)		
N3C PASC Primary Outcome ^a	0.985 (0.956-1.014)	CONFIDENT	

RECOVER—Other Example Projects

Does Paxlovid prevent hospitalization and/or long COVID?

Target trial emulation

Does vaccination prevent long COVID?

CEM, IPTW

Characterizing reinfections and effect on long COVID

Building the right cohort: who is the best control?

AIM AHEAD—All of Us

Multi-Disciplinary Team Network of mentors, mentees, training material

If We Build It, Please Come

Government has invested in these repositories

 NIH Strategic Plan for Data Science from 2018 calls out *All of Us* and the Cancer Moonshot Initiative

Lessons Learned

Data and methodology are progressing quickly

Multidisciplinary collaboration is key

There are still profound limitations

Observational

Nonrandom missingness

Positive and unlabeled data

Biased populations

Applying NLP and LLMs in health research

Emily Hadley

Large Language Models

Gemini

Advanced computer program

Trained on large amounts of text data

Can understand and generate human-like language

Large Language Models

The Good

- Large-scale text generation and summarization
- Versatile applications for innovation and accessibility

• User-friendly

The Bad

- Substantial financial and environmental costs
- Highly dependent on quality of training data

 Can reflect and amplify biases in data

The Ugly

- Generate convincing misinformation, hallucinations, and false information
- Major concerns about authorship and data privacy

Why Use an LLM Approach?

Research questions **not well addressed** with existing methods

YPublicly available data

Mo user interaction or **decision**

Low cost and **low risk**

Case Study: Community Benefits IRS Documents

Narrative Section to Describe Community Benefits

PART II, COMMUNITY BUILDING ACTIVITIES:

health services' coalition building promotes the health of the communities it serves by networking with other community agencies to address the health and safety issues of the community. health services participates in the following state and local coalitions:(1) safe kids coalitions to promote awareness and use of child seat belts and bicycle safety;(2) statewide immunization collaborative;(3) alliance for the social determinants of health; (4) opioid community collaborative;(5) living well with chronic conditions statewide program with the utah department of health; (6) diabetes-related coalitions to help reduce the incidence of diabetes in children and adults;(7) multiple mental health collaborations and suicide prevention efforts; and(8) other coalitions that address healthcare issues in the community.two health services' hospitals provide space and maintenance for community gardens made available to community members to provide access to fresh, healthy food. health services' employees utilize their clinical expertise to collaborate with other community agencies and county and state health departments to provide education and other initiatives. health services also recruits physicians and mid-level providers to medically underserved areas to meet healthcare needs of residents, thereby helping reduce barriers to accessing care.

Traditional Keyword Frequency

Prompt: "Based on These Sentences, Make a List of Changes During the COVID-19 Pandemic"

Selected Topics	Selected Examples
Hospital Measures	Changes in visitor policies, creation of negative pressure rooms, renting additional hospital beds, establishment of fever clinics, vaccination requirements
Community Assistance	Food pantry assistance and food delivery services, holiday toy distribution, COVID-19 hotline, drive-through drug takeback events, distribute COVID-19 info in newspapers
COVID-19 Resources	Distribution of vaccines, masks, hand sanitizer, soap, face shields, and tests

Policy Approaches to Managing AI Risks

Hadley, E. C. (2022). Prioritizing policies for furthering responsible
artificial intelligence in the United States. Paper presented at 2022
EEE Big Data Conference, Osaka, Japan.
https://doi.org/10.1109/BigData55660.2022.10020551

TABLE II. PRIORITIZATION RECOMMENDATIONS					
Policy	U.S. Legislature	U.S. Government Agencies	U.S. States	Professional Societies	Organization
Licensure or Certification of AI Developers	0	\checkmark	\otimes	√ +	✓-
AI Ethics Statement	√-	√-	0	\checkmark	✓-
Pre-Deployment Audits or Assessments	0	√+	0	✓	√+
Post-Deployment Accountability	√+	\checkmark	\checkmark	0	\checkmark
Database of AI Technologies or Incidents	\checkmark	\checkmark	\otimes	0	✓-
Involvement of Community Stakeholders	0	\checkmark	0	0	√+
Policies That Support Responsible AI Education	~	0	√+	✓	\checkmark
Policies That Support Responsible AI Research	\checkmark	√+	0	√+	✓-
Policies That Support Diversity in AI Development	0	\checkmark	0	✓	√+
\bigotimes = No investment \checkmark - = Low Priority					
\checkmark = Priority \checkmark + = High Priority					

Organizational AI Governance

Hadley, E., Blatecky, A., and Comfort, M. (2024). Investigating Algorithm Review Boards for Organizational Responsible Artificial Intelligence Governance. Pending review. Preprint available https://arxiv.org/abs/2402.01691 CONFIDENTIAL

RTI Has Lots of Experience!

- Phenotype development (long COVID)
- Data harmonization (BDC)
- Knowledge graphs with NLP (HEAL)
- EHR deep learning
- ML CDS models (HIV)
- Taxonomy generation (with LLMs)
- GPT for concept classification
- NER to deidentify
- Text string auto-matching & auto-coding
- Fuzzy matches for search
- Similar concept search for metadata

National Clinical Cohort Collaborative (N3C)

BioData CATALYST

Jamie Pina

Resources

See More in our Newly Published Paper!

Journal of Data Science

Q Search within journ

Submit your article Information

Article info Related articles

Traditional and GenAI Text Analysis of COVID-19 Pandemic Trends in Hospital Community Benefits IRS Documentation

Emily Hadley $\[Box]$ Laura Marcial () Wes Quattrone () All authors (4) $\[How]$

https://doi.org/10.6339/24-JDS1144

Pub. online: 23 July 2024 Type: Data Science In Action 😓 Open Access

Responsible AI Resources

THE DIRECTOR

March 28, 2024

EXECUTIVE OFFICE OF THE PRESIDENT

OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503

M-24-10

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

FROM: Shalanda

Shalanda D. Young Chalanda D. Young

SUBJECT: Advancing Governance, Innovation, and Risk Management for Agency Use of Artificial Intelligence